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The generalized commutation relations satisfied by generators of the general linear, special linear, 
and orthosymplectic color (super) algebras are presented in matrix form. Tensor operators, 
including Casimir invariants, are constructed in the enveloping algebra. For the general, special 
linear and orthosymplectic cases, eigenvalues of the quadratic and higher Casimir invariants are 
given in terms of the highest-weight vector. Correspondingly, characteristic polynomial 
identities, satisfied by the matrix of generators, are obtained in factorized form. Classes of finite
dimensional representations are identified using Young diagram techniques, and dimension, 
branching, and product rules for these are given. Finally, the connection between color (super) 
algebras and generalized particle statistics is elucidated. 

PACS numbers: 02.lO.Sp, 02.20.Hj 

I. INTRODUCTION AND MAIN RESULTS 

To abstract Lie algebras and superalgebras 1.2 there cor
respond concrete representations in terms of matrices satis
fying certain specified commutation and anticommutation 
relations. A natural generalization of such structures in
volves matrix brackets wherein the minus (or plus) sign of the 
(anti) commutator is replaced by a complex phase. These so
called color algebras and superalgebras were introduced by 
Lukierski, Rittenberg, and Wyler,3-5 and their formal prop
erties studied by Scheunert.6 The name derives from the ana
logy with the concept of color symmetry in particle physics, 
including its parastatistics 7 realization. K In fact, algebras of 
this type have appeared in connection with earlier work on 
parastatistics,9 and more particularly with the generalized 
(modular) statistics of Green. 10.11 

The theory of Lie superalgebras has shown that their 
classification theory and formal aspects, 12 representation 
theory, 13 and other properties can be developed similarly to 
ordinary Lie algebras. Diagram techniques are available 14.15 
for classes of finite-dimensional representations, and the 
usual product, dimension, and branching rules apply. 14 One 
of the aims of the present paper is to consider, for classes of 
color algebras and superalgebras, the Casimir invariants and 
characteristic identities for generators, following earlier 
work on Lie superalgebras 16.17 and Lie algebras. 18.19 This 
problem has already been considered in a more abstract con
text by Agrawala,20 but we shall present some explicit results 
adapted to the physical applications, in particular to quan
tum chromodynamics. 

A color algebra or superalgebra is defined as follows. 3 

Given are a vector space L and a grading ( ) which associates 
(homogeneous) elements X, Y, Z, of L with elements (X), (Y), 
(Z) of an abelian group r. Further, there is a scalar commu
tation factor u( 1,( I with the properties 

U(XI,(YIU(Y),(XI = 1, 

U(XI,(Y)+(ZI = U(XI,(y)u(XI,(Zi' 

U(XI+(Y),(ZI = u(XI,(Zlu(Y),(ZI' 

(1 ) 

L becomes a color algebra or superalgebra when endowed 
with a product [ , ] satisfying 

([X,Y]) = (X) + (Y), 

[X,Y] = - U(XI,(y) [y,x], (2) 

[X [Y,Z]] = [[X, Y],Z 1 + U(XI,(YI [Y, [X,Z ]]. 

Obviously, u(XI u(XI,(XI = ± 1; further properties are 
U(XI,(YI = u(Y), _ (XI and uO,(XI = U(XI,O = 1. If U(XI = + 1 for 
all homogeneous X, L is called a color algebra; otherwise, it 
is called a color superalgebra. In terms of a basis [Xa l of L, 
we have 

[ Xa,xb] = Cab cXc ' 

and the conditions (1) become 

( I') 

Cab dCdc cU(cl,(al + C be dCda cU(al,(b I + C ca dCdb cUrb I,(el = 0, 

Examples of gradings and commutation factors are giv
en by Rittenberg and Wyler.3 The case r = 22 and U(XI,(Y) 

= ( - 1 )(X)( Y) corresponds to Lie superalgebras, If 
r = 22 Ell 22 with (X) = (XI ,x2) and (Y) = (YI,Y2), one may 
take, for example, 

U(XI,(Y) = exp[ 21Ti[~(XIY2 - X 2Y I ) + (XI Y I + X2Y2)11. 
for a color superalgebra, In general, given several grading 
types (degrees) and a multiplet (m) = (mo, m l,") of whole 
numbers, graded endomorphisms of the space eM, 
M = ~a rna' form a color (super)algebra, which we shall de
note gl((m)), the general linear color (super)algebra. For 
r = 22 or 22 Ell 22 we would then have gl(mo/m l), gl(mocl 
mOI/mlO/mll)' and so on. 

The main results of the paper are as follows. In Sec. II 
we present in explicit form the defining relations of gl((m)), 
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sl((m)), and osp((m)) with the generators in two-index nota
tion E~. For sl((m)) the generators are projected from those 
of gl(( m )) by means of a trace condi tion, while for osp(( m )) the 
projection is effected through the introduction of a graded 
symmetrical bilinear form (metric tensor). In each case it is 
shown that the matrix powers 

8j = 8juu» 

(E I)i ~i Ek Ei j =ukU(kl j = j' (3) 

(EP+ I)) = (E PVkUlklEkj' 

with a summation convention on the index k, are tensor op
erators in the enveloping algebra, transforming like E) it
self. The traces 

(4) 

are the required Casimir invariants. 
Weight vectors for gl((m)) and sl((m)) are defined in Sec. 

III by identifying a set of simultaneously diagonalizable gen
erators (Cartan subalgebra). In those representations where 
a highest-weight vector exists, the eigenvalue of C2 is calcu
lated in terms of its components. The corresponding polyno
mial characteristic identity, satisfied by the matrix of genera
tors E) = E ~ u(}l' in such representations, may be derived 
by tensor operator projection techniques 16.18 or by infinitesi
mal character considerations?o.21 Both methods are dis
cussed, and the identity for gl((m)) and sl((m)) obtained in the 
factorized form 

(5) 

with the a j given in terms of the components of the highest
weight vector and combinatorial factors. These polynomial 
identities are the generalization for color (super) algebras of 
the Cayley-Hamilton identity for ordinary matrices (for Lie 
algebras, see also Gould22). Their existence, as Agrawala20 

has shown, is a consequence of the structure of the quadratic 
Casimir invariant, but follows also from general argu
ments23 concerning matrices over an associative algebra. 
One consequence of (5) worth pointing out is that there are 
only a finite number of Casimir invariants of the trace form. 
For, if Mis the degree of the characteristic identity, it follows 
that higher matrix powers may be rewritten in terms oflower 
ones; the same goes for the traces C M + I , C M + 2 , ••• 

In Sec. IV, a tensor calculus for gl((m)) and sl((m)) is 
developed using the vector operator formalism. 14 The notion 
of a color-graded permutation is made precise, and Young 
diagrams are defined. Examples are given to show that the 
usual product and branching rules apply. In addition, explic
it formulae are given for the dimension and graded dimen
sion of representations corresponding to the lowest dia
grams, independently of the type of color (super) algebra in 
question. 

In Sec. Va particle interpretation is introduced via col
or annihilation and creation operators, and the connection 
with generalized (modular) statistics outlined. The "mo
dules" of the latter (composite operators obeying ordinary 
statistics) correspond to zero-graded vectors in the associat
ed representation space. 

Finally, in Sec. VI, as an application of the characteris-
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tic identities, explicit formulae are derived for the eigenval
ues of the quadratic and higher Casimir invariants, in terms 
of the highest weights 11, for gl((m)) and osp((m)). 

II. DEFINING RELATIONS AND TENSOR OPERATORS 

As discussed in the Introduction, the color general lin
ear algebra is generated by graded endomorphisms of the 
space eM. Relative to a fixed basis, these are given in terms of 
M 2 elementary matrices 

(e))p q = 8'/j /' 

satisfying 
i k k i 

eje I =8 je,. 

(6) 

Here M = La ma and the grading is (e')) = (j) - (i). The col
or (super) algebra arises from the bracket 

[ 
i k j k k i 

ej,e tl =eje ,-Uj_i,/_k e lej' 

dropping the brackets in u( 1.( I where no confusion arises. 
From (6), the defining relations of gl((m)) in two-index nota
tion are 

[ 
i k] >::k i >::i k e j ,e I = U j e I - U j _ i,/ _ k U ,e j' 

Going to the dual space eM *, the matrices 

(ej)Pq = - u j _ i./j/8i
q , 

(7) 

(8) 

the negative color (super) transpose of the <, also satisfy the 
gl((m)) algebra (7) (and correspond to the contragredient re
presentation). 

Equations (6)-(8) allow the identification of tensor oper
ators corresponding to the contravariant vector, adjoint, and 
covariant vector representations, respectively. The transfor
mation rules are 

(9) 

(10) 

(11) 

respectively (for formal definitions, see Ref. 17 and refer
ences cited), where the E) provide a representation of 
gl((m)). 

I t is easily verified from (10) that if X)' y k I are adjoint 
tensor operators, then so is Z ~ = X'kUk ykj' and that, fur
thermore, the traces Z k k commutes with all generators E ij • 

Thus the matrix powers (3) are adjoint tensor operators, and 
the traces (4) are the Casimir invariants, viz., C I = E \, 
C2 = E 'jU jE ji' and so on. 

The above formalism for gl((m)) may readily be carried 
over to subalgebras. Indeed any color (super) algebra with 
defining relations 

[Xa,xb] = Cab cXc 

may be embedded in some gl((m)) by the identification 

Xa = Cab ce*bc' 

where e*bc is a conjugate of eb
c satisfying 

(where utj = U j.i' and one may take e*a b = e
b 
a)' A wide class 

of subalgebras may arise as fixed point sets of color-graded 
(super) algebra homomorphisms; in the Z2 superalgebra case, 
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this covers 17 all the classical series (up to trivial factors). 
We shall consider two examples, the special linear and 

orthosymplectic cases. For sl((m)), consider the matrices 
j j i k A 

aj=ej-bjUj(ekIM), (12) 

where summation on k is understood, and M = ~amaua is 
assumed to be nonzero. The aj are the M 2 - 1 generators of 
sl((m)) and satisfy 

[ 
i k] ;;:k i ;;:1 k a"a, =uja,-u,_i.f_kU,aj, (13) 

that is, formally the same as for gl((m)). 
In the osp((m)) case the space eM possesses a nonsingu

lar bilinear form (metric) with components gij relative to the 
basis and dual basis. We require of g that it be color-graded 
symmetrical and even, that is, 

and (14) 

gu = b(l),(J)gi" 

The generators of osp((m)) are 
k k S'j =gkie j - Uj.igkje , = - Uj.iS ji , (15) 

and satisfy the defining relations 

[Sij,SkI] =gjkSi/ - Uj.igikS,I - UI.kgj/Sik + Uj,i UI.kgi/Sjk·(16) 

Clearly, the generators sij are not all independent; in fact, the 
symmetry sij = - U j,iS ji indicates ~hat there are ~a !ma (ma 
- ua ) + ~a#mam{3,or!(M2 - M),generatorsofosp((m)). 

If the contravariant form gij is defined by gjg jk = b'k' 
and a matrix sj = UigikSkj corresponding to sij' it is easy to 
verify that the (generalized) traces of all powers of sj are 
osp((m)) invariants, and, in particular, that UiS~Sjl is the fun
damental quadratic invariant. 

III. CHARACTERISTIC IDENTITIES FOR gl«(m)) AND 
sl«m)) 

The derivation of Casimir eigenvalues and characteris
tic identities for gl((m)) and sl((m)) requires the underlying 
Lie algebra and root system to be identified. From (6), the 
grading vector (e'~) of ej is zero whenever (i) = (j). Clearly, 
the m~ matrices [e l

j I (i) = (j) = a I generate gl(m a ) and com
mute with generators of gl(m{3) for a =/=/3. Thus the underly
ing Lie algebra is ITa gl(ma) and a suitable Cartan subalgebra 
is [e', (no sumJl. Weights can be lexically ordered ifan order
ing < on r is adopted; within each grading type a we label 
indices (~{3<amt<) + l(f;;;;(~f3<amf3) + ma' Then it follows 
that ej is raising if i > j, and lowering if i < j. The Casimir
invariant operator C2 = ej U je j

, can then be normal-ordered 
using the defining relations (7). In a finite-dimensional repre
sentation 1T~ with highest weight A- and components 

on the highest weight vector, we find 

(17) 

where 
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or 

Mi - 2 Imj + mi + UI(I. ujm j - I.ujm j). (18) 
]<1 }<l }>l 

The derivation of a characteristic polynomial identity 
for generators E ~ satisfying (7) follows the ordinary superal
gebra 16.17 and Lie algebra l8

•
19 cases. A vector operator V j 

satisfying (9) is assumed invariantly decomposable into a set 
of components V jk' each of which changes one of the high
est-weight components by one and commutes with the re
mainder: 

Thus 

[C2,vjk]_ =Uk (U k +Mk -2k)Vjk' 

from (17). However, from the definition [see (4)] 

C2 =EjujEji' 

and using (9), one has 

C2,V jk = 2E jmum vmk - MV jk' 

or, from (20) and (21), 

(19) 

(20) 

(21) 

[EJmum - [A-m +!(Mm +umM)-m]bJmumlvmk =0. 

Finally, since this is true for every component of Vi, we have 
as a matrix equation 

M A A .... II IE - [A-i + !(Mi + uiM) - i]t5j = 0, (22) 
i= J 

whereEj = EijUj and~j = b'JuJ. Similar considerations for 
a covariant vector operator lead to the related matrix char
acteristic identity 

M 

II IE - [A-i + ~(Mi - u,M) + 1 - i];5) = 0, (23) 
j= 1 

where E/ = E jiUi and;5/ = bJiUi. 
An alternative derivation2o.21.24 of (22) and (23) starts 

from a representation 

1T(e) = 1T.de) X 1 + 1 X 17'4> (e), 

where A- is as before and ifJ is either the fundamental p or its 
contragredient p •. Taking matrix elements of the operator 

E4> = H 1T(C2 ) - 1TA (C2 ) Xl - 1 X 17'4> (C2 ) ], 

with respect to a standard basis of eM or eM., one finds that 
Ep. and Ep tum out to be just the matrices E and E, respec
tively. The identities are just the characteristic equations for 
E and E, their eigenvalues being obtained by repeated use of 
(17) for A-, ifJ and the constituents of A- X ifJ. The results are 
subject to multiplicity criteria in general. 16.25 There may be 
some repeated factors in the identity, which can be omitted. 
There are also complications for infinite-dimensional and 
incompletely reducible representations. However, classes of 
completely reducible finite-dimensional representations will 
be identified in the next section, where the criteria specified 
above are satisfied. 
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IV. REPRESENTATIONS AND DIAGRAM TECHNIQUES 

Finite-dimensional representations of gl((m)) [and also 
sl((m)) and osp((m))] may be investigated using the tensor 
operator formalism of the previous sections, analogously to 
the superalgebra case. 14 For simplicity, we take only contra
variant operators (corresponding to Kronecker products of 
the fundamental representation on C\1 X eM X···); covariant 
and mixed tensors can be similarly treated. The result is that 
diagram methods still apply, with appropriate modifications 
for the color grading. 

The rank-I case is just the vector operator already in
troduced, transforming as 

[EiVk]=flVi 
J' )' 

corresponding to the fundamental irreducible representa
tion, to which we assign the diagram 0 or [ I]. A rank-2 
tensor satisfies 

[E'Vk]=fl.ViI+U. 8'Vki 
J ' } } - I, - k J ' 

and it is readily shown, using the distributivity and symme
try of the commutation factor, that the color-graded sym
metrical and anti symmetrical parts, 

V~ = !(Vij ± ui.) P'), V~ = ± ui.) VJi, 

transform identically to VU and thereby provide a decompo
sition into symmetrized parts denoted as usual by rn and 
B ' or [2] and [ 12

], respectively. 
For higher-rank tensors, the appropriate symmetriza

tions l4 are with respect to the color-graded permutation 

D [1] = M, D [2] = M (M + 1)12, 

DP2J =M(M-I)/2, D[3J =M(M+ I)(M+2)16, 

D[2Ij =M(M2-1)l3, D[13] =M(M-I)(M-2)16, 

group (permutations plus factors u i ,) for transpositions). Re
sults which depend only upon the permutation group carry 
through to the color (super) algebra case. For example, the 
usual Littlewood-Richardson product rule holds, and the 
branching rule 14

,20 gl((m + n)pgl((m))xgl((n)) is 

(24) 

as usual, where the summation extends over all Young tab
leaux [t ] by which the tableau [A I is divisible. An extension 
of this rule to gl((m)p fl" gl((m" )), where (m,,) = (m"o' 
mal' ma2 ,· .. ) is defined by mar3 = 8a{3m", yields the branch
ing rule gl((m)p II" gl(m,,), using the fact that a tableau [A I 
of the color (super) algebra gl((m,,)) coincides with the tab
le~u [A I of the Lie algebra gl(m,,), or its conjugate tableau 
[A l. according as U" = + I or Ua = - I, respectively. 

Dimensions of representations corresponding to color
graded tableaux can be worked out from the II" gl(m,,) 
branching rule for each type of grading and corresponding 
color (super) algebra. However, it is of some interest to have 
dimension formulae D [A I which depend only upon the tab
leau. Easiest is the graded dimension D [A ], the difference 
between the dimensions of the even and odd subspaces (a 
vector is even or odd according as its grading a satisfies U a 

= + I or u" = - 1, respectiv~ly). For the fundamental re
presentation, this is obviously ¥ = I" U" ma' For general 
tableaux, it is a polynomial in M: as for the superalgebra 
case, 15 this polynomial is identical to that for the dimension 
of the same tableau in ordinary gl(M). Up to rank 4, we there
fore have26 

(25) 

D[4J =M(M+ I)(M+2)(M+3)124, D[31J =M(M+2)(M2_I)lS, 

D[22] =M2(M2_1)l12, D[212] =M(M-2j(M2_I)lS, 

D [1 4 J =M(M - I)(M - 2)(M - 3)124. 

For the total dimension D [A I (the sum of the dimensions of the even and odd subs paces ), the polynomials are functions of 
both M and M, as foreshadowed by the osp((m)) dimension (corresponding to D [ 12 J) already given. The following formulae, 
derived for the Z2 case gl(mo/mtJ, can be verified by taking particular examples for other gl((m)): 

D PI = M, D [2 J = (M 2 + M )12, 

D [1 2 J = (M2 -M)l2, D [31 = (M 3 + 3MM + 2M)l6, 

D [21) = (M 3 
- M)l3, D (13) = (M 3 

- 3MM + 2M)l6, 

D (4) = (M4 + 6MM 2 + (8M 2 + 3M 2] + 6M)!24, D Pi) = (M4 + 2MM2 - M2 - 2M)lS, 

D (22) = (M4 + 3M 2 
- 4M2)112, D (212) = (M4 - 2MM2 - Ml + 2M)lS, 

D [14] = (M4 - 6MM 2 + [SM 2 + 3M 2] - 6M)l24. 

I 

(26) 

The similarity' between (25) and (26) is seen by expanding (25) 
in powers of MAD [A ) is obtained from D [A ] by replacing 
each power of Mby an appropriate homogeneous expression 
in M and M, with the same overall coefficient. These formu
lae may also be derived from a generalization of the (super) 

trace formulae for supercharacters, given by Balantekin and 
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Bars, IS to color superalgebras. The general formula 

D [A 1= Ix;'p)hrp)(M P1 +P\+)(M P2 + P4 +)lr!, 
Ip) 
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where X :PI is the character of the symmetric group Sr for the 
irreducible representation A and class (p) = (1 PI 2P2 

••• ), and 
hi pi the class order, follows by appropriate substitution in 
the corresponding S-function power sum expansion.27,28 

As an example of the above formulae, we have the fol
lowing products and dimension checks in gl(2!I) (l2 superal
gebra): 

OX 0=[2] +:J 
3X3 = 5 + 4, 

[LX[J= +'Q:J 

5 X 3 = 8 + 7, 

;-1 t' h o XD =~~+ t:i 
4X3 = 8 + 4, 

whereas in gl(2/1/1/1) (l2 Ell l2 superalgebra) we have 

DXO =00+ B 
5X5=13+12, 

rnxo=3 J
-t-LIr 

13X5 40 + 25, 

ElXD tD+B 
12X5 40+20, 

In the case of a mixed tensor representations (corre
sponding to tensor operators ViJ ... pq ... ) it can be shown that 
traces with respect to the invariant tensor 8~ are tensor oper
ators oflower rank. It follows that a resolution may be made 
into traceless mixed tensors 

IA )xl,u) = I I A/S;,u/s) 
~ 

in the usual manner,26 However, as in the superalgebra case, 
these representations, and their Kronecker products, may 
not be completely reducible: For example, this is the case for 
the representation (1;1) whenever if = 0, 

V. PARTICLE INTERPRETATION AND MODULAR 
STATISTICS 

A particle interpretation for color (super) algebra arises 
from postulated color creation and annihilation operators 
satisfying 

[C;,Ci ] = c;ci ± uUI,lJlcic; = 0, 

[c;,c i ] = c;c i ± uUI,IJICic; = 0, 

[c;,c i ] = c;c i ± uUI, _1J)cic; = 8/ 
(27) 

In modular or generalized statistics 10, II analogous relations 
arise, and it is convenient to treat both cases together. For 
modular Fermi (Bose) statistics, start with a set of fermion 
(boson) operators aU;. aip [as in the previous sections, a and 
(i) are grading vectors, and i a general affix], such that 

[aU;,ap
i ] = au;ap

i ± apiau; = 0, 

(28) 

1685 J, Math. Phys., Vol. 24, No, 7, July 1983 

Then there always exists a (unitary) permutation operator 
Uu such that Uu Uf3 = Uu + 13, Uo = 1, and 

Uua/U_u =af+u, Uua'f3U_ u =a~+u' (29) 

The following construction is due essentially to Kleeman, 29 
Let 

Using (28) and (29), it follows that 

b,ub p + bp-ulbu+lil = ° 
I J - } I , 

b'abip ±b~_(llb~+IJ) =0, (30) 

b ab i + b j b u - III _ J;:U >: i 
; 13 _ f3-U); -u p u ;, 

These are just the relations satisfied by the ansatz compon
ents in modular Fermi (Bose) statistics 10, II (where the defin
ing relations are independent of color), 

Further simplification, and the connection with color 
(super) algebra, follow when there exists a commutation fac
tor (thus far, the discussion has been for any grading), For, 
define 

c; = I [uu,U)] 1/2b/, ; _" 1/2 ; 
C - £... [UU),U ] b u' 

u u 

and note that 

I[Uu,udI/2bf+IJl = I [u_li),UdI/2[uu+V),lilr/2bf+lJ) 
u a 

= [UU),IJ)] 1/2c; 

and 

I [Up,Ii)] 1/2bj-U) = [U(J), -;1] l/2ci = [UU),lJl] 1/
2
Ci , 

13 

Therefore, using (30), 

" [ ] 1/2[ ] 1/2b Ub 13 C;Cj = £... u uU) UP,(J) ; i 
U,p 

+ I [UI3,lll] 1/2 [Uu,(;d I 12b j - U)b f + Ii) 
u,p 

+ UU),(J)CiC;, (27') 

or 

[C;.Ci ] = C;Ci ± UU),(J)CiC; = 0, 

This relation, and similar ones satisfied by [c;,c i ] and 
[c;,c i ] ,just reproduce the postulated relations (27) for color 
creation and annihilation operators, 

Given (27), gl((m)) generators satisfying (7) are obvious-
ly 

E'
J 

= c;ci ' 

In a Fock representation, with vacuum 

c;l> = 0, 

(31) 

(32) 

the state c;1 > , c;cil > ," are obviously totally color-graded 
symmetrical [or antisymmetrical, with the + sign in (27)]. 
General tableaux can be built up by considering several spe
cies c;, c i ', c ku 

," of color operators. Of particular interest in 
modular statistics are composite operators, built from the b;, 
b;, where (i) is fixed, obeying ordinary Bose or Fermi statis
tics (corresponding to physical fields). In general, these so
called "modules" are just vectors of weight (i) = 0. In the 
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color superalgebra case, one has for example cic. or CiICi2 ••• /V 

where N is the characteristic of the grading gr~up. ' 
It is important to note that the restriction to finite-di

mensional irreducible representations of the E i defined in ; 

(31) does not necessarily imply the same restriction for the c· 
and c\ which can be regarded as shift operators between ' 
contiguous irreducible representations of the E i. This is suf
ficiently illustrated by some of the simplest of ~pplications, 
e.g., to bosons, where the momenta are limited to a finite set. 
We may, in fact, suppose in a model theory that the momen
tum states are discrete and compact. 

To complete the physical picture, it is desirable to as
sign a meaning to the invariantsA. k ofgl((m)) and the vectors 
V \ defined in (19), which are projected from the creation 
operators d by maximal factors of the characteristic identity 
(22). The simplest applications, to particles satisfying paras
tatistics,3o are sufficient to show that the characteristic iden
tity contains redundant factors wherever particles of the 
same type are present, so that the degree of the minimal 
polynomial depends on the number of kinds of particles, e.g., 
the order of the parastatistics, but is independent of the num
ber of momentum states. If we examine the factors 

E- [A.k +!(Mk +ukif)-k]b, 

of (22), we see that the Uk have the value - 1 for half-odd
integral spin and + 1 for integral spin. Also, if we assume 
that the m k are all equal to some simple multiple of the num
ber of momentum states, theMk defined by (18) depend only 
on color and spin. It follows that each distinct factor of the 
characteristic identity (apart from the trivial factor E, which 
is present even when only fermions or bosons are considered) 
is associated with particles of a particular color and spin. 
Thus, A.k may be interpreted as the maximum number of 
particlesoftype(k), when valuesofA m for(m) < (k ) have been 
assigned. Also, the eigenvectors V j k of the matrix E repre
sent creation operators for particles of type (k ). The use of 
color algebras may lead, in the future, to the development of 
field theories in which elementary particles of different types 
are represented by the same field variable. 

VI. HIGHER CASIMIR INVARIANTS 

We have already seen that many results, based on tech
niques developed originally for the study of finite-dimen
sional Lie algebras, can be generalized in a straightforward 
way to the color algebras and superalgebras. This is true also 
of the method of calculation of the higher Casimir invariants 
in terms ofthe highest weights A.. For ordinary Lie algebras, 
the essential results in their simplest form were obtained ori
ginally by Louck and Biedenharn31 ; easier derivations, based 
on the use of the characteristic identities, were given by 
Okub032 and Green. 19,33 The following generalization fol
lows the method of the latter. 

Let us write the characteristic identity (22) for gl((m)) in 
the form 

M "" II (E-ai)=O, a i =UiA.i + LUi' (33) 
i= 1 j>i 

Then, as for ordinary matrices, the operator matrices de
fined by 
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(34) 

~e projective idempotents, and any power E q of the matrix 
E can be expressed in the form ~iaiPi' so that the higher 
Casimir invariants Cq are given by 

Cq = ctr(Eq) = L aiqctr(Pi ), (35) 
i 

where ctr(A ) = (Ab)\ and b'; = 8juj , as previously. The cal
culation of the Casimir invariants is thereby reduced to the 
determination of the color traces 

Ti = ct{{\ (E - a j )). (36) 

Now, it is evident from the definition of the Casimir 
invariants that they are invariant under the transformation 
Ejk--+E Pjpk' uj--+uPj ' where (Pj) denotes any permutation of 
the affixes (j). Under this transformation, aj--+aPj ' and it 
follows that Cq , expressed as a polynomial in the a· and u·, is . . ; ; 
symmetnc III the pairs (aj , uj ). It also follows that Ti' ex-
pressed as a polynomial in the a j and uj ' is symmetric in all 
such pairs with the exception of (a;. uJ Since Ti is of degree 
M - 1 in the aj , if we can show that it has a factor (ai - aj 

- uj ), it must have the form 

Ti = Ci II (a i - a j - uj ), 

j#i 

(37) 

where C i is independent of the representation and can depend 
only on the uj . 

The existence of a factor (a i - aj - uj ) of Ti is estab
lished by the same argument as is applicable for simply grad
ed algebras.31 Th~ T, can depend only on differences of the 
eigenvalues a i of E is already evident from the fact that p. is 
invariant under the transformation E \ --+E j k + J-l8\" ~j 
--+aj + fl. But the projection operator Pi may be expressed 
in the form Viv, (i.e., P/k = V/Vik ), where V/ is a vector 
operator as defined in (9) and V'ik is its dual, suitably normal
ized. Also, according to (19), Vi increases the eigenvalue of 
a i in any irreducible representation by one unit, and V, de
creases the eigenvalue of A.i by one unit. But as A.i :>A. i + I 

when Ui = Ui + I' Pi must vanish in a representation with A. j 

= A. j + I . Similarly, A. j + A. i + I :>0 when Ui = - U j + I' SO Ti 
must vanish whenever A.iUi = A. j + lUi + I' i.e., when a j 

= a i+ I + u j + I' and must have the factor (a, - a i+ I 

-Ui + I)' 
The multiplier C j in (37) is easily found from comparing 

the value of Co given by (35) with its known value: 

As this must be an identity (independent of the values as
sumed by the a j in a particular representation), we verify 
that 

C j = U j • (38) 

The values found for CI and C2 by substitution in (35): 

C I = L uj(a i - L. Uj ), 

i », 
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(39) 

agree with those found in Sec. III when expressed with the 
help of(37) in terms of highest weights. Conversely, if the 
eigenvalues of the invariants of Cq are known in any irredu
cible representation, the values of the aj and hence of the Aj 
may be determined. This suggests a way of extending the 
definition of the Aj to representations other than the finite
dimensional representations, which formed the basis of our 
discussion in the foregoing. 

The Casimir invariants of osp((m)) can be found in a 
similar way. The value of the quadratic invariant in terms of 
highest weightsllJ, 1l2, ... ,IlH' whereH = [M 12], is obtained 
by the elementary method used for osp(mln) in Ref. 16, and 
can be expressed in a form 

C2 = 2 i~J lli0iUi + j~ uj - j~i uj - 1), (40) 

strikingly similar to the corresponding result for gl((m)). The 
characteristic identity obtained with the help of this result is 
(cf. Sec. III) 

H 

IT (S - f3;)(S -7{) = 0, 
i= 1 

f3i =Il,U, + L uj - 1, (41) 
j>i 

where S is the matrix of operators s~ as defined in Sec. II, 
restricted to a finite-dimensional representation. Again the 
most easily calculated invariants are the 

Ti = ctr[(s -7{) IT (S - f3j )(S - ~)], 
k #i 

Ti = ctr [ (S - f3i) }}, (S - f3j )(S - ~) ], 
(42) 

from which it is easy to determine the Cq • The form of Ti and 
Ti is again completely determined, apart from a factor Ui, 
from consideration of symmetry, together with the inequal
ities satisfied by the highest weights; the detailed argument is 
parallel to that given in Ref. 33. For even M, we obtain 

Ti = Ui (fJi -73,) IT (fli - f3j - uj )(fl, - ~ - uj ), 
j#i 

T, = u,(jJ, - f3,) IT (jJ, - f3j - Uj)(fJi - ~ - uJ 
j#' 

For odd M, the additional U M must have the value + 1, and 
additional factors (fl, - f3 M) and (jJ, - f3 M) are required in T, 
and T" respectively. But, in addition, thefactorsf3, -73, and 
73i - f3, must be replaced by 73, - f3, - 2u" respectively, to 
ensure that T, and T, vanish whenA, is changed toA i + 1, in 
representations such that A, = A, + J' 
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VII. CONCLUSION 

In this paper we have obtained a large number of new 
results for color algebras and superalgebras. These include 
the explicit forms of the quadratic and higher Casimir invar
iants for gl((m)) and osp((m)) in Secs. III and VI, the charac
teristic identities satisfied by the matrices of generators of 
these algebras, the Young diagrams for gl((m)) in finite-di
mensional representations in Sec. IV, and the application to 
particles of different colors described in Sec. V. 
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Combinatorial algorithms for computing the character generators ofU(n), SU(n), and Sp(2n, C) 
are described. These algorithms produce relatively compact, nested expressions for the character 
generators. Moreover, the terms appearing in these expressions all have positive coefficients. This 
feature is not shared by the expression for the character generator which uses the Weyl character 
formula. 

PACS numbers: 02.20. + b 

I. INTRODUCTION 

The purpose of this paper is to describe a combinatorial 
algorithm for computing the character generators of the uni
tary groups U(n) and SU(n) and of the symplectic groups 
Sp(2n, C). This algorithm is based on a unique method of 
labelling every basis vector of the weight spaces ofthe irredu
cible representations. In a sequel I to this paper, we give a 
recursive algorithm for computing the action of any element 
of one of the Lie groups mentioned above on one of the basis 
vectors. For SU(n) or U(n) these labels are equivalent to 
Gel'fand patterns2 and to the usual Young tableaux associat
ed with Sl(n, C). For Sp(2n, C) our labels are equivalent to the 
modified Gel'fand patterns based on the branching rules of 
Hegerfelde and to the tableaux of King.4 

One feature of our approach is that it can be extended to 
other Lie groups. This paper can be regarded as an introduc
tion to the more general (and more complicated) algorithms 
needed to deal with arbitrary reductive Lie groups. For ex
ample, our algorithm has been extended to the exceptional 
Lie group G2 by Baclawski and Towber. 5 

The character generator was first defined by Patera and 
Sharp,6 who gave an expression for it using the Weyl charac
ter formula. However, this expression involves a great deal 
of cancellation so they posed the question of finding expres
sions that do not involve any cancellations. Such an expres
sion was found for the groups SU(n) by Stanley.? However, 
his formula rapidly becomes intractably large even for small 
groups such as SU(5). Subsequently, King4 extended Stan
ley's method to Sp(2n, C). We compare the various known 
methods of computing the character generator in Sec. IV. 
For example, our algorithm yields a formula for the charac
ter generator ofSp(6, C) that is 52 times smaller than the 
formula of King. More dramatically, in the case of SU(7), 
our formula is 65 times smaller than the Patera-Sharp for
mula and over a million times smaller than Stanley'S for
mula. 

The use of tableau methods for studying group repre
sentations has a long history going back to Young. For an 
overview of this field see Bac1awski (Ref. 1, Introduction; 
Ref. 8, Sec. 5) and DeConcini, et al. (Ref. 9, Chapter III). 

II. THE CHARACTER GENERATOR 

Let G be a semisimple complex Lie group. We have in 
mind the two examples Sl(n, C) and Sp(2n, C). Ifwe are given 

a) Supported by NSF Grant MCS 79-03029. 

a finite-dimensional irreducible representation (irrep) 

p: G-+GI(V), 

we define the character of p to be the function 

XI': G-+C 

such that XI' (0') = Tr( p(O')), for (]'EG. If G is a subgroup of 
GI(m, C), then XI' (0') is determined by the set of eigenvalues 
! 5 I' ... , 5 m ) of 0'. Thus we may regard X I' as a symmetric 
function of 51' ... , 5m· 

If G is a proper subgroup of GI(m, C) then the eigenval
ues of an element of G will not be independent of one an
other, and so it is conventional to view XI' as a function of 
certain expressions a I' a 2, ... , a" of a subset of I of the eigen
values, where I is the rank of G. Although many conventions 
appear in the literature, there is one that seems to be most 
popular: the Dynkin basis. It has the advantage that it is 
intrinsic to the group, i.e., does not require that the group be 
specified as a subgroup of GI(m, C). 

Here are the conventions for Sl(n, C) and Sp(2n, C). 
(1) Sl(n, C) = ! 0' E GI(n, C) I det(O') = 1). The rank is 

1= n - 1, and XI' is a function of 

a l =51' 
a 2 = 5152' 

an - 1 = 5152"'5n - I' 

(2) Sp(2n, C) = {O' E SI(2n, C) I'O'AO' = A ), where A is 
the block-diagonal matrix 

o 
- 1 0 o o 

- 1 0 

o o 
- 1 0 

The rank is I = n. The eigenvectors of 0' E Sp(2n, C) may be 
listed as 5)1 51- 1,52,52- t, .... 5n' 5 n- I, and XI' is a function of 

at =51' 
a 2 = 5152' 
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Although GI(n, C) is itself not semisimple, we can treat it in a 
similar manner, using the convention that Xp is a function of 
a l = 51> a z = 5z, ... , an = 5n· Our techniques apply to any 
reductive Lie group over the complex numbers. 

A weight vector of Vis a vector v that is an eigenvector of 
every diagonal matrix, and in particular, if 0" = diag(51' ... , 
5m), then p(O")v will be the vector 5V, for a number 5 which 
will be a function of 51> ... , 5m. One can show that 5 will 
always have the form a p = at' ... a~1 for some I-tuple of in
tegersfl = (fll' ·.·,flz)· We will callfl the weight ofv (in the 
Dynkin basis). The subspace of V consisting of all weight 
vectors of weight fl (in other words, the eigenspace belonging 
to a p

) is denoted by VI' and called the weight space of weight 
fl. Its dimension is called the multiplicity of fl in V. One can 
show that V is the direct sum of its weight spaces (i.e., every 
vector of Vis a unique linear combination of weight vectors), 
and hence that 

Xp = I dim (Vp)ap. 
I' 

In other words, Xp is the generating function of the multi
plicities of the representationp. To distinguish this incarna
tion of the character from the original definition, one calls 
this the formal character of p. 

So far we have not made use of the fact thatp is irreduci
ble. One can show that the irreps can themselves be labelled 
by I-tuples of integers. If p has label A = (A I' ... , AI), then we 
write V(A ) for its representation space. The label A is the 
highest weight of p and has these properties: 

(1) dim V" (A) = 1, i.e., A occurs with multiplicity 1 as a 
weight of the representation labelled by it; (2) A is the maxi
mum weight, among all weights occurring with multiplicity 
1 or more in V(A ), with respect to a certain partial order on 
weights; 

(3)twoirreps V(A land V(A ')areisomorphicifandonlyif 
A=A'; 

(4) if G is simply connected, then every I-tuple A of non
negative integers occurs as a highest weight of some irrep. 

For a group such as GI(n, C) which is not semisimple, 
one can still label irreps with I-tuples of integers, but they 
may not be nonnegative. However, (1) and (3) above will still 
hold. For GI(n, C) the n-tuples A that occur as irrep labels are 
those that satisfy AI>Az> ... >Ap . 

We come at last to the character generator. This is the 
generating function of the characters of all irreps of G: 

= II dim[ VI' (A )]apA ". 
,l I' 

One may regard the character generator as the generating 
function of the multiplicities of all weights in all irreps of G. 
It was introduced by Patera and Sharp.6 As noted by them 
and as we shall see, it is closely related to the "labelling prob
lem," i.e., the problem of finding unique labels for the basis 
vectors of the irreps of G. 
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We end with the remark that the finite-dimensional re
presentation theory of SU(n) coincides with that of Sl(n, C) 
under restriction. Similarly, the representation theory of 
U(n) coincides with that of GI(n, C). 

III. PARTIALLY ORDERED SETS 

The combinatorial structure we utilize for our compu
tations is the partially ordered set (poset). A poset is a set P 
together with a reflexive, transitive, antisymmetric relation, 
written, .. <;". Here is an example of a poset: 

In this poset a<;e and b<;d, butc andd are not compara
ble: ci.d and di.c. We will use the usual notation for open 
and closed intervals in a po set, e.g., [x,y] = [z!x<;z<; y]. 
The diagrams we will use to depict a po set, as above, is called 
its Hasse diagram. The elements are the vertices of this dia
gram and the edges are the covering relations, where y is 
said to cover x in Pifthe closed interval [x, y] has exactly two 
elements. 

A multichain of a po set P is a finite sequence (possibly 
empty) XI' xz, ... , X, E Psuch that XI <;xz<; ... <;x,. Note that 
repetitions are allowed. Certain special cases are of special 
interest. A chain is a multichain which has no repeated ele
ments. A maximal chain is a chain that is not properly con
tained in another chain, and a chain X I < X z < ... < x, of Pis 
said to be saturated if it is a maximal chain in the closed 
interval [x I' x,]. A covering relation could also be defined as 
a two-element saturated chain. A three-element saturated 
chain is called a link. The sets of all chains of the various 
kinds described above are denoted as follows: 

Notation 
M(P) 
C(P) 
Max(P) 
Cov(P) 
Link(P) 

Set 
multichains of P 
chains of P 
maximal chains of P 
covering relations of P 
links of P 

The largest cardinality of an element of Max(P) is called the 
rank of P, denoted r(P). The posets we will consider have the 
property that every maximal chain has r(P) elements. 

A labelling of a poset is a map t: P-R into a ring R of 
labels. In other words, we attach a label to every element of 
P, and we require that labels can be multiplied and added. 
The labelled poset we will use for SU(3) is the following: 

Y
a~~~A' 

-, 
a,A, a, A2 

a,ai'A2 
a2A2 

The labels above are in the ring of polynomials in the varia
bles al> ai-I, a z, a z- 1, A" andA~. 

Given a multichain x = (x 1<; .. ·<;X, )EM(P) in a labelled 
poset P, we define the label ofx to be ((x) = n~ ~ I t'(x;). The 
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label of the emply multichain is 1. We will show that the 
character generator ofSU(3) is given by LXEM(P) fIx), where 
P is the labelled poset drawn above; moreover, the multi
chains of P furnish labels of the weight vectors of the irreps of 
SU(3). More generally, we will associate a labelled poset, 
called a/undamental poset with each group U(n), SU(n), and 
Sp(2n, q, such that the corresponding formula holds. The 
notation we will employ is the following: 

Group 
SU(n) 
U(n) 
Sp(2n, q 

SU(n) 

Rank 
n-l 
n 
n 

Fundamental poset 
A(n -1) 
PIn) 
C(n) 

The elements of A(n - 1) are the strictly increasing se
quences b l < b2 < ... < bl , such that 1 <,b l < ... < bl <,n and 
1 <,1 < n. The partial order on A(n - 1) is given as follows: 
(b l <b2 < ... <bl)<,(c i < ... <cm ) if and only if 

(l)r~m, 

(2) b, <,c, for every i<,m. 

Thus "smaller" in this poset means "longer sequence but 
smaller entries." The labels we attach to the element of Pare 
given by 

I 

f(b l < ... <bl) =AI II I(b,), 
i= 1 

where 

I(k) = ai' if k = 1, 

= a n-_
I

I if k = n. 

The element of A(n - 1) may appear as more familiar 
objects if one writes them as columns 

~ 
tB 

rather than rows. Later we will see that the elements of 
A(n - 1) are column Young tableaux. 

U(n) 

We included this example to show how to deal with 
reductive Lie groups that are not semisimple. The funda
mental poset P(n) is obtained from A(n - 1) by adjoining two 
new elements and relabelling. As a po set, 
PIn) = A(n - l)u(d, d j where 

(1) for every B E A(n - 1), B>d, d, 
(2) d and d are not comparable. 

For example, here is P(3): 

(n 
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We label PIn) as follows: 
I 

(1) ((b l < ... <bl) = II (A,ab,l, 
i- 1 

n 

(2) I(d) = II (A,a,), 
1--=-1 

n 

(3)/(d)= II (A,a,)-I=/(d)-I. 
1=1 

Note thatd acts like the sequence (1 < ... < n) while d acts like 
the "inverse" of d. In fact, d corresponds to the one-dimen-

del 

sional irrep Gl(n, q ~ C, while d corresponds to det - I. 

Sp(2n, q 

As a poset C(n) is a subposet of A(2n - 1), correspond
ing to the fact that Sp(2n, q is a subgroup ofSl(2n, C): 

C(n) = (B E A(2n - l)IB>(I < 3 < ... «2n - 1))j. 

The labelling of C(n) is given by 
I 

((a l < ... <al) = A, II g(a,), 
i -- I 

where 

g(k ) = apj =- \ if k = 2j - 1, 

= a j - laj _ I if k = 2j, 

and where a o = 1. 
Our main result, which will be proved in Sec. V, is the 

following: 
Theorem 1: If P is one of the labelled posets defined 

above and if G is the corresponding group, then the character 
generator of G is given by 

FG(a;A) = I ((x). 
XEMIP) 

IV. LlNKABILITY 

The concept of linkability, introduced by Gessel, 10 is a 
convenient tool for computing sums of the kind in Theorem 
1. In this section we define this concept and exhibit linkings 
of the po sets defined in Sec. II. 

Let P be a finite, labelled poset. It is convenient for 
algorithmic purposes to introduce two additional elements 
to P, denoted 0 and i, such that for every PEP we have 
o < p < i . We write P for PJ (0, i j. We extend the labelling to 
P by defining ((0) and i( 1) to be O. 

Definition: A linking of P is a partition of Link(P) into 
two disjoint subsets Link + (P) and Link -- (P) such that, for 
every pair x < y in P, there exists a unique maximal chain 
(xo < x I < ... < X n )EMax([x, y]), every link of which is in 
Link+(P). 

We call Link + (P) the set of ascending links of P (for 
reasons that will be made clear later), the remaining links 
being the descending links. A saturated chain 
x = (xo <XI < ... <xn ) is said to be ascending ifall its links are 
in Link + (P). Thus a linking of P is a choice of a subset 
Link + (P ) ~ Link(P J..such that there is a unique ascending 
chain from any x E P to any y > x. More generally, the des
cent set of x, denoted D(x), is the set 

Kenneth Baclawski 1690 



                                                                                                                                    

D(x) = Ix; 10 <i <n and (x;_ 1 <X; <x;+ 1 )ELink+(P)j. 

The importance of linkability for us is the following: 
Theorem 2: Let P be a labelled, linked poset. Then 

II f() 
" f " noDI y) Yi 
£... (x) = £... 

xEMlP1 YEMaxIP) II, [1 - f( Yi)] 

Note that every term in the right-hand side above is a 
product of labels and of geometric series in a label. Thus no 
cancellation is involved in the evaluation of this expression. 
This is a key requirement of a "good" expression for a char
acter generator. The formulas ofStanley7 and King4 coin
cide with formula (3.1) for the cases P = A(n - 1) and 
P = C(n), respectively. 

Proof The support of a multichain is the set of elements 
that occur at least once. This defines a map Supp: 
M(P )-C(P). It is an easy exercise to show that for a maximal 
chain y, the generating function which enumerates the mul
tichains whose support lies between D(y) and y, i.e., 

I~ fIx) 
XEM(P) 

D(yH;;Supp(x)(;;y 

coincides with the product 

II ( f'(y;) ) II ( 1 ) 
y,ED(y) 1 - f(y;) y,<lD(y) 1 - f(y;) . 

Thus we need only show that every chain XEC(P) occurs ex
actly once between some maximal chain y and its corresond
ing descent set D(y). 

Accordingly let x = (x 1 < ... < X n ) be any chain of P. By 
definition of a linking, there are unique ascending chains 
from 0 to XI' from x 1 to x 2 , ••. , from x n to 1. Concatenating 
these together yields a maximal chain y whose descents oc
cur in a subset of I x I' x 2, •.• , Xn J. Thus there exists a maximal 
chain y such that D(y)~x~y. 

Conversely, let z be any maximal chain such that 
D(z) ~ x ~ z. Since D(z) ~ x, the restrictions of z to the inter
vals [0, x I]' [x" x 2], ... , [Xn' 1] are all ascending chains. By the 
uniqueness of ascending chains, we have that z coincides 
with the maximal chain y constructed above. QED 

It remains to find linkings for the posets A(n - 1), P(n), 
and C(n). These linkings are derived from a method due to 
Stanley 1 1 that applies to any finite distributive lattice. 

SU(n); A(n - 1) 

The po set A(n - 1) has two new elements 0, 1 which 
will be identified with the sequence (1 < 2 < ... < n) and the 
emyty sequence, respectively. The elements of Co-
v(A(n - 1)) have two possible shapes: 

(In the second possible shape above, the last column could be 
empty.) In both types of covering relation exactly one row 
has an unequal pair of entries. We indicate the changed entry 
with shading as follows: 
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Now the elements Link(A(n - 1)) have three possible shapes: 

A 

The elements of Link + (A(n - 1)) are the ones for which the 
shaded (changing) entries are on the same level or ascend 
from left to right. For example, a link having the third shape 
above may be either an ascent or descent: 

descent ascent 

The uniqueness of the ascending chain is visually obvious as 
this example of a saturated chain in A(8) illustrates: 

U(n); pen) 

The only distinction between A(n - 1) and PIN) is the 
"insertion" of d and d between 0 and Q < 2 < ... < n - 1). 
Thus there are four elements of Link(P(n)) which have no 
corresponding elements in Link(A(n - 1)). All of these are 
defined to be ascents except for the link 

(0<d«1<2< ... <n-l)). 

Sp(2n, C); C(n) 

Since C(n) is an interval of A(2n - 1), we may transfer 
the linking of A(2n - 1) to that ofC(n), by treating OEC(n) as 
being the element (1 < 3 < ... < 2n - 1 < 2n) in A(2n - 1). 

V. ALGORITHIMS FOR COMPUTING THE CHARACTER 
GENERATORS 

The "local" nature of a linking allows us to rewrite for
mula (3.1) in a "recursive" fashion which is the basis for the 
formula we derive for the character generator. Let P be a 
labelled, linked poset. For an element bEP, we would like to 
restrict (3.1) to the closed interval [0, b ]. Unfortunately, for a 
maximal chain y = ( Yo < ... <y m )EMax([O, b ]), there is no 
way in general to determine whether b = y m ought to be 
considered an ascent or descent ofy. 

We deal with this problem as follows. Let 
(b < C)ECOV(P). Define 
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II f(Yi) 

T(b<c)= L. Y,ED(y,c) 
ifb #0 

YEMax([D,bll II[1- f(Yi)] 
i 

= 1 if b = 0, 
whereD~,c) = [Yileither O<i <mand (Yi-I < Y~< Yi+ I) 
ELink-(P) or i = m and (Ym _I < Ym <c)ELink-(P)J. The 
following is the recursive form offormula (3.1): 

Lemma 3: Let (c < d )ECOV(P) be a covering such that 
c>O. Then 

T(c<d)= L A gl(b,C~d)) T(b<c), 
(b<C)ECOV(P) - "IC 

where 

{
I if(b<c<d)ELink+(P) 

g(b,c,d) = t(c) if (b < c < d )ELink - (P) . 

Proof This follows immediately from the observation 
that a sum over Max([O,c]) for c > 0 is equivalent to a double 
sum of the form 

L A L. QED 
(b < C)ECOV(P) yEMax( I D,b II 

In other words, T (c < d ) is a linear combination of the 
set of T(b <c) such that b is covered by c, using only two 
possible coefficients: either 1/[1 - l(c)] or f(c)/[1 - f(c)]. 
Combining Lemma 3 with Theorem 2, we obtain the follow
ing recursive algorithm for the character generator: 

Algorithm 4: Let P be a labelled, linked poset. Then: 
(Basis) for every (0 < b )ECOV(P), we have 

T(O<b)= 1; 

(Recursion) for every (c < d )ECOV(P) such that c > 0, we 
have 

T(c<d)= L A g(b,c,d) T(b<c); 
Ib <C)ECoviP) 1 - f(c) 

(Conclusion) 

L f(x) = .L A T(b< 1), 
xEMIP) (b < I)ECOV(P) 

The algorithm above furnishes an expression for the 
character generator in terms of subexpressions. This is the 
same method utilized by symbolic manipulation languages, 

such as MACSYMA, for displaying large formulas. This meth
od of displaying the character generator uses one subexpres
sion for every element (c < d ) of Cov(P) and each such sub
expression has as many terms as there are elements covered 
by c, The total "size" of the expression thus obtained for the 
character generator is therefore essentially I Link(P ) I, Using 
the same unit of size, the original formula (3,1) for the char
acter generator would have total size equal to r(P) I Max(P ) I. 
In Table I we list these numbers for the posets A(n - 1) and 
C(n) using small values of n, For comparison we have also 
included the size of the Patera-Sharp formula, which is 
nIW(G)I, where W(G) is the Weyl group ofG, 

There are, in addition, a few more simplifications that 
can be applied to Algorithm 4. The first is that it often hap
pens that subexpressions T (c < d) and T (c < d ') will coincide 
even when d #d '. This happens precisely when 

g(b,c,d) = g(b,c,d ') for every b. 

Sinceg(b,c,d) takes only two values for a given c, this kind of 
coincidence often occurs. After performing this simplifica
tion, we can perform one more: If a given sUbexpression 
T(c < d) (and those that coincide with it) appears just once as 
a sUbexpression of another, then substituting the formula for 
T (c < d) where it appears will decrease the overall size of the 
formula for the character generator. Still other simplifica
tions are possible, but these tend to be more ad hoc. 

Applying Algorithm 4 and the simplifications de
scribed above, we computed the following formulas for the 
character generators ofSU(3), SU(4), SU(5), and Sp(4, q. For 
typographical simplicity we employed the substitutions 

A =AI' a=a l , 

B=A 2, f3 = a 2, 

C=A" A =a3 , etc. 

SU(3) (compare with Patera and Sharp6) 

F. 1 1 (1 
SU(3) = (1 -Af3-I) . (1 -Aa- 1(3) 1 -Aa 

Ba- I
) 1 1 + .-------

1 - Ba - I (1 - Baf3 - I) (1 - B(3) . 

TABLE l. Cardinalities of some structures related to the posets A(n) and C(n). 
G P r(P) IPI ICov(P)1 ILinkl}»1 nIWIG)1 IMaxl}»1 r(P)IMaxIPJI 

SU(3) A(2) 5 6 6 8 18 2 10 
SU(4) A(3) 9 14 18 26 96 12 98 

SU(5) A(4) 14 30 46 76 600 286 4004 
SU(6) A(5) 20 62 110 208 4320 33592 671 840 
SU(7) A16) 27 126 254 544 35280 23 178 480 625 818960 

(n: 1) _ 1 2 _ 2 w: 2) - 2]2" 
, n· n! 

(n; I)! 

SUln) Aln-I) 2" - 2 In + 1)2" 
II~ ()' II;' ,., (i + j) 

Sp14, q C(2) 6 9 II 16 16 5 30 

Sp16, q C(3) 12 34 59 107 144 462 5544 
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SU(4) (compare with Stanley7) 

where 

SU(5) 

where 

+ E4 ] 
1 - Ba - 1[3J. - I 

B[3 -1(E3 + E4) } 

Ca[3 -I )E 
+ 1- Ca[3-1 I' 

1 {I [ 1 
(I-Ab- I)(1 -AJ. -Ib) 1 -A[3-IJ. 1 -Aa- l[3 

X (E16 + Ba-
l
[3b-

I
E I6 + E 15 ) 

1 - Aa 1 - Ba- l[3b- 1 

+ B[3 -1J.b- IE 17 + E 18 ] 
1 - B[3 -1J.b- 1 

+ BJ. -1(E17 + E 18) } 
(I-BJ. -1)(I-B[3-IJ.b- l ) , 

1 E I = --------------~ 
(I-Db)(I-DJ.b- l

) , 

E
2

= EI 
1 - D[3J. -I ' 

1 (1 
1 - C[3J. -Ib 1 - CJ. 

D[3J. -I ) 

+ 1 _ D[3J. -I E I, 

Da[3 -IE2 E _ 1::3 
1 - Da[3 -I ' 5 - 1 - C[38- 1 ' 

Ca[3 -18E3 + E4 E _ E5 + E6 
1 - Ca[3 -18 ' 7 - 1 - Ca[3 -1J.8- 1 ' 

1 (E5 
1 - Ba[3 - I J. 1 - B[3 
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E _ 1 [ Ca- 18 (E3 + E4) 
10 - 1 _ Ca- 18 1 - Ca[3 -18 

Da- IE2 ] 

Ca- IJ.8- IE 7 + EIO 
1 - Ca- IJ.8- 1 

1 (E + 
I-BaJ. -18 8 

CaJ. -IE7 ) 

1 - CaJ. -I ' 

E I5 +E16 E 17 = --=--'-"'--
I-Ba- I[38- 1 ' 

1 [B[3 -18(E12 + E13 + E 14) 
I-B[3-18 I-Ba- I[3J. -18 

C[3 -1(E9 + Ell) ] + . 
(1 - C[3 -1)(1 _ Ca- I[3J. -I) 

Sp(4, C) (compare with King4) 

where 

1 E I = --------~ 
(1 - B[3)(1 - Ba2[3 -I)' 

Ba- 2[3 
E2 = --------~--~-

(1 - B[3)(1 - Ba- 2[3) . 

All the formulas above were computed by hand and 
then checked using a computer program written in Pascal 
V AX -11/780 for the computer, which was used to find the 
character generators ofSU(n), for n<8, and Sp(2n, q, for 
n<4. 

VI. YOUNG TABLEAUX 

In this section we describe the relationship between the 
posets described in Sec. II and the classical Young tableaux. 
A Young tableau for Sl(n, q [or for SU(n)] is an array of 
positive integers of this form: 
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such that the following conditions hold: 
(1) The number of rows is at most n - 1, i.e., m < n. 
(2) The lengths of the rows form a (weakly) decreasing 

sequence, "II > 112'> ... >1] m > 0, called the shape ofthe tableau. 
(3) The entries in any row form a (weakly) increasing 

sequence 0 < ak I <au < ... <akT/k <no 
(4) The entries in any column form a strictly increasing 

sequence 0 < a Ij < a2j < .... 
Each Young tableau is a basis vector in the irrep whose 

highest weight is the n-tuple (AI' A2, ••• , An _ I)' where 
A, = 1], -1],+ I' (For the purpose of this definition we use 
the convention that 1]m + I = 1]m + 2 = .··0.) We may recover 
1]1' ... , 1]m via the formula 1]i = Ai + Ai+ I + ... + An _. I' 
The content of a Young tableau is the n-tuple whose k th 
component is the number of times that k appears as an entry 
in the tableau. Ifa tableau T has contentc = (c l , ... , cn ), then 
the weight of T (as a basis vector of an irrep) is (c i - CZ, 

Cz - C3, •.. , Cn_ 1 - cn)· 
To relate Young tableaux with the poset A(n - I), we 

observe that the elements of A(n - I) correspond precisely 
with the column tableaux, i.e., those for which 1]i is either 0 
or 1. Furthermore, the partial order of A(n - 1) is defined so 
that the columns of an arbitrary Young tableau form a multi
chain of A(n - I), and every multichain is so obtained. It 
follows from this that Theorem 1 holds for the groups SU(n). 

The irreps ofU(n) differ from those ofSU(n) only in the 
following respect: each irrep ofU(n) may be multiplied by an 
arbitrary integral power of the one-dimensional irrep given 
by det: a--det(a-)EC, to yield a new irrep ofU(n). Conversely, 
all irreps obtained as above coincide under restriction to the 
subgroup SU(n). It follows that Theorem 1 holds for the 
groups U(n). 

Finally, the concept of a tableau for the symplectic 
groups has been developed by King4 and his description is 
equivalent to our definition ofC(n). In retrospect, however, 
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one could have obtained C(n) by applying the Baird and Bie
denham 12 correspondence between Young tableaux and 
Gel'fand patterns to the branching rules for Sp(2n, q ob
tained by Hegerfeldt. 3 This completes our proof of Theorem 
1. 
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I consider the "missing label" problem for basis vectors of an b'( p) representation corresponding 
to a group reduction chain with links b'( p) ~b'( p - 2) X c"(2). A chain with these links is required 
if the basis vectors are to be of definite weight. I obtain two different sets of missing label 
operators, which together with the Casimir operators of group and subgroups from a complete set 
of labeling operators whose eigenvectors provide a canonical basis in the b'( p) representation 
space. The problem is solved for both the even- and odd-dimensional orthogonal groups. 

PACS numbers: 02.20.Qs 

1. INTRODUCTION 

In two remarkable papers published in 1950, Gel'fand 
and Zetlin I explicitly constructed canonical bases for all fin
ite-dimensional irreducible representations of the unitary 
and orthogonal groups. The Gel'fand-Zetlin patterns that 
label a basis vector consist of an array of integers or semi
integers which can be put into a one-to-one correspondence 
with the eigenvalues of the Casimir operators of the group 
and its subgroups in a canonical chain. The links in this 
chain consist of 

U(p)LU(p - I)X U(I) 

in the case of the unitary groups, and of 

&(p)L&(p - 1) 

in the case of the orthogonal groups. 

(1.1) 

(1.2) 

It might be argued that the Gel'fand-Zetlin construc
tion for the orthogonal groups suffers from two defects, as 
compared to their construction for the unitary groups. First, 
from the group-theoretical point of view, the orthogonal 
groups in even and odd dimensions are very different, yet 
both kinds are used in the chain (1.2), as opposed to only 
unitary groups being involved in the chain (1.1). Second, the 
presence of the U( 1) in (1.1) means that at every link of the 
chain a U( 1) is peeled off and, as a result, the basis vectors are 
eigenvectors of the weight generators. In contrast, the basis 
vectors in the Gel'fand-Zetlin scheme for the orthogonal 
groups do not have definite weight.2 

Both of the above objections may be eliminated by con
structing a basis using a chain of subgroups with links 

&(p)t&(p - 2)X &(2). (1.3) 

However, whereas the reduction (1.2) is multiplicity-free, the 
reduction (1.3) is not, and one is faced with the so-called 
"missing label problem," whose solution requires the deter
mination of an appropriate number of missing label opera
tors. 

In this paper, I present two different solutions to the 
missing label operators problem. One solution is given by the 
set of operators 

(G 2k + I )~ _ (G 2k + I )~, 

the other solution by 

(G2k+2)~ + (G2k+2)~, 

(1.4) 

(1.5) 

where Gr is essentially the rth power of the generators and 
where l.;;;k';;;n - 1 for the reduction tJ(2n + l)t&(2n - 1) 
X &(2), while l.;;;k.;;;n - 2 for the reduction 
&(2n)L&(2n - 2)X &(2). 

These two solutions are fully analogous to those found3 

in the corresponding problem involving the reduction 

Sp(2npSp(2n - 2)xU(I) ( 1.6) 

for the symplectic groups. 
This paper is organized as follows. In Sec. 2 the notation 

is explained, and the symmetric and anti symmetric tensors, 
as well as the invariants, are introduced. In Sec. 3 the missing 
label operators for the reduction &(2n + l)t&(2n - 1) 
X &(2) are explicitly constructed and their Hermiticity and 
invariance properties are verified. In Sec. 4 the crucial com
mutativity property is proved and in Sec. 5 the independence 
property is proved. In Sec. 6 the modifications needed for the 
reduction &(2n)t&(2n - 2)X &(2) are described. 

2. GENERATORS AND TENSORS OF &(2n + 1) 

I denote the generators of & (2n + 1) by G ~ with the 
indices ranging from - n to + n, zero included. In the Ra
cah4 basis their commutation relations are 

[G~,G~] =t5~G~ -t5~G~ +t5~G~ -t5~G~, (2.1) 

where 

a_-a. (2.2) 

These G 's obey the antisymmetry 

G~=-G~, (2.3) 

so that the numbers of independent generators (order of the 
group) in n(2n + 1). The Cartan subalgebra is generated by 
the n generators 

(2.4) 

hence the rank of & (2n + 1) is n and therefore n labels are 
needed to specify an irrep of & (2n + 1). 

I define an & (2n + 1) tensor operator T to be an object 
with (2n + 1)2 components T~ obeying the commutation re
lations 

[G~,T~] =t5~T~ -t5~T~ +t5~T~ -t5~T~. (2.5) 

Such a tensor is reducible into a symmetric and antisymme-
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tric part: 

S~ = !(T~ + T~) = S~, (2.6) 

A%=!(T%-Tg)=-Ag, (2.7) 

and the symmetric tensor may be reduced further into a 
traceless part 

S% - 2(2n + I)-I'G'!5% (2.8) 

and the invariant 

(2.9) 

It is readily verified that positive integer powers of the 
generators, Gk 

, defined by 
n 

(Gk )% = I G ~ (Gk 
-- l)~, (G 0)% =!5~ (2.10) 

are tensor operators. In particular, for k = I the generators 
themselves are seen to be the components of an antisymme
tric tensor operator. 

The n invariants 

'G' 211 + I (k) = + atn (G 2k )~, I <h;;n, (2.11) 

are the well-known Casimir operators of &(2n + I) whose 
eigenvalues may be used to label an irrep. 

3. MISSING LABEL OPERATORS IN THE REDUCTION 
&(2n + 1)t&(2n -1)X &(2) 

I choose the & (2n - 1) subalgebra to be the one ob
tained by omitting from the range of the indices the values n 
and ii, while the &(2) subalgebra consists of the single gener
ator 

G~ = - G~. (3.1) 

As stated earlier, the number oflabels needed to specify 
an irrep of &(2n + I) is n. The additional number oflabels 
needed to uniquely specify a vector within an irrep is given 
by half the difference between order and rank, i.e., n2

• In the 
reduction &(2n + I)L&(2n - I)X &(2), the subgroup 
&(2n - 1) provides a number oflabels equal to half the sum 
of its order and rank, i.e., n(n - 1), and &(2) provides one 
label. Thus the number of missing labels is 

n-l. (3.2) 

It is clear that in the reduction &(2n + I)L&(2n - I) 
X &(2) the basis vectors may be taken as simultaneous eigen
vectors of the n Casimir operators 'G' 2n + I (k ) of & (2n + I), 
of the n - I Casimir operators 'G' 2n _ I (k ) of & (2n - I), and 
of G ~. This reduction will be the desired first link in the 
formation of a chain of subgroups leading to a canonical 
basis provided the basis vectors are simultaneously eigenvec
tors of an additional n - 1 operators, the so-called missing 
label operators (MLO), with the following properties: 

(a) Hermiticity. Choosing the MLO to be Hermitian 
ensures that eigenvectors belonging to different eigenvalues 
are orthogonal. 

(b) Invariance. The MLO must be scalars under the 
Ci'(2n - 1) X &(2) subgroup. 
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(c) Commutativity. The MLO must commute with all 
the 'G' 2n + I (k ) and with each other to ensure the existence of 
simultaneous eigenvectors. 

(d) Independence. The MLO must be polynomially in
dependent5 of all the 'G' 2n + I (k ), of all the 'G' 2n _ I (k ). of G ~. 
and of each other. 

I assert that the operators 

A (k )~, l<k<n - I (3.3) 

satisfy all the requirements to yield a set of n - I MLO. Here 
the A (k) are antisymmetric &(2n + 1) tensor operators ob
tained by antisymmetrizing odd powers of the generators: 

A (k)% = WG 2k + 1)% - (G 2k + I )~ l. (3.4) 

Similarly. the operators 

S(k)~. I<k<n-l (3.5) 

satisfy all the requirements to yield another set of n - I 
MLO.HeretheS(k )aresymemetric&(2n + l)tensoropera
tors obtained by symmetrizing even powers of the genera
tors: 

(3.6) 

The proof is as follows. In a unitary representation the 
generators satisfy 

G%t=G~. 

Consequently. 

(Gk)f = (Gk)~ 

and. therefore. 

A (k)~t =A (k)~, S(k)~t =S(k)~. 

(3.7) 

(3.8) 

(3.9) 

Next it is seen from Eq. (2.5) that A (k)~ andS (k)~ commute 
with G~ and with all G%, lal =/=n. Ib I =/=n; hence they are 
&(2n -l}X&(2)scalars. 

Thus the Hermiticity and invariance requirements are 
satisfied. The remaining requirements are more complicated 
and are taken up in the next two sections. 

4. COMMUTATIVITY 

Since the A (k)~ and S (k)~ are constructed out of the 
generators of &(2n + I). they commute with the 'G' 2n + I (k '). 
which are &(2n + 1) scalars. The proof that 

[A(k)~,A(k')~] =0. l<k,k'<,n-I, (4.1) 

[S(k )~,S(k ')~] = 0, I <,k,k '<,n - I (4.2) 

is more involved and proceeds as follows. 
Define the anti symmetric &(2n + 1) tensor operators 

the symmetric &(2n + I) tensor operators 

M(k )%_H/Gk )% + (Gk)~ j, 

and the &(2n + 1) invariants 

D(k) ~ i (Gk)~. 
2 a~n 
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(4.5) 
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Making use of Eqs. (2.3), (2.5), and (2.10), I have 
n 

(Gk)~ = L G ~ (Gk - I)~ 
c=n 

n 

= L ! [G~,(Gk -I)n + (Gk -I)~G~I 
c=n 

n 

-2D(k-l)o~ - L (Gk-I)~G~, (4.6) 
c= n 

from which it follows by induction on k that 
k - I 

(Gk)~ = ( - )k (Gk )% + L gj(k )(Gj)%, (4.7) 
)=0 

where the g) (k ) are some functions of the & (2n + 1) invar
I 

k n. n 

iants. Therefore, 
k k 

N(k)= L nj(k)G), M(k)= L mj(k)G), (4.8) 
)=0 )=0 

where nj{k) and mj(k) are some functions of the &(2n + 1) 
invariants. Noting that 

Gk Gk ' = Gk + k' = Gk ' Gk , 

I conclude that 

(XY)~ = (YX)~, 

(4.9) 

(4.10) 

where X, Yare any linear combinations of powers of the 
generators [such as N (k ), or M (k ), for example]. 

Now letA be an arbitrary &(2n + 1) antisymmetric 
tensor operator. Then 

2[N(k)~,A~] = L L L !(Gk-r)~[G%,A~](Gr-l)~ _(Gk-r)~[G~,A~](Gr-I)~)1 
r=la=nb=n 

k 

= L ! (G k - rA )~(Gr- I)~ - (G k - r)~(AGr- I)~ + (G k - r)~(AGr- I)~ _ (G k - rA )~(Gr-I)~ 
r =- I 

+ (G k - r)~(AGr- I)~ _ (G k - rA )~(Gr- I)~ + (G k - rA )~(G r- I)~ _ (G k - r)~(AGr- I)~ 1 
k 

= L ![(GkrA)~,(Gr-I)~] + [(Gk-rA)~,(Gr-I)~] + [(Gr-I)~,(AGk-r)~] + [(Gr-l)~,(AGk-r)~]j, 
r --= I 

(4.11) 

where the last step involves the use of Eq. (4.10) and the observation that k - rand r - 1 may be interchanged whenever 
convenient. If I now denote by A the antisymmetric and by S the symmetric part of the tensor Gk 

- r A, I arrive at the final 
result 

k 

[N(k)~,A~] = L ![A~,N(r-l)~] + [S~,M(r-l)~] +HM(r-l)~,S~] +HM(r-l)~,S~]I. (4.12) 
r= I 

By the same procedure, I get 
k , , ,_ ,_ 

[M(k )~, S~] = L ! [S~,M(r - l)~] + [A ~,N(r - 1)~] + H S~,M(r - 1)~] + H S~,M(r - l)n j, (4.13) 
r = t 

where S is an arbitrary & (2n + 1) symmetric tensor operator, and S is the symmetric, A the antisymmetric part of the tensor 
Gk -- r S. Lastly, 

_ _ k, , 

[ M (k )~, S ~] + [M (k )~, S ~ ] = 4 L ! [S ~ ,M (r - 1)~] + [N (r - 1):, A : ] I. 
r = I 

Noting that (here I denote the invariant unit tensor 
I~ = o~)N(O) = O,N(I) = G,M(O) = I,M(l) = O,itnowfol
lows from Eqs. (4.12), (4.13), and (4.14) by induction on k 
that for any k>O, 

[ N (k ): , A ~] = 0, 

[ M (k ):, S:] = 0, 

[ M (k )~, S ~] + [M (k )~, S n = 0, 

(4.15) 

(4.16) 

(4.17) 

where A is an arbitrary antisymmetric, S an arbitrary sym
metric, &(2n + I) tensor operator. 

Noting that the various operators defined previously 
are related to the ones defined in this section by 

A(k)=N(2k+ 1), S(k)=M(2k+2), 

cc 2n + I (k ) = D (2k ), (4.18) 

it is seen that the desired Egs. (4.1) and (4.2) are special cases 
ofEgs. (4.15) and (4.16). This completes the proof of commu
tativity. 
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(4.14) 

To close this section I note that, in general, 

[A (k)~, S(k '):] #0 (4.19) 

and, therefore, the MLO must be formed from either the 
symmetric or the antisymmetric tensors, but not both. 

5. INDEPENDENCE 

It was shown by Green6 and Nwachuku and Rashid7 

that the generators of &(2n + 1) satisfy a characteristic po
lynomial identity of degree 2n + 1.8 It follows that G 2n + 1 is 
not polynomially independent, but may be expressed in 
terms of the lower powers and the invariant unit tensor I, 
and that the 

(5.1) 

are all polynomially independent. Thus the 2n tensors ofEq. 
(5.1) provide a basis for all &(2n + I) tensors formed out of 
the generators. 

Clearly, these powers of the generators may be used to 
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form 2n symmetric and 2n antisymmetric tensors, the M (k ) 
and N (k ) of the previous section. But it follows from Eq. (4.7) 
that 

ndk)=~(1-(-n, m k(k)=H1+(_)k], (5.2) 

and thereforetheN(k ) for even k, theM(k )andD (k ) for odd 
k, are not independent but can be expressed in terms of oper
ators of lower degree. Thus there are n polynomially inde
pendent antisymmetric tensors given by 

A (k), O<,k<,n - 1, (5.3) 

n polynomially independent symmetric tensors given by 

S(k), O<,k<,n - 1, 

and n polynomially independent invariants given by 

'(52n + I (k), 1<,k<,n. 

(5.4) 

(5.5) 

Now the independence of two tensors means indepen
dence of their corresponding components. Noting that 

A (O)~ = G~, 
I conclude that the n - 1 entities 

A (k )~, 1 <,k<,n - 1, 

and the n entities 

S(k )~, O<,k<,n - 1, 

are independent of each other and of G ~ . 

(5.6) 

(5.7) 

(5.8) 

As far as dependence on '(52n + I (k) and Y3 2n ~ I (k) is 
concerned, I note that theA (k )~ are components of antisym
metric tensors, whereas the Casimirs are traces of symmetric 

tensors; hence the A (k)~ cannot possibly the expressed as a 
polynomial in these Casimirs. This completes the proof that 
the n - 1 antisymmetric entities given by Eq. (5.7) or (3.3) 
are satisfactory candidates for MLO. 

The S (k )~, being symmetric, could possibly be depen
dent on the Casimirs. In fact, it is easy to show that 

2S(O)~ = '(5 2n + d1) - Y3 2n~ dl) + G~G~, (5.9) 

i.e., that S (O)~ is polynomially dependent on G ~ and the 
quadratic Casimirs of group and subgroup. This, however, is 
the only such dependence, as can be seen by performing simi
lar manipulations on the Casimirs of higher degree. Thus, at 
the quartic level, one has 

8S(1)~ = 2'{52n + 1 (2) - 2'G' 2n ~ 1 (2) - (G~)4 

+ [Y3 2n + 1 (1 ) - 'G' 2n ~ d 1) ] 

X [ Y3 2n + 1 (1) - Y3 2n ~ 1 (1) - 2G ~ G ~ ] 

+ 8A (1)~G~ + 4S(O)~S(O)~ 
+ lower degree terms (5.10) 

and the presence of the new entity S (O)~ S (O)~ prevents S (l)~ 
from being dependent. 

Hence the n - 1 symmetric entities given by Eq. (3.5) 
[or Eq. (5.8) with k = 0 omitted] are satisfactory candidates 
forMLO. 

6. MISSING LABEL OPERATORS IN THE REDUCTION 
&(2n)t&(2n - 2)X &(2) 

Two modifications are necessary to convert the discus
sion of orthogonal groups in odd dimensions to that in even 
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dimensions. First, in the Racah basis, & (2n + 1) becomes 
& (2n) by simply excluding zero from the range of the indices. 
All the concepts discussed in the previous sections apply to 
the present case once the above change in the range of the 
indices is made. It follows, in particular, that the order of 
&(2n) is n(2n - 1), the rank is still n, and the number of 
missing labels in the reduction &(2np&(2n - 2)X &(2) is 

n - 2. (6.1) 

Repeating all the arguments of the previous sections 
leads to the conclusion that the MLO may be taken to be 
either 

A (k )~, l<,k<,n - 1 (6.2) 

or 

S(k )~, I <,k<,n - 2, (6.3) 

where the upper limit on k in Eq. (6.3) reflects the fact that 
the characteristic polynomial identity6,7 in &(2n) is of degree 
2n and, therefore, S (n - I) is not a polynomially independent 
tensor. 

The second modification has to do with the fact that the 
complete set of polynomially independent Casimir operators 
for &(2n) is not 

Y3 2n (k), l<,k<,n, (6.4) 

[which is the analog ofEq. (5.5)] but is instead 

E 2n and Y3 2n (k), 1 <,k<,n - 1. (6.5) 

Here E 2n is given by 

with E the invariant antisymmetric tensor in 2n dimensions. 
Consequently, the previous discussion of polynomial 

independence must be modified by the replacement of 
Y3 2n (n) and Y3 2n ~ 2 (n - 1) by E 2n and E 2n ~ 2' respectively. 
Since the entities given by Eqs. (6.2) and (6.3) were construct
ed without the E tensor, they cannot depend onE 2n or E 2n ~ 2 

linearly. They cannot depend on E ~n or E ~n ~ 2 either be
cause E;p is expressible as a polynomial in the '{52p (k ), 
1 <,k<,p [note that 'G' 2p (p) is included]; hence the original 
proof of independence applies. 

This leaves as the only candidate for dependency 
E 2n E 2n ~ 2, which is of degree 2n - 1 in the generators. 
Since A (k)~ is of degree 2k + 1 and S (k)~ of degree 2k + 2 
in the generators, all of the entities given by Eq. (6.2) with 
k = n - 1 omitted and all of the entities given by Eq. (6.3) are 
of too Iowa degree to depend on E 2n E 2n ~ 2' This completes 
the proof that the n - 2 anti symmetric entities of Eq. (6.2) 
with k = n - I omitted, or the n - 2 symmetric entities of 
Eq. (6.3), are satisfactory sets ofMLO. 

It is perhaps worth noting that consistency of the for
malism demands that A (n - 1)~ be dependent on E 2n E 2n ~ 2 

lest the set of antisymmetric MLO be too large. Indeed, ex
plicit calculation for n = 3 gives 

2A (2)~ = ~ E~4 + 2A (l)~ Y3 6(1) 
4! 
+G~IY36(2)- [Y3 6(1Wl 
+ lower degree terms. 
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studies on space-time inversions, 
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1. INTRODUCTION 

The N-dimensional representations of the scale trans
formations first appeared in Ref. I in connection with Wil
son's short distance expansion, and later have been studied 
in detail by some authors2

,3 and applied to explain the experi
ments observed in the deep Euclidean region. Among other, 
Dell' Antoni02 used them to show that the presence of loga
rithmic singularities in the operator product expansion is not 
inconsistent with the exact scale in variance. His result was 
incorporated into the so called quasicanonical field theory 
by Brandt et al. 3

,4 to understand the (exact or appropriate) 
canonical Bjorken scaling. In spite of the extensive uses of 
the N-dimensional representations, the mathematical 
aspects of them have not been studied so far. Among other 
things, to construct the theories of the N-dimensional inde
composable representation (NIR for short) is offundamental 
significance, and this becomes the main purpose of the pres
ent paper. 

In a previous article5 we investigated the space-time in
versions as an origin of scale and conformal transformations, 
and then clarified the relationship between the two. Group 
theoretical studies on the space-time inversions enabled us to 
yield a unified way of the description to deal with them. In 
fact on the basis of some rules we deduce the one-dimension
al (irreducible) representation with respect to the inversions 
for a certain field, and using it we then constructed the repre
sentation theories for both transformations. Herein it is 
demonstrated that the method (reviewed in Sec. 2) is a simple 
and powerful one which also applies to the case when any 
element of a set oflocal fields (<Pi( x);i = l,oo.,N,N>2] mixes 
nontrivially under the space-time inversion, i.e., the set 
forms a N-dimensional indecomposable multiplet (NIM for 
short). Following the unified description of the scale and 
conformal transformations together with some theorems in 
the matrix theory,6 we actually construct the (triangular) 
matrix representations for both of them. It is pointed out 
that the general matrix representations of the space-time in
versions inevitably lead to the coordinate-dependent scale 
transformations, the appearance of which is an aspect pecu
liar to our theory. Only one choice of the free parameters 
appearing in the matrix can give rise to the "global" scale 
transformations, which turns out to be of the forms seen in 
the Dell' Atonio's paper. 2 

In Sec. 2 the theories of the one-dimensional (irreduci
ble) representation for the inversions, scale and conformal 

transformations are reviewed. In Sec. 3 along the line illus
trated in Sec. 2 we construct the theories of the N-dimension
al indecomposable representation for those transformations. 
In Sec. 4 we mention the relationship between the NIR and 
the "preferred" field in the theory of nonlinear realization 
for the conformal group.4.7 

2. THE THEORIES OF IRREDUCIBLE 
REPRESENTATION (N = 1) 

This section is for the most part devoted to a review of 
Ref. 5, but is made fresh with an introduction of the "pre
ferred" field 0'( x). 

A. Space-time inversion 

The space-time inversion ./ u is known as a discontin
uous transformation defined by 

(2.1) 

where "a" is a real and nonzero dimensionless parameter, 
and its magnitude is termed a "radius" of the inversion. 
Hereafter we take a > ° for convenience. In order to con
struct the representation theory for the dynamical variables 
with respect to (2.1), we employ the following two rules: (i) 
dimF(y) = - dimF( x) for physical quantityF( x)anditsin
verted quantity F(y) defined by F(Y)~/a(F( x)), and 
(iiH/ a)2 = 1 (1 identity operator). On the basis of these two 
rules we shall derive, for a local scalar field <P ( x) with the 
mass dimension I, the transformation property in such a 
manner that they are homomorphic to the coordinate trans
formation (2.1). From (i) we set 

J (y)~c( x")' <P ( x), (2.2) 

and further 

(2.3) 

where c is a dimensionless constant to be determined. By 
considering (ii), that is, ;p (z) = <P (x) and zI' = xl', we have 
c = ± a ',which suggests 

J(y)= ±(x2/a)'¢(x). (2.4) 

In case of 1= 0, in addition to (2.4) with I = 0, there occurs 
another possibility of putting 

0-1 y) = 0'( x) + c ( x 2,a), (2.5) 

where 0'( x) is termed a "preferred' field7 and the C (x2,a) is a 
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dimensionless c-number function to be determined. In the 
manner similar to the above, we obtain the equation for C 

(2.6) 

By taking into account the relation ofx andy, i.e., x 2y2 = a2, 
we deduce 

+'" 
C(x2 ,a)= L cm (lnx2/a)12m + II (minteger),(2.7) 

m = - 00 

with the dimensionless constants Cm 's, whence under the 

/a 

~)=oix)+ 
+'" L C

m 
(Inx2/a)12m + II. (2.8) 

m = - 00 

B. Scale and conformal transformations 

Next let us obtain the transformation properties of the 
scalar fields under both scale and conformal transforma
tions. Before doing this, we must explain that both scale and 
conformal transformations can be built of the two inversions 
with different radii, and the translation. 

Now let us consider a composite transformation con
sisting of the following transformations: 
(1) inversion /a 

/a:Xl'-yl' =axl'/x2, 

(2) translation /c by a constant 4-vector ell

/c:y I'_ul' = y I' + eIl-, 

and (3) inversion /" b 

/" b :ul' _zI' = bul' / u2. 

The successive product of these transformations forms a 
composite transformation given by 

xl'-zI' =A.o-I(x,c/a)(xl' + (cl'/a)x2), (2.9) 

whereA = b /a and.o (x,c) = 1 + 2cx + C2X2. Note that the 
transformation (2.9) is decomposed into the following trans
formations: 
(1)' conformal transformation %c/a characterized by c'l' 
(=cl'/a) 

%c/a:x I' _y 'I' =.0 -iI x,c/a)( x I' + (c I' /a)x2), 

and (2)' scale transformation fiJ b /a by a scale factor A = b / a 

fiJ b/a:y 'I'_zl' = AY 'I' = A.o -iI x,c/a)[ x I' + (cl' /a)x2]. 

From the above argument it follows that (2.9) is equivalent to 
the expression 

/"bYc/a = fiJ" %c/a, (2.10) 

or for the reverse order of (1)' and (2)' to 

/bYc/a = %c/bfiJ". (2.11) 

It is easily verified from (2.10) and (2.11) that the set of the 
composite transformations (2.9), denoted by G, satisfies the 
group axioms (not abelian) and is equivalent to the semi
direct product of D (dilatation group) andK (special confor
mal group), i.e., 

(2.12) 

Here the K is an invariant subgroup of G. 
Now consider the two special cases of equation (2.10): 
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Case (a) cP =0 

Equation (2.10) [or (2.11)] becomes 

/b/a =fiJ" (A=b/a), 

which is a pure scale transformation with a scale factor A. 

Case (b) A=] (a=b) 

Equation (2.10) [or (2.11)] turns out to be 

/aYc/a = %c/a, 

which is a (special) conformal transformation characterized 
by the parameter c'l' = ell- fa. We, therefore, come to know 
that the study of the group G allows us to treat the scale and 
conformal transformations in a unified manner. In the first 
part of this section, we derived the transformation properties 
for the scalar field under the inversions. Using the results, we 
are now in a position to obtain the transformation properties 
for the ¢ or the a under G. 

A scalar field ¢ ( x) transforms as ¢ (l1( y) = ± ( x 2
/ 

a)1 ¢ ( x), ¢ 121(u) = ¢ (1)( y), and ¢ 131(z) = ± (u2/b )1 ¢ 121(U), re
spectively, under (I), (2), and (3). Hence the representation of 
G for¢(x) 

¢ (3)(Z) = A -I [.a (x,c/aW¢ (x). (2.13) 

For oi x), it transforms as alI)( y) = oi x) 
+~,;;,: _ '" Cm (In x2/a)12m + I), a I21(u) = alI)(y), and 

aI31(z) = a I21(u) + ~,;;,: _ '" Cm (In u2/b )12m + I), respectively, 
under (1), (2), and (3). The the representation of G for oi x) 
becomes 

a I31(z) = oi x) + (InA -I + Inn (x,c/a)) 

X {co + m~1 (cm 12m( x2/a,u
2
/b) 

+c_ m g2m(X2/a,u 2/b))}, (2.14) 

where 

and 

g2m ( x,y)=(lnx.lny) I - 2"'f2m _ 2 ( x,y)} 
2m 

12m-2(x,y)= L (- 1)kx2m-kyk . 
k=1 

(2.15) 

When cl' = 0 in (2.14), oi x) is shifted by the coordinate
dependent function, that is, InA -I! CO + ~;::; = I (Cm 12m ( X2/ 
a,A -lx2/a) + c _ m g2m (x2/a,A -lx 2/a))l, as longascm #0 
for m # O. In this case we also note that the transformation 
propertywithco#Oandcm =O(m= ± 1,±2,oo.)in(2.14) 
is identified with that appearing in Ref. 8. The field oi x) is 
intimately related to the representation theory of the NIM 
for the inversion. This is discussed in the final section. The 
above argument can be repreated for other quantities such as 
line element, vector fields, spinor fields, etc. 5 

3. THE N-DIMENSIONAL INDECOMPOSABLE 
REPRESENTATION (N)2) 

Let us consider a set of the N real scalar fields 
! ¢1'''''¢N,N~21 with the equal mass dimension I and de
note it by <J> ( x). From rule (i) in Sec. 2 we may assume that 
each of them transforms under inversion / a defined by (2.1) 
as 
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= (Xl)' i Lij(xl,a)tPj(x) (i= 1, ... ,N), (3.1) 
a j= I 

wheretheL (xl,a)istherealanddimensionlessN X Nmatrix 
whose elements may be a function of x2 and a. Unless L N X N 

= L ~XM ffiL [:V~MIXIN~MI for M <N, Eq. (3.1) forces the 
members of rJ> ( x) to be nontrivially mixed among them 
through the inversion. In this case we shall say that the ma
trix L is a N-dimensional indecomposable representation 
(NIR), and the set rJ> (x) forms aN-dimensional indecompos
able multiplet (NIM) for the inversion. Applying the proce
dure outlined in Sec. 2 for the scalar field (N = 1) to the case 
of the NIM(N;> 2), we shall construct the NIR for the group 
G as well as for the inversion. Consequently, it is seen that 
each element of L (x2,a) is not completely determined, and 
then it generates the coordinate-dependent scale transfor
mations (a kind of local scale transformations). However, if 
we confine the NIR to the ones leading to the "global" scale 
transformations, we arrive at the unambiguous representa
tion of L ( xl,a). 

A. Space-time inversion 

If in Eq. l3.1) the operation of the /' aJo the ¢; (y) is 
repeated, the tP; (y) is transformed into the tP; (z) as 

¢;(z)- (y2)' i Lij(yl,a)¢j(Y) (i = 1, ... ,N). 
a j= I 

(3.2) 

h>-
By rule (ii) in Sec. 2, z = x and tP; (z) = tP; ( x), which implies 

N 

I Llj(yl,a)Ljk (x2,a) = Oik (i,k = 1, ... ,N). (3.3) 
j= I 

From the theorem in the matrix theory6 the L can be decom
posed into the product of the two real N X N matrices as 

(3.4) 

where the R is a real orthogonal matrix and the C a triangu
I 

(a)N= odd 

1, 0 ... 

1, 

lar matrix. It is known that choosing all the diagonal ele
ments of Cbeing positive is always possible, and for a givenL 
this yields a unique decomposition of (3.4). By rewriting 
R T rJ> (y) by rJ> (y), Eq. (3.1) can be cast into the form 

(
Xl)' N 

tP,(x)---¢;(y) -; j~1 Cij(x2,a)tPj(x) 

with 

(i= 1, ... ,N), 

(3.1') 

Cij=O(I<i<j<N)andC;;>O (i=I, ... ,N). (3.5) 

Instead of (3.3), the C satisfies 

N 

I Cij (yl,a)Cjk (xl,a) = O;k (i,k = 1, ... ,N). (3.3') 
j=1 

By setting i = kin (3.3') and using the properties of Cij [i.e., 
dim C = 0 and Eq. (3.5)], we derive 

C;; = 1, (i = 1, ... ,N). (3.6) 

Let us further restrict the representation of C to the ones 
such that for the off-diagonal elements 

(3.7) 

In this representation, if all the Cn 's (i = 2, ... ,N) are given 
somehow, the matrix C is determined. To this end, we need 
only solve Eq. (3.3)' combined with (3.5), (3.6) and (3.7). The 
(N - 1) equations for the Cn 's (i = 2, ... ,N) can now be writ
ten down as 

N 

I C~~IJ+ l.dyl,a)Cj~I( x2,a) = 0 (i = 2, ... ,N). (3.8) 
j= I 

Here the superscript (N) ofC IN I means that C IN I is the N X N 
matrix. The results are summarized separately for the cases 
of (a) N = odd and (b) N' = N + 1 = even as follows: 

0 

0, c2(ln x2/a)2m + I, 

c
3
(ln x2/afl2m + II, cl (ln x2/a)12m + I), 1, O. (3.9) 

CN ~ I (In x2 /a)IN ~ 2)(lm + II, 

cN{ln xl/a)IN ~ 1)(2m + II, 

(b) N' = even = N + 1 

0 

. ,1 

(3.10) 
CIN'I( x2,a) = [ CINI( x

2
,a) 

CN' (In x2/a)12m' + II,cN(ln xl/a)IN ~ 1)(2m + II,cN ~ I (In x2 /a)IN ~ Z)(Zm + I), ... 

In the above, for simplicity of the argument as a solution of 
Eq. (2.6) for C2l 

has been used. Each of the coefficients indexed by even 
numbers (i.e., CZ,c4 , ... ,CN ~ 3 ,CN ~ I ,cN')' and integers m or m' 
cannot be determined by solving Eq. (3.8), and then may be 
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arbitrarily chosen. On the other hand each of the coefficients 
C2k + I (k = 1,2, ... ,[(N - 1)12] is expressible as a polynomial 
of c2/s (1 < I < k). When N = 7 for example, C3 = (1/ 
2!)c/,c5 = cl (2c4 - A c/) and 
C7 = ! (2C2C6 + c/ - c/(2c4 - ! c/) J. It is noted that the 
power index m' of C N'I (x2,a) is not made equal to m until we 
pass to N" = N' + 1 (odd). This has already been reflected in 
Eq. (3.9). 
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B. Scale and conformal transformations 

Along the line illustrated in Sec. 2, let us investigate the 
representation theory of the group G ~D @K. The set of sca
lar fields 4> ( x) transforms successively as ¢ III( y) = ( xli 
a)/.l:j"~ I C\fl(xl,a)¢j(x),¢ 121(u) = ¢ \11(y) and¢ 131(Z) = (ull 
b )I.l:j"= I C\fl(ul,b)¢ YI(u),respectively,under(l))'a ,(2)Yc 
and (3) /b' Hence the transformation property of ¢i under 
Gis 

N ~ 

¢\31(z)=/L-lnl (x,cla) L G\fl(xl,a;ul,b)¢d x ), 
k~1 (3.12) 

N 

G~ (NI( Xl a'ul b)= " CINI(U2 b )CINI( Xl a). ik ", - £... lj , }k , 
)~I 

In order to simplify the arguments, we consider only the case 
of N = odd. Of course the same argument is repeated for the 
case of N = even. Then G\fl( x2,a;u l ,b) foroddNis given by 

G~ (NI( Xl a'u l b ) 
il ", 

± Ci _ k + I cdlnullb)1i - k I(Zm + 11(ln x2la)lk - IIiZm + I), 

k=1 
(3.13) 

with c i = l.1t is easily checked that the GINI is a triangular 
matrix satisfying the same properties, i.e., (3.5), (3.6) and 
(3.7), as the matrix CINI does. By putting cl' = 0 in Eq. (3.12), 
we arrive at the transformation property of ¢i ( x) under the 
9) A as 

N ~ 

¢\31(y=/LX)=/L-1 L G\fI(xz,a;yl,b)¢d x ), (3.12') 
k=1 

1, 0 

Cz InA. - t, 1, 0 

(cz InA. -1)2 
CzlnA. -I,. 1. 

4> (31(/LX) = /L -I 2! 

with 

i L Ci _ k+ I cdlnyllb )Ii- k)lZm+ 11(lnxl/a)lk-l)llm + II. 
k~1 

(3.13)' 

From the above equations we find that the representation of 
D generally yields the coordinate-dependent scale transfor
mations, which is unusual, though it may be interpreted as a 
local version of the scale transformations. The only way out 
of this is to put (3.13), equal to 

G\fl( x 2,a;l,b) = c;(lnyl/b + In xZ/a)li- 1112m + I) } 

or = ci(In /L -1)1'- 11I2m + II for i = 1, ... ,N. 
(3.14) 

By solving one by one the above (N - 1) equations for m and 
Ci (i = 2, ... ,N), we deduce 

(c )Ii-II 
m = 0 and c· = 1 (i = 2, ... ,N), (3.15) 

, (i - I)! 

which suggests 

C\fl( xZ,a) = (cz)1i -)I(ln x2/a)1i -il/(i - j)! for i > j,} 
(3.16) 

otherwise C\fl( x 2,a) = O. 

Since this leads to the usual (i.e., "global") scale transforma
tions, under the 9) A' the 4> (x) transforms as 

0 

4>(x) (3.17) 

0 
(czlnA. -I)N-I .,. ,Cz inA. -I, 1, , 

(N-I)! 

or equivalently in a compact expression 

4> (31(/Lx) = /L - I .exp [ Cz InA. -IA INI J 4> ( x), 

where the N X N matrix A IN I is given by 

A IN> [~: ••• : o· .·1 1 
(3.17') 

(3.18) 

Here use has been made of the nilpotency property of A INI, 
i.e., 

(A INI)k = 0 for k;;.N (k integer). (3.19) 

The expression (3.17) with Cz = 1 coincides with the one in 
Ref. 2 or 4. Similarly, the transformation property of 4> un
derthe%c is obtained by putting a = b = 1 in(3.12)togeth
er with (3.16) as 
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4> (31(z) = nl (x,c)exp[c2 1n11 (x,c).A (Nlj.4>( x). (3.20) 

It is suggested that from now on one should use the compact 
forms (3.17)' and (3.20) instead of the matrix expressions 
such as (3.17). 

As was seen in the above, our method is a simple and 
convenient one in a sense that one may treat NIR's (N;;'2) as 
well as the irriducible representation (N = 1) for both of the 
scale and conformal transformations one at a time. 

4. CONCLUDING REMARKS 

1) It is seen that in general the matrix form ofthe NIR of 
the space-time inversion does not pass to the "global" scale 
transformation, but with a unique choice of the free param
eters the global transformation (3.17)' can be reproduced. 
The same argument for the preferred field oi x) is repeated. 
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2) We mention the connection between the a-field and 
the NIM. With the use of the recipe in Sec. 3 it transforms 

a(x)-a(3)(Ax)=aix)+lnA -I, (4.1) 

under the g; A , 

a( X)-a(3)(Z) = a( x) + Inn ( x,c), (4.2) 

under the % c' Here we have normalized the factor Co ap
pearing in (2.8) to unity. Now define a set of new fields by 

<pt!x)=[(aix))(i-I)/(i-l)!] <PI(X) (i= 1, ... ,N), (4.3) 

where the field <PI( x) is an ordinary field with mass dimen
sion/which transforms underG=K @Das(2.13). Then, itis 
found4 that with the aid of(2.13), (3.21) and (3.22) the trans
formation property for the set of fields [ <pd x) J under 
g; A (% c) reproduces (3.17) [(3.20)] for the NIM. This obser
vation associates the quasicanonical quantum field theory 
developed by Brandt et a/. with the effective Lagrangian the
ories7

•
9 using the field <PI( x) and the a-field as the Goldstone 

boson. Further, the net effect due to the a-field in the large N 
limit occurs as the factor exp[ai x)] and under the scale 
transformation (4.1) it transforms as if it were a scalar field 
with mass dimension one. This suggests that one puts 

exp[a( x)] = bX( x), (4.4) 
where b is the parameter with dim b = 1 and the field X ( x) is 
an ordinary scalar field with dim X ( x) = - 1 but does not 
coincide with <PI' If one uses the field X ( x) instead of the a
field, the theory turns out to be the work of Nambu and 
Freund. to 
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3) As in the above the role of the NIR in the field theor
ies may be investigated by studying that of the a-field. The 
role of the a-field has been widely disscussed. 7

•
8

•
9 Here we 

shall not repeat it. The thing we point out is that without 
artificially imposing the conditions like < <P )0#0 the pres
ence of the a-field in a scale invariant theory automatically 
implies the spontaneous breaking of the scale transformation 
at the tree level. This is due to the transformation law of a, 
i.e., < [a( x),D ]) 0 = i( # 0). This situation is similar to the 
presence of R-transformation in QEDII which implies that 
the photons are the Goldstone bosons. 

4) The method in this article can be applied to the con
struction of the NIR's for the spinors, vectors and other 
higher rank tensors. 
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Casimir invariants, characteristic identities, and tensor operators for 
"strange" superalgebras 
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We define a class of (super) subalgebras of gl(mln) realized as the set of fixed points of a (graded) 
endomorphism of gl(mln). This class includes the superalgebras gp(m) and gq(m) [related to the 
so-called "strange" simple superalgebras p(m) and q(m)], as well as osp(mln). General covariant, 
contravariant, and mixed tensor operators are defined for this class in terms of appropriate 
module homomorphisms. Traces of certain tensors give the usual sequence of Casimir invariants. 
For gp(m), these are shown to vanish identically, while for gq(m). eigenvalues of the quadratic and 
cubic Casimir invariants are derived in terms of highest weights and a polynomial characteristic 
identity is exhibited. 

P ACS numbers: 02.20.Qs, 02.20.Sv 

I. INTRODUCTION 

Lie superalgebras I arise in a number of physical con
texts such as supersymmetry and the quantization of some 
classical systems. A survey of some of their areas of applica
tion can be found in Corwin, Ne'eman, and Sternberg. 2 

The definition of Lie superalgebras raises the question 
of defining an object called a "Lie supergroup" in analogy to 
the relationship between Lie algebras and Lie groups. Defi
nitions of these and supermanifolds in general can be found 
in Sternberg,3 Kostant,4 Rogers,S Batchelor,6 and other pa
pers referred to in these. 

Kac 7 has provided a classification of the finite-dimen
sional Lie superalgebras (see also Scheunert8

). A Lie superal
gebra L = Lo Ell L I is called classical if it is simple and the 
action of Lo on L I is a completely reducible representation of 
the Lie algebra L(). 

Among the classical Lie superalgebras classified by Kac 
arep(m) and q(m) defined as (A,B, C, Darem X m matrices): 

p(m) = i(~ ~)IA +D T=B -B T 

= C + C l = 0, trA = OJ <gl(M 1m) (1) 

and 

q(m) = q(m)lcenter of q(m), 

where 

(2) 

q(m) = i(~ ~)ltrB=Ol<gl(mlm). (3) 

We shall be concerned in the following with the related Lie 
superalgebras gp(m) and gq(m) defined as 

gp(m)=((~ ~)IA+DT=B_BT 

=C+C1=Ol>p(m) (4) 

and 

gq(m) = i (~ ~)j >q(m). (5) 

Note that whereasp(m) is a subalgebra of gp(m), q(m) is real
ized as a factor algebra of q(m) and hence not, a priori, a 
subalgebra 9 of matrices. 

'1 Present address: The Mathematical Institute. University of Oxford. 24-29 
St. Giles, Oxford OX7 3LB, U.K. 

In Sec. II we review the basic definitions of graded vec
tor spaces, Lie superalgebras, and (super) modules.9 A gen
eral definition of a tensor operator is given and also the parti
cular case of contra- and covariant vector operators. These 
are defined also in Cant and Hurseo and Hannabuss. II The 
definition is in accord with the intuitive idea of "vector" or 
"matrix" of operators, as originally formulated by Racah 
and Wigner. When a particular product of these is well de
fined, we can define the sequence of Casimir invariants as 
defined in Jarvis and Green. 12 

The class of subalgebras which are fixed points of grad
ed automorphisms is defined in Sec. III. With some con
straints on the automorphisms, these all have a well-defined 
product mentioned above. As gp(m) and gq(m) are in this 
class, this allows us to carryover the derivation of the Casi
mir invariants and characteristic identities following the 
previous treatment l2 of gl(mln), sl(mln), and osp(mln). 

The Casimir invariants of gp(m) are of interest in that 
they vanish identically. This, however, prevents the deriva
tion of a characteristic identity. In the case of gq(m), the 
quadratic invariant vanishes. However, the eigenvalue of the 
cubic invariant is obtained explicitly in terms of the highest 
weight. and a characteristic identity is presented. 

II. BASIC DEFINITIONS AND EXAMPLES 

For completeness and convenience we present here the 
basic definitions and examples used throughout. 

A vector space V is said to be a Z2-graded vector space 
(GVS) ifit is decomposed into a direct sum V = Vo Ell VI' 
Here, as elsewhere, we regard 0 and 1 as elements of Z2 and, 
in general, add modulo 2. An element x of Vi is said to be 
homogeneous of degree i, denoted Ixl = i. 

Iff V---+Wis a linear map between GVS's Vand W,then 
I is said to be a homomorphism of degree k if I( Vi ) C Wi + k 

for all i = 0 and 1. Unspecified maps are assumed to have 
degree O. 

A Lie superalgebra is a GVS L with a bilinear map []: 
L X L---+L satisfying the three properties 
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[x,y] = - (- l)lxIIYI[ y,x], 

[x [y,z]] = [[x,ylzl + ( - l)lx llYI [y[x,zl]' 

[LoLj]c;;;,Li+j 

for all x, y, z homogeneous elements of L. 

(6) 

(7) 

(8) 

The standard G VS is Cm + n with the grading given by 

(9) 

so that 

c;+n = Cm and C7'+n = en. 
If Vis any GVS, then EndVis a Lie superalgebra with 

grading by the degree of the map and bracket defined as 

[J,g]=Jog_(-l)lfllglgoJ (10) 

for homogeneous elements and the linear extension for non
homogeneous elements. End V is denoted gl( V) as a Lie su
peralgebra or gJ(mln) if V = Cm + n. 

We give gl(mln) the standard basis of matrices et B de
fined as 

(11) 

for A,B = 1, ... ,m + n. 
The two-index notation used by Jarvis and Green '2 is 

defined as follows. We grade the labels A as 

(A) = 0 if A = I, ... ,m, 
and (12) 

(A)=l if A=m+l, ... ,m+n; 

then 

letBI = (A) + (B). (13) 

lt is also useful to employ the notation 

A"A'2'" 
A21A 22 = ( - 1)IIA,,) + IA,,) + ···1 II A,,) +·1·1 I (14) 

The natural analog of an L-module for L a Lie algebra is 
the L-(super) module where L is a Lie superalgebra. V is an 
L-module if equipped with a map from L X V to V denoted 
(x, Y)f-+XV such that 

X(AU + ,uv) = A (xu) + ,u(xv), 

(AX + ,uy)v = A (xv) + ,u( yv), 

[x,ylv =x(yv) - (- l)lxIIYI(y)(xv) 

x(V,K Vi + Ix! 

for x, yEL, U, VE V, and A, ,uE'C. 

(15) 

( 16) 

(17) 

( 18) 

A morphism of L-modules Vand W is a homomor
phism ifJ of the GYS's such that 

ifJ (xv) = xifJ (v) (19) 

for all xEL and VE V. 
If Vis an L-module, we can construct the following two 

important L-modules: 
(i) V* the contragredient module, where V* is the dual 

space and the action is given by 

(xJ)(v) = - ( - l)IXllf!{(xv) for JEV*; (20) 
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(ii) gl(V) = End V with the action given by 

(xJ)(v) = xJ(v) - ( - 1 )Ixl 1 f!{(xv) for JEEnd V. (21) 

We can define a representation of a Lie superalgebra to 
be a homomorphism (of degree 0) of L into some gl(mln). 
The usual relationship between representations and L-mo
dules exists. 

If ifJ:L--gl(mln) is a representation, then Cm + n is an L
module and we define - ifJ ST to be the representatio~ related 
to the contragredient module (Cm + n)*. 

Then, if a typical element of gl(mln) is (~ ~), it can be 
shown that 

ABST (AT -C",\ 
(CD) =\.sT DT j' 

and for homogeneous X, YEgl(mln) we have 

(Xy)ST = (_ l)lxIIYlySTX ST. 

III. TENSOR OPERATORS 

(22) 

(23) 

A general definition IO.ll of tensor operators is as fol
lows. If Vand Ware L-modules, then a tensor operator is 
module morphism from V into gl(W). Thus we consider L 
and a representation 1T:L--gl(M IN), Van L-module, and 
apply the above definition. That is ... a tensor operator is a map 
T: V --gl(M IN) such that if VE V and xEL, 

[1T(x),T(v)] = T(xv). (24) 

Three cases are of particular importance. Take 
L<gl(mln) with the standard basis et B' cm 

+ n with the stan
dard basis 8 A' such that (8A)x = 8A x' and Cm 

+ n* with the 
dual basis 8B • Then a tensor operator is a linear map: 
X:gl(mln)--gl(M IN) such that if X(ec

v ) = Xcv andxEL, 
then 

(25) 

A (contravariant) vector operator is a linear map 
v:crn + n __ gl(M IN) such that if V (8A ) = V A and xEL, then 

[1T(X),V A ] = V(x8A). (26) 

Using the contragredient module we define a (covariant) vec
tor operator using a linear map v:cm + n* __ gl(M IN) such 
that if V (8 A) = VA and xEL, then 

[1T(X),VA ] = V(x8A). (27) 

Now for L = gl(mln) we have the usual ideas ofa "ma
trix of operators," a "column of operators," and a "row of 
operators," required to transform as 

[EAB,xCV ] =8C
BX A

V - [~~]8AVXCB' (28) 

(29) 

and 

(30) 

These are precisely formulae (25), (26), and (27) for this parti
cular case, with x = et B' 1T(X) = E A B' as can be seen from 

[eAB,eC
V ] =8C

Betv - [~g]8ADeCB' 

(et B8C)v = 8C
B(8A )v, 

P. D. Jarvis and M. K. Murray 
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and 

(~BODf = (~BOD)(OC) 

_ (_ l)rABII.sDIOD(~BoC) 

- [~D ]OD(OCBOA) 

- [~D ] OAD(OB f, (33) 

using the definition of the contragredient module, (20). 
Using the canonical isomorphism V ® V*~gl( V), given 

by (OA ,0 B ~ B in this case, the definitions of vector opera
tors give rise to tensor operators. Clearly, we can define high
er-order tensor operators as morphisms of the form 

X:( ®kV) ® (®IV*)_gl(W) 

for L-modules Vand W. 

IV. CASIMIR INVARIANTS 

Considering the definition of a tensor operator we can 
often show that if L<gl(mln) and X and Yare tensor opera
tors, then so is 

(34) 

Here, as elsewhere, we sum over repeated indices. We note 
also from the definition that X A A is an invariant. 

So we can define l2 the sequence of Casimir invariants 
Cp as follows: 

(EO)CD=OCD[D], (35) 

(E p + I)C D = (E P)cE [EjEE D (sum over Ej, (36) 

and 

(37) 

Here the E ABare the images of ~ B under some representa
tion. For generators of a subalgebra suitably labelled we can 
do likewise. 

Now from Kac 7 we have the analogue of Schur's lemma 
for superalgebra as follows: If 1T:L-gI(ml n) is an irreducible 
representation of L andXEgI(mln) such that [X,L] = 0, then 
either 

(i) X is a scalar, or 
(ii) 3 A, a nondegenerate matrix permuting C; + nand 

C;"' + n such that A 2 = I and X = AI + /JA for A,/JEC. 
Note that case (ii) applies only if m = n. If m = n, there is a 
question of whether the Casimir invariants are still scalars. If 
the tensor operators are of degree 0 (as we have implied), then 
as EA A is of degree 0, so also is X(EA A) = X A A' Thus X A A 
cannot have an odd component A, and the Casimir invar
iants Cp are still scalars. 

V. SUBALGEBRAS AS FIXED POINT SETS OF 
HOMOMORPHISMS 

A number of useful subalgebras can be defined in the 
following way. Let ¢:L-L be a homomorphism; then 

L 1<1> = Ixl¢(x) =xJ (38) 

is a subalgebra. For L 1<1> to be graded, that is, a superalgebra, 
it suffices that ¢ be a graded homomorphism. If we require 
also that ¢ 2 = id L' then 
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L I~ = {x+¢(x)lxEL J. (39) 

So if ¢:gl(mln)-gl(mln), a homomorphism such that 
¢ 2 = id, gl(mln)l~ is generated by 

fAB = ~B + ¢ (~B) (40) 

=~B +¢AYBXr?y (sum over X and Y). (41) 

Then the commutation relations of thefA B'S are 

[fAB,fCD] = oCBfAD - [~ ~ ]OADfcB 

+ ¢AcBXfxD - [~ ~ ]¢AYBDfCy, (42) 

noting that ¢ XYAB = 0 unless (A) + (B) = (X) + (Y) as ¢ is 
graded. We observe also that id + ¢ is a tensor operator. 

Some examples of these subalgebras are the following: 

(i) gp(m) = I(~ ~)IA +D T =B _BT 

= C + C T = OJ <gl(mlm) 

or 

gp(m) = {X IXSTH + HX = OJ = gl(mlm)l p ' 

where 

(43) 

p(X) = _H-1XSTH, H=(_~ b). 
(ii) gq(m) = I (~ !)J = gl(mlm)l q , 

(44) 

(45) 

where 

q(~ ~) = (~~). (46) 

(iii) gl(mln) = gl(mln)lid' 

(iv) osp(mln) = I(~ ~)IA T +A =DTJ +JD 

= B - CTJ = OJ <gl(mln) 

or 

osp(mln) = IX IXSTG + GX = OJ = gl(mln) 1<1> , (47) 

where 

( 
0 Ih) 

J = _ Ih 0' n = 2h. (48) 

Returning to the general case, we can define tensor op
erators for gl(mln)I",. Using the definition, we see that Yis a 
tensor operator if it transforms as 

[ FA B' Y CD] = OC B Y AD - [~ ~ ] 8A D Y C B 

+¢ACBXyXD - [~~]¢AYBDYCy, 

(49) 

The contravariant vector operator transforms as 

[FAB'WC] =OCBWA+¢ACBXWX (50) 

and the con variant as 

[FAB,WD] = - UD]OADWB - [~D]¢AYBDWy, 
(51) 

Now if X, Yare two tensor operators for gl(ml n) I <1>' we 
can form Was follows: 

W:gI(mln)_gl(MIN), ~B~XAE[E]yEB' (52) 

Then by considering x = k BAEA BEgI(mln) 1<1> it can be 
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shown that Wis an adjoint tensor operator for gl(mln)I<p. So 
for all the examples the Casimir invariants are well defined. 

VI. CARTAN SUBALGEBRAS 

We note that the ~ A (no sum) span a Cartan subalgebra 
for gl(mln), and it is natural to consider if the fA A span a 
Cartan subalgebra of gl(mln)I¢. A tedious analysis shows 
that they do so as long as there are no B, A such that 
rp (E A B) = AE B A for some AEC; this occurs in the osp(mln) 
case but not for gp(m) and gq(m). For osp(mln), 12 a suitable 
set must take into account the choice of metric. As usual,I2 
weights will be lexically ordered and highest weights 7 as
signed correspondingly. [For convenience we define the 
components (P A ) of the highest weight by f-l A = J-lU A A ), even 
when the fA A are not all linearly independent.] 

VII. CASIMIR INVARIANTS OF gp(m) AND gq(m) 

Using the above results, we define the generators of 
gp(m) 

(53) 

HereA = A + m (mod 2m). Then the commutation relations 
are 

[ ~ B' 1Tc D] = OC B ~ D - [~ g] OA D 1Tc B 

- [::iB]OC;;j17.BD + [::iB] [~g]OBD1Tc:;j(54) 

and we have the symmetry 

~B = - [::iB]~A' (55) 

For a general tensor opeator X, (54) still holds, but with 1T'S 
replaced by X's, except for ~ B' If we take an irreducible 
representation of gp(m), say [J (~ B) = [J A B' then the same 
commutation relations hold, and we can define the Casimir 
invariants Cpo These are constructed recursively through 

(jjl)AB =[JAB , (56) 

(jjk)A B = [JAdE](flk - I)EB' etc., (57) 

and 

(58) 

Letc,d = 1, ... ,m. We observe that [Jcd isaraisingoper
ator if c < d and lowering if c > d, [J cd is the converse, [J cd is 
always lowering, and [J Cd is always raising. 

The (fl k)A A (no sum) have weight zero so act as scalars 
when applied to a fixed highest weight vector. We denote 
this value by C ~ . Let (P A) be the components of the highest 
weight [in view of(55)'f-la = -f-la,fora= 1, ... ,m]. Using 
the definitions and normal-ordering the raising and lowering 
operators, we can derive the following general recursion re
lations (here a,b = 1, .. . ,m): 

C~+I = (Pa -a -l)C~ - C~ 

- ICZ - ICi, (59) 
b>a b 

C ~ + I = (f-la - a + l)C ~ + I C L (60) 
b<a 
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and therefore 

C~+ I +CS+! =(f-lu -a-1)(C~ +C~) 

- I(C~ + C~). (61) 
b-;>a 

Now we know that C ~ + C 5 = f-la + f-la = 0, so that (61) 
implies that, for all k = 1,2, ... , we have 

C~ + C~ = o. (62) 

Thus, from (62), Ck = 0 for all k = 1,2,.·· . This result can 
also be confirmed directly from the definition (58) by an in
ductive argument, making use ofthe symmetry property (55) 
of the matrix of generators. 

The generators of gq(m) are defined in the light of (47) 
by 

(63) 

where again A = A + m (mod 2m). The commutation rela
tions are 

[ --.A C] C --.A [A C] OA C '1 B,q D = 0 B'1 D - B D Dq B 

+OCBQ4 D - [~g]OADqCB' 

and there is the symmetry 

c1B =?B' 

(64) 

(65) 

For a general tensor operator X, (64) still holds, but with q's 
replaced by X's, except for cI B' If we take an irreducible 
representation of gq(m), say Q (c1 B) = Q A B' then the same 
commutation relations hold, and we can define the Casimir 
invariants Cp • These are constructed recursively through 

(Q I)A B = QA B, 

(Qk)A B = QA",[E](Qk- l)f'B' etc., 

and 
A A 

Cp = (Q) A' 

(66) 

(67) 

(68) 

We observe that Q cd is a raising operator if c < d, and 
lowering if c > d and Q Cd is also a raising operator if c < d, 
and lowering if c > d, while Q Cc has zero weight. If the high
est weight is ( f-la I f-la)' it is easily seen that J-lu = f-la' and, 
using the definition (68) and normal-ordering the raising and 
lowering operators, we can derive the following eigenvalues 
of the Cp (acting on a highest weight vector, and hence for 
the corresponding irreducible representation): 

m 

C3 =2 I f-la(f-l~ -f-la -2 IJ-lb)' 
a=1 h>Q 

(69) 

(70) 

(71) 

The result (70) can also be confirmed directly from the defini
tion, making use of the symmetry property (65) of the matrix 
of generators. In fact a similar argument shows that, in gen
eral, 

CZk =0 

for gq(m). 

P. D. Jarvis and M. K. Murray 
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VIII. CHARACTERISTIC POLYNOMIAL IDENTITIES 

For the discussion of characteristic identities for gener
ators of gp(m) and gq(m), rather than use the vector operator 
techniques used in the earlierl2 derivation of identities for 
gl(mln), sl(mln), and osp(mln), we follow the treatment of 
Hannabuss II for the Lie algebra case, and also some work of 
Edwards and Gould. 13 

Let L be a superalgebra, and let VA and VI' be finite
dimensional L-modules with highest weights A. and fl and 
corresponding representations 1TA and 1T!," Let z=C2 be the 
universal (quadratic) Casimir invariant and consider the op
erator 

Z = H 1TA ® 1T1' (z) - 1TA ® l(z) - 1 ® 1T1' (z)]. (73) 

Clearly, Z is even, and by construction 

1TA ®1TI'(X)Z=Z1TA ®1TI'(x), (74) 

for all xEL. In an appropriate basis, Z turns out to be essen
tially the matrix of generators in the representation fl in the 
various cases. The characteristic equation of Z thus provides 
the characteristic identity for the superalgebra. 

In practice, we take A. to be the fundamental representa
tionp or its contragredientp*. For example, in the latter 
case, consider Z acting on vectors of the form OA ® v, where 
VE VI' and {o A J is the standard basis for em + no, introduced 
above,andtakeL = gl(mln). Then from (33) and (36) we find 
{definingZ(oy®v) = (1 ®ZXy)(ox ®v) = [Xnox 
®ZxyvJ: 

[1Tp o ®1TI'(~B)]Xy = - UA]OAyOBX + OXyEAB' 

ZXy = _EXy[XY], 

where 

EXy = 1T1'(?Y)' 

In the Lie algebra case, VA ® V is completely reduc-
'bl 14 I' I e, and, from (74), Z must be a scalar on each irreducible 
constituent. Moreover, its value can be easily computed 
from standard formulae, and the characteristic equation 
writ.ten down. However, in the superalgebra case, VA ® VI' is 
not 10 general completely reducible. However, Z is even and, 
restricted to each irreducible factor in the associated compo
sition series, must by (74) and Schur's lemma, again, be a 
scalar, with eigenvalue given by standard formulae. If the 
irreducible factor occurs with multiplicity m, then the char
acteristic equation includes m repeated factors for this eigen
value. 

Edwards and Gould 13 have shown that the irreducible 
factors occurring correspond to irreducible modules with 
highest weight 0 + fl, where 0 is a weight of VA; further
more, the maximum multiplicity that 0 + fl can occur in the 
composition series is just the multiplicity of the weight 0 in 
VA' independent of fl. 

For example, in gl(mln) the (m + n) weights 0 of Vpo are 
(0,0, ... , - 1, ... ,0), with multiplicity 1, and the characteristic 
identity reads l2 in general 

m+n 

II (X- [A ](flA +m- [A ]n-A))=O, (75) 
A~I 

satisfied by the matrix X A B = E A B [B]. [The corresponding 
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ing Eq. (31) of Ref. 12 contains an error, corrected in (75).] 
For gp(m), C2 = 0, and indeed Cp = 0 in general, so that 

no central element of the trace form is available. For gq(m), 
C2 = 0, but C3 =f. 0, so that we take Z = C3 and consider the 
operator 

Z = i [1Tp o ®1TI'(z) -1Tp o ® l(z) - 1 ®1TfL(Z)], (76) 

Acting on vectors of the form 0 A ® v, with VE VfL and {o A J the 
standard basis of em + m 0, Z becomes essentially the square 
of the matrix of generators, 

X A
B = QAdE]QEB[B], 

where QA B = 1T1' (qA B)' The m weights 0 ofp* have compon
ents (0,0, ... , - 1, ... ,0), with multiplicity 2. Evaluating 
1T <5 + I' (C3 ) and 1T I' (C3 ) using (71) in terms of the m compon
ents (fla) of fl, the characteristic equation becomes a matrix 
identity for X A B' In general, we have 

m 

II [X- fla(fla -IW=O. (77) 
a=1 

IX. CONCLUSIONS 

We have shown that a large class of (super) subalgebras 
of gl(mln) can be realized as fixed-point sets of module ho
momorphisms, including gl(mln), sl(mln), osp(mln), and 
gp(m) and gq(m), related to the simple superalgebras p(m) 
and q(m). Natural definitions of tensor and vector operators 
have been introduced which permit of a unified treatment of 
all these cases. In particular, previous work l2 on Casimir 
invariants and characteristic identities for the classical su
peralgebras has been extended to the previously unstudied 
cases of gp(m) and gq(m). 

For gp(m), the Casimir invariants C were shown to 
vanish identically. For gq(m), Cp vanish:s for evenp, and 
eigenvalues of C were given in terms of the highest weight 
components. A polynomial characteristic identity was de
rived for a matrix Q A E [E] Q E B quadratic in the generators. 

The vanishing of all Cp for gp(m) shows the structure of 
its enveloping algebra to be particularly special: However, 
one must look to other methods 15 than those used here for 
the characteristic identities, which from general arguments 
should still exist. 15-17 On the other hand, the identity derived 
for gq(m) is a new type of result in that it derives from a 
central element of the enveloping algebra which is cubic in 
the generators, as the usual construction involving the uni
versal (quadratic) Casimir invariant fails [as it must for 
gp(m), gq(m) andp(m), q(m) since the Killing forms vanish). 

The tensor calculus allows Young diagram methods for 
the classical superalgebras 18-20 to be excluded to gp(m) and 
gq(m), and likewise (by trace projections) to p(m) and q(m) . 
Representation of q(m) correspond to those "zero triality" 
representations of q(m), wherein the center is trivially repre
sented. 
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Inequalities for Fourier transforms are developed which describe local un~~rtainty .principl~s in 
the sense that if the uncertainty of momentum is small, then so is the probabilIty ofbemg localIzed 
at any point. They give estimates for essentially all states and lead to lower bounds for 
Hamiltonians. 

PACS numbers: 02.30. - f, 03.65.Bz 

1. INTRODUCTION 

Local uncertainty principles assert that when the un
certainty of the momentum is small, the probability of being 
localized at any point is very small. From this follows the 
classical uncertainty principle that the position uncertainty 
is large. Faris I has recently presented a number of inequal
ities supporting local uncertainty principles and used them 
to find lower bounds on the total energy of quantum me
chanical systems. 

The starting point for this paper is the following local 
uncertainty principle inequalityl: in dimension k;;.3, 

prob! Iq - cl <,d J <,(211i(k - 2)fd Z(L1 p)Z (1.1) 

foralld;;'OandcinRk, wherep and q are the momentum and 
position observables and L1 p = «( p - (p»)Z) liZ, the uncer
tainty of momentum. For this inequality to provide an effec
tive bound on the localization of position, we need L1 p to be 
finite and preferably not too large. In a similar vein, for the 
Heisenberg uncertainty principle, L1p. L1q;;.kli/2, to have 
any content we need L1 p and L1q to be finite. 

Taking the states as unit vectors inL Z(Rk), the finiteness 
of L1 p and L1q imposes restrictions on their vanishing rates at 
infinity and the vanishing rates of their Fourier transforms. 
For example, if a state ¢ is of polynomial form at infinity, 
that is, of the form ¢-Ixl- a as Ixl-oo, finiteness of L1q 
requires a > (k + 2)12. Finiteness of L1p imposes a similar 
restriction on the transform of ¢. On the other hand, mem
bership of L Z(Rk ) only requires a > k 12. The uncertainty of 
momentum (or position) can be infinite if, roughly speaking, 
the wave function (or its Fourier transform) oscillates very 
rapidly or sharply. Even when ¢ is the (suitably normalized) 
characteristic function of the unit ball, the uncertainty of 
momentum is infinite. 

Here we define a family of measures of uncertainty 
which generalize the usual notion, but first some notation. 
For (Lebesgue measurable) functionsfon Rk define 
Ilflll = (S If(xW dx)lIt when 1<t< 00, and when t = 00, 
IIfll", = ess sup! If(x)I:XER k J. (Unless stated ot~erwise, 
all integrals are over Rk.) The Fourier transformfoffis 
defined as 

)( y) = J f(x)e - 21rixy dx, 

wherexy=xIYI + ... +Xk Yk' 
Definition 1: For each pair (t, 8 ), with 1 <t<, 00 and 8 > 0, 

define uncertainties of q, p for the system in state ¢ by 

L1 t,8q = II Ix - (q)1 8¢11" 

L1 t,8 P = 1I121T1iy - (p)18~llt. 
Remarks: (i) Whenever the state of a system is described 

by a wave function ¢,! then I ¢ IZ is the probability distribution 
of its position and I ¢I z of its momentum. Hence L1/, 8 q and 
L1/, 0 p are measures of the "spread" of these distributions 
about (q) and (p), respectively. When t = 2 and 8 = 1 we 
recover the classical uncertainties, that is, L1 z, I q = L1q and 
L1 z, I P = L1p. 

(ii) If ¢-Ixl- a is a state (and hence a > k 12), then we 
can always find t ,8 such that L1 t, 8 q < 00, namely those t, 8 
satisfying 1 <,t<, 00,8> Oanda > 8 + kit. This situation also 
holds for~. 

Whenever 1 <,t<, 00, define t / = t (t - 1) -I and 
t# = 2t(t - 2)-1 (with 1/ = 00,00/ = l,and2# = 00). The 
main result of the paper is: 

Theorem 1: Suppose that 1 <,t< 00, 8;;.0 and the dimen
sion is k. There exists a constant K such that for all states, 

I I dJ)
I/Z vdO-kl/#A (prob! q - c <, <,.n., ~t,8P 

for all d;;.O and cERk if and only if kit # < 8 < k It / or 
(t, 8) = (1, 0) or (2, 0). 

(1.2) 

Remarks: (i) Replacement of states ¢ by their "normal
ized dilates" D;. ¢, where D;. ¢(x) = AklZ flAX), shows that 
only the power 8 - kit # is possible for d in (1.2). 

(ii) Suppose 8 = 1 and t = 2. When k;;.3, inequality (1.2) 
is (1,1) above apart from the constant. If k = 1 or 2, 8;;.k It / 
and so (1.2) is not possible as was pointed out by Faris. I 

In Sec. 2, the main inequality (1.2) is proved under the 
conditions described in Theorem 1 and in Sec, 3 these condi
tions are shown to be the best possible. Inequalities with 
more general weights, that is, more general measures of un
certainty, are considered in Sec. 4, while applications to low
er estimates of Hamiltonians are given in Sec. 5. (See Faris l 

for more details of this approach. Also Liebz uses a Sobolev 
inequality as a local uncertainty principle to obtain results 
on the stability of matter.) In Cowling and Price3 conditions 
are given on s, tE[I, 00] and 8, ¢l;;.0 so that 

for constants C I , Cz > O. Special cases of these results follow 
from Theorem 1 and are given as Corollary 1 of Sec. 2 and 
subsequent remarks. 
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2. THE MAIN INEQUALITY 

In the Schrodinger representation the wave functions tP 
describing the states of a k-dimensional system are unit vec
tors in L 2(Rk

). The observables of position [qj:i = 1, ... ,k I 
and momentum [ Pj:i = 1, ... ,k I are given by the operators 
tP-x· tP and t/J- - iliDj • Hence, apart from using distribu
tions'as a starting point, the following result is equivalent to 
Theorem 1. (Also see the first remark after Definition 1.) 

Before stating the result, we remind the reader of two 
standard definitions. Tempered distributions were intro
duced by Schwartz and form the dual of the space of rapidly 
decreasing, infinitely differentiable functions Y. Locally 
square integrable lunctions I satisfy fK I I (xfdx < 00 for ev
ery bounded closed set K. 

Theorem 1': Suppose that 1 <,1< 00,0;;.0 and 
kE[ 1, 2, ... j. 

(i) Let!, 0, ksatisfyklt# <O<klt'or(t, 0) = (1, O)or 
(2, 0). Given bERk , suppose that/is a tempered distribution 
generated by a locally inte~rable function and that 
II Ix - b 18/11, < 00. Then/is locally square integrable. 
Moreover, there exists a constant KI = KI(t, 0, k) indepen
dent of b and/such that 

( f l!(yWdy)1I2<Kld8-kl'#IIIX-bliJ"II, 
J1 y - cl.;;d 

(2.1) 

for all cERk and d> O. 
(ii) IfO;;.k It' [except for (t, 0) = (1, 0)] or O<k It # [ex

cept for (t, 0) = (2, 0)], no such inequality is possible. 
Constants: Let Wk = 21Tk12lr(k 12) and!h = 1Tk121 

r {(k + 2)12) be the surface area and volume, respectively, of 
the unit ball in Rk . (When k = 1, redefine the area as 2.) 
Under the hypotheses of (i), define 

if 1 <t<2, 
if 2 <f<oo. 

(2.2) 

(2.3) 

The method described below gives the constant in (2.1) as 
KI = Al + ,.1.2' This means that the constant in (1.2) is 
K = K /(21Tfl)8 = (AI + A2)1(21Tfl)8 . 

Proolol Theorem l' (i): Without loss of generality we 
assume that b = c = 0 since the general case reduces to this 
by replacing/with the function/(x - b )e21Ti

c(X - b) • 

The case of 0 = 0 and 1 <t<2 is easily disposed with. If 

IIIxlYII, = lilli, < 00, then Ilfll" <lilli, by the.Haus
dorff"-Young inequality and so lis locally square Integrable. 
Furthermore, by Holder's inequality with r = t '/2, 

(I 1/(yWdy y/2 = (I 1/(yW' 1 dy y!2 

"'-, « LYIYII"dY)"" 
x(f lr'dy )l!2

r
' 

J1 yl<d 

= (f I)(Y)I"dy )II" 
J1yl.;;d 

X(dkil
k

) -1/'#. (2.4) 
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(This step, or minor variants of it, will be used frequently in 
the sequel; it will simply be referred to as Holder's inequality 
with parameter t '/2. Also we won't bother to state separately 
the case t '12 = 00.) Hence, using Hausdorff-Young, 

( f l)(yW dy)1!2 <il k- 11,# d - klt#ll/llt 
J1yl<d 

as required, 
From now on suppose that 1 <t< 00, 0;;'0, kE [ 1, 2, ... ) 

andk It # < 0 < k It '. Letfbea tempered distribution gener
ated by a locally integrable function and suppose that 
IIlxl o lilt < 00. Let B be the closed unit ball in Rk with cen
ter O. Clearly I can be decomposed as ¢ + g, where ¢ is a 
distribution with support in Band g is a function which is 
continuous on B and which satisfies II Ixl o gilt < 00. Assume 
that 1 <r<2. Since gEL', gELt' and so is locally square inte
grable. Hence, so isf = if; + g because if; is analytic. 

Now suppose 2 < t< 00 and let B' denote the comple
ment of B. By HOlder's inequality with parameter t 12, 

(i, I g(xW dx )112 

« i, Ixl IJt I g(x)lt dx ylr (i, Ixl- Or # dx ylr #. (2.5) 

The last integral is finite since 0> kit # and gEL 2. Hence 
once again,) = if; + g is locally square integrable. 

LetE= [xERk:lxl<a) andF= [YERk:lyl<d j = dB. 
Denote the characteristic or indicator function of E by X E' 

Sincel = IXE + IXE'') = UXE r + UXE' r and so 

IIfxFlI2<IIUxErxFlb + IIUxE' rXFII2' (2.6) 

We estimate separately the last two integrals, beginning with 
the first: 

IIUxE)~xFII2 <IIUXEniocil l/2d kl2 

<lI/xElilil 112d k!2 
<II Ixl olxElI,1I Ixl- 8XEllt,il l!2d k/2, 

where the first and third steps are by Holder's inequality 
(with parameters 00 and t) and the second by the Hausdorff
Young inequality, Since 0 < k It " II Ix I - IJ X Ell t' exists and 
equals wllt'(k - Ot ') - Ilt'a -- 0 + kit'. Hence, 

IIUxE)~xFlb<Ald k!2a - 8+ klt'lIlxliJ"llt. (2.7) 

Turning to the last integral of (2.5), suppose first that 1 <t<2 
(and hence that 2 < t ' < 00 ). In the following sequence of steps, 
the first is by Holder's inequality with parameter t '/2: 

IIUXE' rXFI12 <IIUXE' rXFllt,(dkilk ) - lit" 

<lI/xE,llt(dkilk)-llt" 

<lIlxI 6IxE' lit II Ixl- IIXE' "= (dkild - Ill" 

<A2a - lid - klr#lIlxliJ"XE' lit' (2.8) 

Now suppose that 2 < t< 00 : 

IIUxE' )~xFIIz <IIUxE' nl2 = II/xE' 112 

<lIlxliJ"lItA2a - 11+ klt#, (2.9) 

where we argue as for (2.5). 
Substitution of(2.7), (2,8), and (2.9) in (2,6) with a = lid 

yields the required inequality (2.1) with K I = AI + ,.1.2' • 
Uncertainty principles: As indicated in the introduc-
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tion, we would expect local uncertainty principles to lead to 
classical uncertainty principles. In our case this implication 
is straightforward, but we point out that more general in
equalities have recently been established.3 

Corollary 1: Suppose that t, B, and k satisfy the hypoth
eses of Theorem l' (i). Suppose also that 2<s< 00 and ¢J;;.O 
satisfy ¢J > k Is# . Then there exists a constant K z such that 

(2.10) 

for all/in L 2. 

Proof With notation as in the preceding proof and argu
ing as for (2.5), 

(L If(YWdyYI2<constIlIYI<llflls 

since ¢J > k Is# . Hence, by combining with (2.1), 

11/112 = IlfI12<llfXF' 112 + IlfxFllz 

«AI + Az)d 0- kll #lllxlo/11 1 

+ constX III Yl<IIflls 

<K2Ullx lo/ll , + III yl<IIflls), 

as required. • 
Remarks: (i) The parameter d can be varied to minimize 

K2 (but even so K2 is far from the best possible). 
(ii) Using dilates of/it can be shown3 that (2.10) is equi

valent to 

11/112<K311Ixl'iII~111 YI<llfll~ -a, 

whereaisdefinedbya(B - k It#) = (1 - a)(¢J - k Is# land 
K 3 = K p - a (1 - a)a - I . Hence, with the notation of Sec. 
1, 

(2.11) 

where t, s, B, and ¢J satisfy the requirements of the preceding 
corollary and a is as shown, Whenp = q = 2 and B, ¢J > 0, 
this was shown by Hirschman.4 

The following corollary will be useful in Sec. S. 
Corollary 2: Given rE[ 1, (0), select BE(O, k 12r). Suppose 

vELr nL 00 and for each a > ° define 

Then for all/EL 2 and bEIRk 

Proof Without loss of generality, suppose that b = ° 
and v;;'O. Since/=/XE + /XE' , where E = [x:lxl<a], 

As in the proof of Theorem 1 '(i), we estimate the two parts 
separately. For the first integral, the Hausdorff-Young ine
quality between two applications of Holder's inequality with 
parameters r' and (r + l)/r shows that 

lI(fxE),v '/2 112 <II Ixl'iXEIIzII Ix l-oXEl12rll vlW2 

< Illxl'illZ[ 2t:uJ(k- 2Br)] 112ra- 0+ k12rll vll!12, 
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using the fact that B < k 12r. Now argue as in the derivation 
of (2.8) with t = 2: 

II(fXE' )'v
1/2

112 <II/XE' 11211vll~2 
<II Ixlo/XE,11211 Ixl-oXE,lloo Ilvll~2 
<lllxl o/112a - °llvll~2. 

The required result is arrived at by substituting these two 
estimates into (2.12). • 

3. COUNTEREXAMPLES 

In this section we collect together the counterexamples 
necessary to establish Theorem 1 'Iii). Throughout we sup
pose that B;;.O, 1 <t< 00, and kEf 1,2, ... ]. 

Counterexample 1: Suppose B> k It '. Then no inequa
lity of the form 

( ( If(YWdy)'12<constxdO-kl'#lllxlo/ll, (3.1) 
JIYI<.d 

is possible for allfin Y. 
Proof Choose/EY withf(O) > 0. Then 

dkll#-O( ( If(YWdy)1I2 
JIYI<d 

=dkll'-O(d- k ( If(YWdy)'/2 
JI yl<d 

~oo as d~. • 

The following case is more delicate. 
Counterexample 2: No inequality of the form (3.1) is 

possible if B = kit' and t> 1. 
Proof Let a be any function in COO (IR) satisfying 

a(s) = ° for s<!, a(s) = I for s;;' 1 and O<a< 1. For E> ° de
fine/,(x) = a(lxl)lxl- k(log(2 + Ixl))-I exp( - Elxl) on IRk. 
Let g, denote its Fourier transform. By Theorem 4 of 
Wainger,5 g(y) = lim,--o+ g,(y) is defined for ally#O, is 
infinitely differentiable except at y = 0, and as y~, 

(1I1YI 
g(y) = 21Tk12F(k/2)-1 JI (rlog(2 + Irl))-'dr 

(III yl 
+ 0 JI (rlog(2 + Irl))-'dr. 

In particular, 

g(y)-log log(l/I yl) as y~. 

Let/(x) = lim,--o + /. (x). Evidently f, /, EL 2 and 
II/ - f.llz~O as €~ +, so that II g - g,112~ as well. 
Hence,g =). 

(3.2) 

AssumeB = kit', divide both sidesof(3.I)bydk12 ,and 
substitute the function/we have just described. Then 
Illxlo /111 < 00 provided 1 < t< 00, whereas 

( d k ( Ig(YWdy)IIZ~oo as d~ + 
JIYI<.d 

by virture of (3.2). • 
Counterexample 3: If B<k /t # with 2 < t< 00, then (3.1) 

is not possible. 
Proof If B < k It # , then for each/EY the left side of 

(3.1) can be made arbitrarily small by choosing d sufficiently 
large. This provides a contradiction since as d~ 00, the left 
side tends to 11/112' 
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Now assume 0 = kit # with 2 < t<. 00. If we suppose 
that (3.1) is valid we arrive at 

Ilfl12<.constx Illxlklt#fllt. 

This is contradicted by substitutingf = fn , where 
fn (x) = Ix I - k 12 for 1 <.Ix I <.n and 0 otherwise, and letting 
n--oo. • 

4. GENERAL WEIGHTS 

Suppose that w: Rk --R + is a continuous function. In 
this section we mention modifications of the proof of 
Theorem 1 '(i) to establish conditions on w to ensure the exis
tence of a function a: R + --R + satisfying 

a(d)-o as d-o +, (4.1) 

( f If(YWdy)1I2<.a(d)llw(X-b)fllt (4.2) J1 y- cl<d 

for all functions fin L 2, and all b, cERk, and d> O. 
Given tE[I, 00], suppose that w satisfies the following 

conditions: 

(i)llw-1xd-'Bllt,=o(d- klZ) as d-o+, 

(ii) Ilw-1Xw'B), 1I00 =o(d klt#) asd-o+ 

if I<.t<.2, 

(iii)w-1EL t# if 2<t<.00. 

If 1 <. t <. 2, define 

aId) = fl Y2d k12 llw- 1Xd_'B lit' 
+fl k-

lIt #d -klt#llw-1Xd-'BII00' 

Otherwise define 

aId) = fl Y2dk12l1w-IXd-'Bllt' + Ilw-lxld 'B), 11,#· 

By following through the argument for the proof of Theorem 
1 '(i) we get: 

Theorem 2: Let tE[1, 00] and suppose w satisfies the 
preceding conditions. For a as defined above, Eqs. (4.1) and 
(4.2) are valid. 

5. ESTIMATES FOR HAMILTONIANS 

In this section we use our inequalities to develop condi
tions on potentials v: Rk __ R which ensure that (H) ;;'0, or at 
least that (H) is bounded below, where His the Hamiltonian 
H (p, q) = p2/2m + v(q). There is considerable overlap 
between our results and those of Faris. I 
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The most straightforward approach is to assume that v 
is bounded with support in a ball and apply Theorem 1. 
More interesting results may be obtained from Corollary 2 of 
Theorem 1 '. We require vEL' roL 00 for some rE[I, (0) so that, 
although no singularities are allowed, decay at infinity can 
be arbitrarily mild, The main inequality (5,1) is valid for all 
dimensions but only provides nonbinding conditions (that is, 
(H) ;;'0) for k;;.3, 

The following lemma is established by elementary cal
culus. 

Lemma: Suppose 1](t) = f.1.lt - f.1.2t(J for tER + where 
f.1.1' f.1.2;;'0 and 0 < 0<. L Then, if 0 < I, 

min[1](t):tER+J = -(1-0)(O(Jf.1.2/f.1.f)I/II-1i1 

and 1](t ) > 0 if and only if t > ( f.1.21 f.1..) III I - (J) . Otherwise 
1](t );;.0 for all t;;.O provided f.1.2;;'f.1.1' 

Suppose that 1 <.r < 00, vEL'roL 00 , and 0 < 0<.1 with 
0< k /2r. LetKm be the minimum oftheconstantK4 in Cor
ollary 2 of Sec, 2 as a ranges over (0, (0), Holder's inequality 
shows that IIIxl(Jfll2 <.llxfll~llfll~ - (J if 0<0 < I and so, 
from Corollary 2, 

I (v) I <.K ~ II y¢ IW = K ~ (27rll) - 2(J (p2)1J 
for all states <p. Since (H) = (p2)/2m + (v(q);;. (p2)/ 
2m - (v(q) if v is real valued, 

(H );;.(p2)/2m - K~(27rll) - 2f} (p2)1J. (5,1) 

In combination with the preceding lemma, this gives: 
Theorem 3: Suppose that rE[1, 00), v is r~al valued in 

L'roL 00 and OE(O, 1] satisfies () < k /2r. 
(i) If 0 = 1, (H);;.O for all states provided 

K ~ <.2"rfz2/m, 
(ii)IfO<O< 1, (H);;. - (1 - 0) 

X (K ~ (Om/2(7rll)2)f) )11(1 - f}) and (H) ;;.0 for all states satisfy
ing (p2) ;;.(2mK ~/(27rll)2f})l/ll - f}1. 

'w. G. Faris, J. Math. Phys. 19(2),46\ (1978). 
'E. H. Lieb, Rev. Mod. Phys. 48,553 (1976). 
3M. G. Cowling and J. F. Price (submitted to SIAM J. Math. AnaL). 
41. 1. Hirschman, Jr., Amer. J. Math. 79,152 (1957l 
's. Wainger, Mem. Amer. Math. Soc. 59 (\965). 
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Superposition rules for nonlinear coupled first-order differential equations 
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Pairs of coupled nonlinear differential equations of the polynomial type have been studied. No 
higher powers than quadratic were considered. Lie's theorem provides a superposition rule exists 
if certain operators generate a finite-dimensional Lie algebra. The Lie algebras possible were 
divided into twenty categories. For each case the general form of the coupled differential 
equations is obtained. The coupled differential equations are then separated where possible. 
Solutions are obtained expressed in terms of a finite number of particular solutions. 

PACS numbers: 02.30.Jr 

Consider a system of two first-order differential equa
tions of the nonautonomous type. 

x = 5 (x,y,t ), 

Y = 7l(x,y,t ), 

(1 ) 

where x denotes dxldt. We are interested in determining 
superposition rules for such equations. Lie's theorem I pro
vides that a superposition rule exists for Eq. (1) if and only if 
the functions 5 (x,y,t ) and 7l(x,y,t ) have the separated form: 

5= I5,(X,y)Z,(t), 
i=i 

(2) 
I 

71 = I 7l,(x,y)Z,(t), 
;=i 

and where the differential operators 

a a 
Y,=5, ax + 71, ay (3) 

generate a finite-dimensional Lie algebra. This means the 
operators Y, must satisfy the commutator relation 

[Y"lj] = I Cijk Yk , (4) 
k 

where Cijk are the structure constants of the Lie group. 
We now consider the case where 5,(x,y) and 7l,(x,y) are 

polynomials containing no higher power in x and y than 
quadratic. 2 We seek to determine all the distinct sets of dif
ferential equations that satisfy Eq. (4). A superposition prin
ciple involving a finite number of particular solutions will be 
sought for each case. 

For future convenience, we now list the six constant and 
linear operators L" the six quadratic operators Q, and also 
eight cubic operators C, (see Table I). We are considering 
only quadratic or lower operators to be present in the Y, 
operators ofEq. (3), but cubic terms appear in the commuta
tors of certain quadratic operators. From a table of commu
tators of the linear and quadratic operators, we will deter
mine all the sets of operators that generate finite
dimensional Lie algebras. The associated differential equa
tions and their superposition rule will then be deduced. 

In Table II the commutator is presented for the opera
tors oflower than cubic power in two dimensions. The com
mutator is defined as [A,D] = AD - DA. 

We now consider commutators of operators, both of 
which are quadratic. Inspection of the table of commutators 
shows that QI and Q6 commute. Any Lie algebra containing 
two or more quadratic operators must have the quadratic 
operators commute. This follows from inspection of the 
commutator table, as all non vanishing commutators of qua
dratic operators involve cubic operators. As a result, the 
commutators of the quadratic operators must commute to 
form a finite-dimensional Lie algebra. Other pairs of qua
dratic operators commute beside QI and Q6' The quadratic 
operators that commute are 

[QI,Q6] = 0, 

[Q3,(2Q2 + Q6)] = 0, 

[Q4,(QI + 2Q5)] = 0, 

TABLE 1. Linear quadratic and cubic operators. 

Constant or Quadratic 
linear operator operator 

L, Q, 

a 2 a x-ax ax 

2 
a a x- x'y-;;-ax ax 

3 
a , a 

f'a; y-ax 

4 
a ,a x-ay ay 

5 
a a x- xy-ay ay 

6 
a ,a y- y-ay ay 

7 

8 

Cubic 
operator 

c, 

3 a x-ax 

x'y~ 
ax 

xy'~ ax 

3 a y-ax 

x,i. 
ay 

X2~ ay 

xli. ay 

y'~ ay 

(5) 

(6) 

(7) 
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TABLE II. Commutators of linear and quadratic operators. 

L, L2 L3 L4 L, L6 

L, 0 L, 0 0 L4 0 

L2 -L, 0 -L3 0 L, 0 

L, 0 L, 0 -L, L6 -L2 -L3 

L4 0 0 L, 0 0 L4 

L, -L4 -L, L, -L6 0 0 L, 

L" 0 0 L, -L4 -Ls 0 

Q, - 2L, -Q, -2Q2 0 Q4 0 

Q, -L, 0 -Q, -L, Q,-Q, -Q2 

Q, 0 Q3 0 - 2L, Q6- 2Q, - 2Q, 

Q4 - 2L, - 2Q4 Q, - 2Q, 0 0 

Q, -L6 -Qs Q2 - Q6 -L, -Q4 

Q" 0 0 Q, - 2L6 - 2Q5 

[(Q, + Qs), (Q2 + Q6)] = 0, (8) 

[(q, + nQ3 + 2Qs), (2Q2 + Q6 + Q4/n)] = O. (9) 

In Eq. (9), n is a constant, independent of x and y, and 
not equal to zero. 

By systematically exchanging x and y, Eqs. (6) and (7) 
are seen to transform into each other. Equation (7) is ignored 
in the following because the coupled differential equations 
and their superposition rule found for Eq. (6) can be convert
ed, upon exchange of x and y into the differential equation 
and superposition rule for Eq. (7). 

Certain combinations of the linear operators can be 
added to these pairs of commuting quadratic operators to 
form a finite-dimensional Lie algebra. No other combination 
of quadratic operators can be added to the quadratic pairs. 
The sets of operators forming finite-dimensional Lie alge
bras with two commuting quadratic operators are 

(I) Q" Q6' L" L 2, L 4, L 6, 

(II) Q3' 2Q2 + Q6' L" L 2, L 3, L 4, L6, 

(III) Q, + Qs, Q2 + Q6' L" L 2, L 3, L4, L s, L6, 

(IV) Q, + nQ3 + 2Qs, 2Q2 + Q6 + Q4/n, L2 + L6 

ifn#l, 

(V) Q, + nQ3 + 2Qs, 2Q2 + Q6 + Q4/n, L" L 2, + L6, L 4, 

L3 + Ls if n = 1. 

The sets of operators forming a finite-dimensional Lie alge
bra with one quadratic operator included are 

(VI) QI> L" L 2, L 4, L6, 

(VII) Q2' L 2, L 4, L6, 

(VIII) Q3' L" L 2, L 3, L 4, L6, 

(IX) Q, + Qs, L" L 2, L 4, L s, L6, 
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Q4 

0 

-Q6 

Q, Q2 Q3 Q4 Q, 

2L, L3 0 2L, L6 

Q, 0 -Q3 2Q4 Q, 

2Q, Q3 0 2Q, - Q, Q6- Q2 

0 L, 2L3 0 L, 

-Q4 Q,-Q, 2Q, - Q6 0 Q4 

0 Q2 2Q3 -Q4 0 

0 - C2 - 2C, 2C, Cb 

c, 0 - C4 2Cb - C, C7 - C, 

2C3 C4 0 2C7 - 2C2 Cx - 2C3 

-2C, C, - 2C6 2C2 - 2C7 0 C, 

- C6 C2 -C7 2C3 - Cx - C, 0 

0 C, 2C. -2C6 -C7 

(X) Q, + Q4' LI> L 4, L2 + L s, L2 + L6, 

(XI) Q2 + Q3' L2 + L 3, L2 + L6, L3 - L6, L, - L4, 

(XII) n2Q2 + n3Q3 + n2Q6' L" L 3, L2 + L6, 

(XIII) n,Q, + n3Q3 + 2n,Qs + n6Q6' L" L2 + L6, 

(XIV) n,Q, - 2n3Q2 + n3Q3 + n4Q4 - 2n4Qs 

+ (n, - n3 + n4)Q6' L,+L4, L2 + L6, 

(XV) n,Q, + 2n3Q2 + n3Q3 + n4Q4 + 2n4Qs 

+ (n4 + n3 - n,)Q6' L, - L 4, L2 + L 6, 

(XVI) n,Q, + (n, + n3)Q2 + n3Q3 + n3Q4 

Q6 

0 

0 

-Q, 

2L" 

2Q, 

Q" 

0 

-C, 

- 2C4 

2Cb 

C7 

0 

+ (n, + n3)Q5 + n,Q6' L, + L4, L2 + L 6 , L3 + L 5, 

(XVII) Q, - 2Q2 + Q3 - Q4 + 2Qs - Q6' L, + L4, 

L2 +L6,L3 +Ls,L, -L4' 

(XVIII) n,Q, + (n2 - n,)Q2 - n2Q3 + n2Q4 

+ (n, - n2)Qs - n,Q6' L, - L 4, L2 + L6, L3 + Ls, 

(XIX) Q, + 2Q2 + Q3 + Q4 + 2Qs + Q6' L, + L 4, 

L, - L4, L2 + L6, L3 + L s, 

(XX) n,Q, + n2Q2 + n3Q3 + n4Q4 + nsQs + n6Q6' 

L2 +L6' 

The systematic interchange of x and y in the operator 
sets (VI)-(XIII) will result in similar Lie algebras. We ignore 
such similar Lie algebras because the corresponding differ
ential equations can be analyzed by interchanging x and y in 
the cases considered. In cases (XII)-(XX), the nj stand for 
constant arbitrary coefficients. The last 15 cases have a sin
gle linear combination of quadratic operators as one ele
ment. These cases are distinguished from each other by the 
different linear operators with which they form a Lie alge
bra. The operator L2 + L6 will form a finite-dimensional Lie 
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algebra with any linear combination of the quadratic opera
tors listed in Table II. Such combinations are treated collec
tively in set (XX). Cases where another linear operator, in 
addition to L2 + L 6, can form a Lie algebra are separately 
treated. 

Finite-dimensional Lie algebras with no quadratic op
erators can also be developed. But the resulting differential 
equations are linear, and the corresponding linear superposi
tion rules are presumed to be so well known to not be of 
interest here. We now proceed to develop nonlinear superpo
sition rules for each case permitted by Lie's theorem. 

Case (I): The differential equations corresponding to 
this case are 

x = a + bx + cx2, 

Y =I+gy + hy2. 

(10) 

(11) 

These equations are recognized as uncoupled Riccati equa
tions. In this and what follows a, b, c,/, g, and h stand for 
arbitrary functions of time, t, the independent variable. 
These were referred to as Zj(t) in Eq. (2). P and K stand for 
arbitrary constants of integration. Particular solutions to a 
differential equation will have a subscript appended to them. 
The superposition rule for this case is 

(12) 

and 

(13) 

The general solution to Eqs. (10) and (11) is expressed in a 
superposition rule requiring six particular solutions. Lie's 
theorem has been shown correct with no work on our part 
for this case. We will not be so fortunate for the other cases. 
However, it is well to point out one valuable aspect of Lie's 
theorem. If the conditions of Lie's theorem are satisfied, one 
is encouraged to continue seeking a superposition rule with a 
finite number of particular solutions. If the operators do not 
form a finite-dimensional Lie algebra, one need not even at
tempt to seek a superposition principle. 

are 
Case (II): The differential equations for this Lie algebra 

x = a + bx + cy + Iy2 + 2gxy, 

y=h +gy+gy2. 

(14) 

( 15) 

This pair of equations is coupled. One could proceed by solv
ing the y equation as a separate Riccati equation as 

(y - yd(Y3 - Y2)1(y - YZ)(Y3 - YI) = P. (16) 

Then with Y known from Eq. (16), the x equation becomes 
the linear inhomogeneous equation: 

x + (b + 2gy)x + (a + cy + Iy2)=Qx + R. (17) 

The general solution to Eq. (17) can be written as 

x = KeSQdl + efQdl f Re- fQdl
' dt, (18) 

but Lie's theorem states we can do better than Eq. (18)! What 
is difficult with Eq. (18) as it stands? The general solution for 
Y involves an arbitrary integration constant, P, R, and Q 
appearing in the solution for x, Eq. (IS), dependent on P; thus 
Eq. (IS) would have to be integrated for each value of P! 
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To obtain a superposition rule with a finite number of 
particular solutions, let 

Y=U+YI' (19) 

whereYI is a given particular solution to Eq. (15). Then U 

satisfies 

u = ( q + 2gydu + gu2, 

which has a superposition rule 

(l/u) = (l/u l ) + C(l/uz - l/ud· 

(20) 

(21) 

Here u I and U2 are particular solutions ofEq. (20) and C is an 
arbitrary constant of integration. 

We now define 

(22) 

and substitute this into Eq. (14). Using Eqs. (19) and (20), the 
result can be written as 

+ [b - 2( q + 2gyd]v=R' + Q'v, 

where we have defined 

A =a +cu l +IYi. 

The general solution ofEq. (23) is 

(23) 

(24) 

v = K'eSQ ' dl + eSQ ' dl f R'e -SQ' dl dt. (25) 

The integrand Q ' is independent of C, the arbitrary constant 
of integration for u, that appears in Eq. (21). The other inte
grand, R', has the simple form 

R '=R 2C
2 + RIC + Ro, (26) 

as can be seen from comparing Eqs. (21) and (23). Ro, R I' and 
Rz are functions of time, but are independent of C. The gen
eral solution v to Eq. (25) depends on two constants ofinte
gration, K and C, where we drop the primes. Thus we now 
indicate this dependence by v=vKC. 

Then we have the linear superposition rule, from Eqs. 
(25) and (26), that 

( 
C~ ) VKC" = VKO + C 2 _ C (voc - Voo - CVOI + CVoo ) 

+ ( 2
CO 

) [C2VOI - C2voo - Voc + Doo]· 
C -C 

(27) 

Thus v has a superposition rule with four particular solu
tions. Then a knowledge of U I' Uz completely determines x 
via 

(22) 

where u is given by Eq. (21). Thus,x andy can be determined 
in terms of three particular solutions of Eq. (15), two particu
lar solutions of Eq. (20), and four particular solutions of Eq. 
(23). 

Case (III): The differential equations corresponding to 
this Lie algebra are 

x = ax + by + gx2 + Ixy + h, (2S) 

Y = cx + dy + gxy + Iy2 + q. (29) 
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TABLE III. Cases separable by a linear transformation. 

Case 

IIV) 

(V) 

(X) 

(XI) 

IXIII) 

(XIV) 

IXV) 

(XVII) 

(XIX) 

(XX) 

Differential equation 

x = ax + bx' + bA 'y' + 2exy 

y = ay + 2bxy + ey' + ex'/A' 

x = ax + bx' + by' + 2exy + dy + h 
Y = ay + 2bxy + ex' + ey' + dx + 1 
x = ax' + bx + ex + g 
y = ax' + bx + ey + d 
x = axy + ay' - by + ex + dx + dy + 1 
y= by + ey-I 

x = ax + bln,x' + n,i) + e 

y = ay + b 12n,xy + noY') 
x = ax + b(n,x' - 2n,xy + n3 y') + e 

x = ax + b (x' - 2xy + y') + ey + d + g 
y = ay - b lx' - 2xy + y') + ex + d - g 
x = ax + b (x' + 2xy + y') + ey + d + g 
y = ay + b (x' + 2xy + y') + ex + d - g 

x = ax + b (n,x' + n,xy + n3 y') 

y = ay + b (n 4x' + n,xy + noy') 

This pair of equations can be written in the form 

j 

where 

U1 =x, U2 =y. 

Superposition rule 

~=~+p(~-~) 
S S, S, S, 

~=_I_+k(J.... __ I_) 
m m] m 2 m l 

Riccati for S 
Riccati for m 
Riccati for x 
m=m,+Klm,-m,) 
y=y, + Kly, - y,) 
Spk = PS",(S, ,IS",)k 

Riccati for s 
for both values of a 

Riccati for S 
for both values of A 

Riccati for S 
for both val ues of A 

S=S, +K(S, -S,) 
Riccati for m 
Riccati for S 
m=m,+P(m,-m,) 

Riccati for S 

Riccati for x 

(30) 

Comment 

a=1 

A = constant not 0 or I 

a=1 
,1= I 
m = x - y only transformation 

S = x + y only transformation 

a= 

,1=1 

a=1 

- no ± In~ + 4n,n,)'12 

2n., 

,1= - n, - n4 + [In, + n4 )' - 4n,n4 ] 112 

2n4 
a=1 

,1= n4 -n,±[(n4 -n,)'+4n,n4 ]'12 

2n4 
a=1 
,1=1 

a=1 
A = I 

2 + [( 2)' + 8 ]11' a/A = n, - n, n, - n, n,n4 

2n, 

Thus Eqs. (28) and (29) are a set of coupled Riccati equations 
of the projective type in two dimensions. The superposition 
rule has been given by Anderson. 3 

Upon using these transformations, uncoupled equations for 
Sand m are obtained, and the resulting superposition rules 
are also indicated in the table. P and K are arbitrary con
stants of integration. The letters a-h, and also q denote arbi
trary known coefficients appearing in the differential equa
tions that can be functions of time. The letter n denotes a 
known constant coefficient. The Riccati superposition rule 
for x is analogous to Eq. (12). 

A product transformation will separate other cases. 
The corresponding differential equations and the resulting 
superposition rules are in Table IV. 

Other cases: In Table III we present the differential 
equations for the cases that uncouple using the transforma
tion 

S=ax+AY, 
m =ax-Ay. 

TABLE IV. Cases separable by a product transformation. 

Case Differential equation 

(IX) x=ax'+gx+1 
y = axy + by + ex + d 

(XII) x = ax + b (n,xy + n,y') + cy + d 

y=ay + bn,)/ 
(XVI) x = ax+ b[n,x' + (n, + n3 )xy+ n3 y'] + ey +d 

y = ay + b [n3x' + In, + n3)xy + n, y'] + ex + d 

(XVIII) x = ax+ b[n,x2 + In, - n,)xy- n,y'] +ey + d 

y = ay + b [n,x' + (n, - n,)xy - n, y'] + ex - d 
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(31) 

Finally, the remaining cases are already uncoupled. 
These cases are listed in Table V, along with the correspond
ing superposition rules that apply. 

Superposition rule 

Riccati inx 
linear in v 

~=~+k( ~-~) 
y y, Y2 y, 
linear in v 
Riccati inS 

linear in v 

Riccati inS 

linear in v 

Comment 

x= vy 

S=x+y 
viS _ s,) = (n, - n3 )(x - y) 

(n, + n3 ) 

S=x-y 
viS _ s,) = (n, + n,)(x + y) 

In, - n,) 
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TABLE V. Uncoupled cases. 

Case 

(I) 

(VI) 

(VII) 

(VIII) 

Differential equation 

x=a+bx+cx2 

y=! +gy+hy2 

x=ax2 +dx+! 
y = by+ c 
x=axy+dx 
y= by+c 
x = a/ + dy + gx + ! 
y= by+c 

SUMMARY 

Lie's theorem provides that a superposition rule exists 
for a set of differential equations if certain operators generate 
a finite-dimensional Lie algebra. Pairs of coupled nonlinear 
differential equations of the polynomial type have been stu
died here. No polynomial terms of higher power than the 
quadratic were considered. As a result, the Lie algebras pos
sible can be divided into 20 cases. Five of these cases contain 
various pairs of commuting quadratic generators. The re
maining cases each have a single quadratic generator, plus 
various linear generators. If two quadratic generators are 
present in a given Lie algebra, they must commute with each 
other. This helps limit the number of Lie algebras to be con
sidered. For each case, the general form for the coupled dif
ferential equations is written down. The differential equa
tions contain an arbitrary function of time, the independent 
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Superposition rule 

Riccati inx 
Riccati iny 
Riccati in x 
linear iny 
linear iny 
once y known, linear in x 
linear iny 
once y known, linear in x 

Comment 

This is case (i) with h = 0 

variable, for each generator of the Lie algebra. Changes of 
the dependent variables are sought for each case, to produce 
uncoupled differential equations. Superposition rules for 
these uncoupled differential equations then permit the solu
tions of the coupled equations to be determined. 
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A systematic analysis of the class of nonlinear evolution equations u, + U xxx + tP (u, ux ) = ° is 
carried out within the Estabrook-Wahlquist prolongation scheme. 

PACS numbers: 02.30.Jr, 11.lO.Lm 

I. INTRODUCTION 

In the study of nonlinear evolution (NLE) equations 
based on the Estabrook-Wahlquist (EW) prolongation 
schemel one finds that all NLE equations which are com
pletely integrable admit a nonabelian prolongation. 1-3 This 
fact suggests that there is a connection between complete 
integrability and existence of nonabelian prolongations. 
Since a general theory of such a correspondence is not avail
able at present, the accumulation of cases might open the 
way towards the construction of the theory.4.5 

In this context, this paper is devoted to a prolongation 
analysis of the class of equations 

U t +uxxx +tP(u,ux)=O, (1.1) 

where tP (u, ux ) denotes a function of the variables u and Ux ' 
Precisely, we determine all the functions tP (u, ux ) such that 
Eq. (1.1) admits a nonabelian prolongation structure. Such a 
function turns out to be of polynomial form in Ux (see Ref. 6). 

On the one hand, we obtain known NLE equations 
which can be solved by the inverse scattering method, and 
whose associated nonabelian Lie algebras are presumably 
infinite-dimensional (as it happens, for example, for the 
Korteweg-de Vries equation?). On the other, we provide 
some new NLE equations with which one can associate fin
ite-dimensional nonabelian Lie algebras. 

A notable feature of our results is the fact that some 
NLE equations belonging to the class (1.1) have a prolonga
tion structure whose pseudopotential cannot be of the first 
kind.s 

In Sec. II we derive a set of equations which are essen
tial to treat Eq. (1.1). In Sec. III and IV we perform a syste
matic analysis of the fundamental equations found in Sec. II, 
and obtain explicit forms of tP (u, ux ) such that Eq. (1.1) ad
mits a non abelian prolongation structure. Section V deals 
with some concluding remarks, and Appendices A, B, and C 
contain details of calculations. 

II. BASIC EQUATIONS 

Let us introduce the set of variables ! / I defined by the 
prolongation equations 

where i,j = 1, 2, ... , N. 

(2.la) 

(2.lb) 

We recall that when the set of variables ! /1 has one 
element only, say y, it will be called "pseudopotential of the 

first kind. "S 

The integrability conditions for Eqs. (2.1), which assure 
that y~, = y;x' are given by4 

DXG i = D,F i (i = 1,2, ... , N), 

where 

(2.2) 

_ a a a ja 
Dx -ux a +uxx -a +u,,"" -- +F -., 

u ux au"" ayJ 
(2.3) 

and 
a . a 

D, = u, - + G J -. • (2.4) au ayJ 
Taking account of (1.1), Eq. (2.2) becomes 

(F~ + G~)r + F~tP + [F, G]i + G~z + G~p = 0, (2.5) 

where z = ux,p = u,,'" r = U xxx ' and 

(2.6) 

In the following we shall omit for simplicity the in
dexes, i.e., we shall write Finstead of F i

, Fu instead of F~, 
and so on. 

From the requirement that Eq. (2.5) be identically satis
fied for any value of the independent variables u, z,p, and r, 
one has 

1zZ3 Fuuu + ¥2 [ F, Fuu] + z( [F, [F, Fu ]] 
- Lul- [F, L ] + FutP (u, z) = 0, (2.7) 

where L is a function of integration depending on u and y 
only, related to G by4 

G = - pFu + 1zZ2Fuu + z[F, Ful - L. (2.8) 

Since (2.7) holds for any z, one deduces that tP (u, z) is a 
third-degree polynomial in the z variable, namely, 

tP (u, z) = g(u) + h (u)z - ~k (U)z2 - !m(u)z3. (2.9) 

Substituting (2.9) in (2.7) and equating to zero the coeffi
cients of the powers of z, we have the set of basic equations: 

[F, Fuu] = kFu' 

Lu = [F, [F, Fu]] + hFu, 

[F,L] =gFu' 

(2. lOa) 

(2. lOb) 

(2.lOc) 

(2.l0d) 

In the following, we shall perform a full analysis of 
these equations in order to have some information about the 
functions F, L, and G [see (2.8)], which depend on u and y, 
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and the coefficients m, k, h, and g of the polynomial (2.9), 
which depend on the variable u only. This goal can be 
achieved distinguishing essentially two cases, which is based 
on the assumption that Fu and Fuu may be linearly indepen
dent vector functions, or not. 

III. CASE WHERE Fu AND Fuu ARE LINEARLY 
INDEPENDENT 

Let us suppose that Fu and Fuu are linearly indepen
dent. In order to treat the basic equations (2.10), it is conven
ient to distinguish the subcases (I) mu #0, k #0; (II) 
m = const#O, k = 0; (III) m = 0, k = const#O; (IV) m = 0, 
k = 0; (V) mu #0, k = 0. (We have seen that the remaining 
subcases, such as for example m = 0, ku #0, fall into the 
preceding ones). 

First we deal with the first subcasc 

(I) mu ¥O, k¥O 

Then, the following relations hold (see Appendix A): 

[Fu, Fuul = 0, (3.1) 

kmu = 2mku' 

2k ~ = kkuu' 

(3.2a) 

(3.2b) 

gu + (ku lk )g-(2kjm u)hu =0, (3.3a) 

guu - (kuulmu )hu = 0. (3.3b) 

We point out that the commutator relation (3.1) is not 
valid when the pseudopotential is of the first kind. In fact, in 
this case it turns out that Fu and Fuu are proportional. This 
contradicts our assumption that Fu and Fuu are linearly in
dependent. 

From Eq. (3.2b) one has 

k = ke~w, 

where 

eW = u - uo, 

k and Uo being arbitrary constants. 
On the other hand, Eq. (3.2a) gives 

m = iiie~2w, 

where iii is a constant. 
Then, Eq. (2. lOa) yields 

Fwww - 3Fww + (2 - iii)Fw = 0, 

whereFw = Fu ew . 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The characteristic equation associated with (3.7) has the 
rootsA = OandAl.2 = U3 ± (1 + 4iii)1/2). We can therefore 
distinguish three cases, specifically, 

iii #2, - A 

iii = 2, 

iii = - A. 

Case (a) 

(3.8a) 

(3.8b) 

(3.8c) 

For brevity's sake, we shall handle in some detail only 
the case (a), for which Eq. (3.7) admits the solution 

(3.9) 
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where A) #,.1.2 (A), ,.1.2#0) and A, B, C are arbitrary vector 
functions of the variablesy's only. 

Inserting (3.9) in Eqs. (3.1) and (2. lOb), we find the com
mutator relations 

and 

[A,B]=O, 

[A, C] = [k 1(1 - Ad]A, 

[B, C] = [k 1(1 - A2)]B. 

Using (3.4), Eqs. (3.3a) and (3.3b) yield 

g=geW +ge~W 

(3. lOa) 

(3. lOb) 

(3. tOe) 

(3.11) 

(3.12) 

where g, g and ii are constants. 
Now we shall resort to Eq. (2.1Oc) in order to derive 

L(u,y). 

In virtue of(3.9), (AS) (see Appendix A), and (3.12), inte
grating (2. tOe) with respect to u, we have 

L = [ P + ii] /,wA + [ P + ii] eA2WB 
0)-lf 02- 1f 

+ m...g (_A_)_e(A'~2)WA + ~e(A2~2)WB) +D, 
k A) - 2 ,.1.2 - 2 

(3.13) 

where D is a vector function of integration of the y's only. 
Substituting (3.13) in (2.1Od), with the help of (3.10) we 

obtain a relation which is a linear combination of the inde
pendent quantities /'w, eA2W, e(A, ~ 2)w, e(A2 ~ 2)W, and 1, 

through coefficients which are vector functions of the y's 
only. 

Equating to zero these coefficients, we obtain the com
mutator relations 

(3.14a) [C,D] = 0, 

[A, D] = [ k ( P +ii)+gAl]A, 
A) - 1 (A) - W 

(3.14b) 

+ ii ) + gA2 ]B. 

(3.14c) 

The set of commutator relations (3.10) and (3.14) de
fines a finite-dimensional4D nonabelian Lie algebra with 
2D abelian derived algebra,9 which is the prolongation alge
bra associated with the NLE equation 

u, + uxxx 

+ -g- + g(u - uo) + h + --!- 2 U" 
- [- iii A 1 ] 

U - Uo k (u - uo) 
3 k 2 iii 3 - ---u - u =0. (3.15) 
2 u - uo" 2(u - UO)2 " 

This equation is obtained from Eq. (1.1) substituting (3.11), 
(3.12), (3.4), and (3.6) in (2.9), having in mind (3.5). 

To give further insights into the algebra (3.14), let us 
consider the quantity 
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k 
,.1.1 - 1 

k 
,.1.2 - 1 

L1= 
k [ P 

,.1.1 - 1 (,.1.1 - 1)2 
+ ii ] - gA.l k [ P + ii ] - g,.1.2 

,.1.2 - 1 (,.1.2 - W 

(3.16) 

We may distinguish the following cases: (i) k 3=1= - 2gm2 and (ii) k 3 = - 2gm2. In the case (i), we have L1 =1=0 and the 
algebra (3.14) can be written as 

[C',B]=B, [D',A]=A, 

[C', A] = 0, [D', B] = 0, 

[B, A] = 0, [D', C'] = 0, 

(3.17) 

where the (linearly independent) elements C ' and D ' are given by 

C'= J.-{~D-[~( P +ii)-g,.1. ]C} 
L1 ,.1.1 - 1 ,.1.1 - 1 (,.1.1 - 1 f I' 

(3.1S) 

and 

The algebra (3.17) is the direct sum of two 2D nonabe
Han algebras which correspond to the standard form II (b) 
according to Jacobson's classification.9 

In the case (ii), we have L1 = ° and the algebra (3.14) 
takes the form 

[A,B]=O, [D",A"]=O, 

[C",A]=A, [D",B]=O, (3.20) 

[C", B] = [(,.1.1 - 1)1(,.1.2 - 1)]B, [D ", C"] = 0, 

where 

C"= ,.1.1::1 C 
k 

(3.21) 

and -2 

D" = D - [ k + ii - g ,.1.
k
_2 (,.1.2 - 1)]C. (3.22) 

(,.1.2 - 1)2 

The algebra (3.20) is the direct sum ofa ID algebra R 
and a 3D algebra of the standard form III (d).9 

Case (b) 

Concerning this case (m = 2), exploiting a procedure 
similar to the one used for the case (a), we find an NLE 
equation given again by (3.15) with m = 2, and the set of 
commutator relations 

[A, B] = 0, 

[A, C] = - !kA, 
[B, C) = kB, 

[C,D] =gB, 

(3.23a) 

(3.23b) 

(3.23c) 

(3.24a) 

(3.19) 

In order to classify this finite dimensional Lie algebra, 
let us put D = D + glkB. Then the commutator relations 
(3.24) become 

[C, D] = 0, 

[A, D) = [3g - !k Uk 2 + ii ))A, 

[B, D) = k (ii + k 2)B. 

(3.25a) 

(3.25b) 

(3.25c) 

In analogy to the case (a), let us introduce the quantity 

I
lk - k I - -

L1 = ~k (!p + ii ) _ 3g _ k (p + ii) = - 3k (g + Ak 3). 

(3.26) 

Let us deal with the cases (i) k 3 =1= - 2gm 2 = - Sg and 
(ii) P = - Sg. 

In the case (i), the commutator relations (3.23) and (3.25) 
take the form (3.17), where C' and D ' are defined by 

C' = (l/L1)[ - kIP + ii)c + kD] (3.27) 

and 

D' = (11 L1 H - [~k (!p + ii ) - 3g]C + ~kD j. (3.2S) 

In the case (ii), the commutator relations (3.23) and 
(3.25) have the form (3.20) where the quantity (,.1.1 - 1)1 
(,.1.2 - 1) takes the value - 2, and C" and D " are given by 

C" = (2!k )C (3.29) 

and 

D " = iJ - (h + p)C. (3.30) 

[A, D) = [3g - ~k Uk 2 + ii ))A, 

[B, D) = k (ii + k 2)B. 

(3.24b) Case (c) 

(3.24c) For m = -! we obtain the set of commutator relations 
I 

[A,B]=O, [C,D]=O, 

[A, C] = - 2k (A - 2B), [A, D ] = (~ - sk 3 - 2kii )A + (4sk 3 + 4kh + g)B, (3.31) 

[B, C] = - 2kB, [B, D ] = (~ - sP - 2kh )B. 
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We shall distinguish the cases (i)k 3# - 2gml = -g/8 
and (ii) k 3 = - g/8. 

In the case (i), the algebra (3.31) reads 

[A,B]=O, [D',C')=O, 

[A,C']=B, [D',A)=A, 

[B,C')=O, [D',B)=B, 
where 

(3.32) 

C' = [Sk (sk 3 + g)) - I [2kD - (sk 3 + 2kh - ~)C ] 

(3.33) 

and 
D' = [sk (8k 3 + g)]-I[ - 4kD 

+ (4sk 3 + 4kh + g)C]. (3.34) 

The algebra (3.32) is a nonabelian 40 algebra with a 20 
abelian derived algebra.9 

In the case (ii), the algebra (3.31) becomes 

[C", A ) = A - 2B, [D", A] = 0, 

[C",B]=B, [D",B)=O, 

[A, B) = 0, [D ", C "] = 0, 

where 

C" = (1!2k)C 
and 

D" = (Sk 3 + 2kh - ~)-ID - (1!2k)c. 

(3.35) 

(3.36) 

(3.37) 

The algebra (3.35) is the direct sum of a 10 algebra lit 
and a 30 algebra of the form III (d).9 

(II) m = const#O, k = 0 

If we assume that m is a constant different from zero 
and k = 0, the basic equations (2.10) take the form 

[F, Fuu] = 0, 

Lu = [F, [F, Full + hFu' 

[F,L] =gFu' 

From (3.3Sa) one gets 

F= Ae'u + Be -AU + C, 

(3.3Sa) 

(3.3Sb) 

(3.3Sc) 

(3.3Sd) 

(3.39) 

where Ii 1 = m and A, B, and C are vector functions of inte
gration depending on they's only. 

Using the abbreviation 

D=[B,A], 

one has 

[Fu , Fuu] = - U 3D. 

Substituting from (3.39) in (3.38b), one finds 

[C, A ) = [C, B] = O. 

(3.40) 

(3.41) 

(3.42) 

In order to derive L (u, y), let us introduce (3.39) in 
(3.38c). We obtain 

Lu = U Ie'U[A, D] + e- AU 

X [B, D]J + lih (e'u A - e -AU B), (3.43) 

which can be integrated to give 

L = 2 I e'u [A, D] - e - AU 

x[B, D1J + Ii (hlA - hlB) + E, (3.44) 
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where E =E ! / J is a vector function of integration and 

hI = r h (t )e" dt, hl = r h (t)e - At dt. (3.45) 

With the help of (3.44), Eq. (3.38d) yields 

2!e2A.U[A, [A,D]] _e- 2AU [B, [B,D]]J 

+ Ii (h Ie - AU + h2e'u )D 

+e'U[A,E] +e-AU[B,E] 

+ [C, E] = lig(e'u A - e - AU B). (3.46) 

Taking now the commutator of(3.46) with D, we obtain 
a relation which allows us to determineg(u) in the nontrivial 
case where [A, D) and [B, D] are not zero. 

After some manipulations, we have 

g = ao + a Ie - AU + a1e'u, 

where ao, a I, and a1 are constants. 
A similar procedure provides 

h = Yo + yle2A.u + Yze - 2AU + Y3U, 

where Yo, YI' Yz, and Y3 are constants. 

(3.47) 

(3.48) 

By virtue of (3.47), (3.48), and (3.45), taking equal to 
zero the coefficients in front of the functions of the variable u 
such as e'u , e - AU, and so on, which are mutually indepen
dent, from (3.46) we are led to the following commutator 
relations: 

2[A, [A, D n = - jYID + lia0, 

2[B, [B, D]] = - jY2D + lia IB, 

[A, E] = liaoA, 

[B, E) = - liaoB, 

[C, E] = (2/1i )Y3D + lialA - lia1B. 

(3.49a) 

(3.49b) 

(3.49c) 

(3.49d) 

(3.4ge) 

We have shown that if Y I and Y 1 are supposed different 
from zero, then the constants ao' a I' al' and Y3 are vanishing 
(see Appendix B). Thus Eqs. (3.49) read 

[A, [A, D]] = - ~rP, 

[B, [B, D]] = - ~rlD, 

[A, E] = 0, 

[B,E] =0, 

[C,E] = 0, 

(3.50a) 

(3.50b) 

(3.5Oc) 

(3.5Od) 

(3.50e) 

where D is given by (3.40). These relations, together with the 
following ones (see Appendix B), 

[A, C] = [B, C] = [E, D] = [C, D) = 0, (3.5ot) 

constitute the nonabelian prolongation Lie algebra associat
ed with the NLE equation [see (1.1), (2.9), (3.47), and (3.48)]: 

u, + uxxx + {Yo + y1e2A.u + y1e - 2A.U)ux - ~mu! = O. (3.51) 

Putting u = W IU, Eq. (3.51) becomes 

W, + W.."" + (Yo + yleW + rle- W)W" -lW! = O. (3.52) 

Equation (3.52) was deduced first by Calogero and De
gasperis through the spectral transform method. 10 It pos
sesses an infinite set of conserved quantities, Backlund trans
formations4 and multisoliton solutions. Furthermore, we 
point out that there exist a transformation which links (3.52) 
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to the modified Korteweg-de Vries equation 

u, + Uxxx + (c l + czUZ)ux = 0, (3.53) 

where C I and Cz are constants. Precisely, one can prove ll
•
12 

that if W (x, I ) satisfies the equation 

W+W +[y_3b2(ceW12+ce-WIZ)2]W _lW3_0 
(xxx 'S 1 2 x 8 x - , 

(3.54) 

where y, b, CI, and C2 are constants, then the function u(x, I) 
expressed by 

U= WX +b(cleW1Z +c2e- w / Z) (3.55) 

fulfills the modified Korteweg-de Vries equation 

u, + Uxxx + (y - ~U2)ux = O. (3.56) 

(III) m = 0, k = const#O 

When m = 0 and k is a constant different from zero, 
from Eqs. (2.1Oa) and (2.1Ob) we obtain 

and 

F=AuZ +Bu + C, 

[B,A] = kA, 

[C,A] = !kB, 

andA, B, and C depend on they's only. 
Furthermore, one can easily see that 

Lu =u([B,D]+kD)+[C,D]+hFu, 

where D _[C, B]. 
Putting 

r/tuu =h 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

and recalling that in our case Fuuu = 0, Eq. (3.60) yields 

L = ~u2([B, D] + kD) + [C, D]u + r/tuFu - r/tFuu + E, 
(3.62) 

where E _E ! / j is a vector function of integration. 
Substituting (3.62) in (2.1Od), we have 

!u3([B, [B, D]] - k 2D) 

+ !u2([B, [C, D]] + k [C, D] + 2[A, E]) 

+ u([C, [C, D]] + [B, E]) 

+ [C, E] + r/tu(ku2A + kuB + D) 

- kr/t(2Au + B) = g(2Au + B). (3.63) 

Then, taking the commutator of A with (3.63), we are led to 
the relation 

tY3 [ - r/tu(k zuA +!k 2B) + (k zr/t + kg)A ] = 0, (3.64) au 
which gives 

r/t = ao + alu + a 2u
2 + a 3u3

, 

g = Po + PIU + P2U2 + 2ka3u3 

(3.65) 

(3.66) 

since A andBare linearly independent [see (3.58)]' Thequan
tities a j and pj are constants. 

Inserting (3.65) and (3.66) in (3.63) and equating to zero 
the coefficients of powers of u, we obtain a 3 = 0 and the 
commutator relations: 

[B, [B, D]] = k 2D + 4PzA, (3.67a) 
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3[B, [B, D]] + k [C, D] + 2[A, E'] = 4/3IA, 

[C, [C, D]] + [B, E '] = pzB - (2P21k )D, 

[C,E'] = 0, 

(3.67b) 

(3.67c) 

(3.67d) 

where 

E' = E - (11k )({3o + kao)A + alB 
+ (11k )({32 - ka2)C. (3.68) 

We have proved in Appendix C thatp2 = O. Further
more, for a one-dimensional prolongation, where the set of 
variables! / j has one element only, one can see that PI must 
be zero in order to avoid inconsistency. In this case the com
mutator relations (3.67) (with P2 = PI = 0) define a nonabe
lian (infinite-dimensionaI7

) Lie algebra associated with the 
equation [see (3.61), (3.65), and (2.9)]: 

u, + Uxxx + Po + 2a2ux - ~ku; = 0, (3.69) 

which can also be written as the Korteweg-de Vries equation 

W, + Wxxx + (2a2 - 3kW)Wx = 0, (3.70) 

through the transformation u x = W The problem as to 
whether this result holds also for a pseudopotential of any 
kina is under investigation. 

In the case where both m and k are zero, from the fun
damental equations (2.10) we find 

(3.71) 

and 

L = !u2[A, [C, B]] + u[C, [C, B]] 

+ hA + hB + D, (3.72) 

where A, B, C, and D depend on the y's only, and 

h = r h (1)1 dt, 1, = r h (t) dt. (3.73) 

Inserting (3.71) and (3.72) in (2.1Od), after some manipu
lations we obtain the set of relations: 

~u2[B, (B, E]] + u(3[B, (C, E]] + [A,D lJ 
+ [[B, D] + [C, [c, E])J + hE 

= (gu U + g)A + guB, (3. 74a) 

3u[B, [B, En + P[B, [C, En + [A, D]j 

+ huE = (2gu + uguu)A + guuB, (3.74b) 

3[B, [B, En + huuE = (3guu + uguuu)A + guuuB, (3.74c) 

huuu E = (4guuu + uguuuu)A + guuuu B, (3.74d) 

where 

E=[C,B]. 

The following subcases are possible: 

(i)E=O, 

(ii) E #0, huuu #0, 

(iii) E=I=O, huuu = O. 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

Subcase (i): We have proved that Eq. (1.1) becomes 

u, + Uxxx + go + glu + hux = 0, (3.79) 

where h =h (u) is an arbitrary function such that huuu #0, 
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and go and g I are constants of integration. The Lie algebra 
associated with Eq. (3.79) is closed and is given by 

[A, B) = [A, C) = [C, B] = 0, 

[A, D] = 2g,A, 

[B, D) = goA +g,B, 

[C,D] = goB· 

(3.80a) 

(3.80b) 

(3.80c) 

(3.80d) 

The commutator relations (3.80) define a 40 Lie alge
bra with a 20 abelian derived algebra.9 

Subcase (ii): We have obtained the equation [see (1.1)): 

U t +uxxx +g/u+glu+go 
+ (a/u 2 + h,u + ho)ux = 0, (3.81) 

where g, g I' go, a, h I' and ho are constants. The Lie algebra 
associated with (3.81) is closed and is defined by 

[A,B]=[A,C]=O, 

[C, B) = - (g/a)B, 

[A,D] = Zg,A + h,(g/a)B, 

[B,D] = goA + (gl +g/a +f/a3 )B, 

[C, D) =gA + goB· 

(3.82a) 

(3.82b) 

(3.8Zc) 

(3.82d) 

(3.82e) 

The algebra (3.82) is a 40 Lie algebra with a 2D abelian 
derived algebra. 9 

Subcase (iii): Equation (1.1) takes the form 

U t + Uxxx + go + glu + !8'2U2 

+ (ho + hlu + !h2u
2)Ux = 0, (3.83) 

where gi and hi are constants. 
The Lie algebra associated with Eq. (3.83) is given by 

the commutator relations 

[C, B]=E #0, 

[A, B) = [A, C] = [A, E] = 0, 

[C,D] = goB, 

[B, [B, E)] = gy4 - jh2E, 

(3.84a) 

(3.84b) 

(3.84c) 

(3.84d) 

[A, D) + 3[B, [C, E]] = 2glA + g2B - hiE, (3.84e) 

[B, D) + [C, [C, E)] = goA + g,B - hoE· (3.84f) 

Choosing go = gl = g2 = 0, the algebra (3.84) reduces 
to the prolongation algebra associated with the modified 
Korteweg-de Vries equation [see (3.83)], which is known to 
be a completely integrable NLE equation. I 

At present we can say nothing about the possibility that 
some constants gi may be chosen different from zero. In fact, 
it could happen that the symmetry properties of the commu
tator relations (3.84) imply that all the constants gi must be 
zero [in analogy to what occurs, for example, for the algebra 
(3.49)]. 

(V) mu ;;z!'O, k = 0 

This case can be treated in strict analogy to the case (I) 
(mu #0, k #0). One can see that 

[F, Fu] = 0, 

[Fu' Fuu] = 0, 

Lu = hFu· 

(3.85) 

(3.86) 

(3.87) 

Since Fu and Fuu are supposed to be linearly independent, 
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Eq. (3.86) entails that the pseudopotential defined by the pro
longation equations (2.1) cannot be of the first kind. 

After some manipulations, employing (3.85), (3.86), and 
(3.87), Eq. (2.1Od) yields 

m =iiie- 2W , 

g=geW, 

where W = In(u - uo) and iii, g, Uo are constants. 

(3.88) 

(3.89) 

We shall distinguish the following subcases: (i) iii # 2, 
- i; (ii) iii = 2, and (iii) iii = - 1· 

Subcase(l) 

One obtains the following solution of Eq. (Z.lOa): 

F= /,wA + / 2wB + C, (3.90) 

where A, B, and C depend on the y's only, and A I and ..1,2 
(AI #..1,2; AI' ..1,2#0) are roots of the characteristic equation 
associated with (3.7). 

Equation (1.1) takes the form 

Ut + Uxxx + g(u - uo) - [iii!2(u - uoflu! + hux = 0, 
(3.91) 

where h is an arbitrary function of u. 
The Lie algebra associated with this equation is finite

dimensional and is given by the commutator relations: 

[A, B] = [C, A] = [C, B] = 0, 

[A,D] =gA,A, 

[B, D] = gA 2B, 

[C,D] = 0, 

(3.92a) 

(3.92b) 

(3.92c) 

(3.92d) 

where D is a (vector) function of integration depending on 
the variablesy's only. 

The algebra (3.92) is the direct sum of a 10 algebra R 
and a 30 algebra of the standard form III(d) according to 
Jacobson's classification.9 

Subcase (il) 

One has 

F= e3W A + WB + c. (3.93) 

The Lie algebra associated with Eq. (3.90) (for iii = 2) is fin
ite-dimensional and reads 

[A,B] = [C,A] = [C,B] = 0, 

[A, D] = 3gA, 

[B, D) = 0, 

[C,D] =gB. 

(3.94a) 

(3.94b) 

(3.94c) 

(3.94d) 

The algebra (3.94) is a 40 algebra with a 20 abelian derived 
algebra.9 

Subcase (iiI) 

One finds 

F= e3W/2 A + We3W/2 B + C. (3.95) 

The Lie algebra associated with Eq. (3.90) (for iii = - 1) is 
finite-dimensional and turns out to be 

[A, B) = [C, A ] = [C, B) = 0, (3.96a) 
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[A,D] =g(~ +B), 

[B, D] = ¥I, 
[C,D] = o. 

(3.96b) 

(3.96c) 

(3.96d) 

The algebra (3.96) is the direct sum of a ID algebra and a 3D 
algebra of the standard form III(d).9 

IV. CASE WHERE Fu AND Fuu ARE LINEARLY 
DEPENDENT 

If Fu and Fuu are linearly dependent, then 
[Fu, Fuu] = O. We can put 

Fuu = l (u)Fu' 

First let us consider the case l =f O. 
Taking account of (4.1), Eq. (2. lOa) yields 

m=l2+lu' 

From (2. lOb) and (4.1) we get 

l [F, Fu] = kFu. 

Then, with the help of (4.3), Eq. (2. lOb) gives 

k=al, 

where a is a constant of integration. 
Now let us introduce a functionf(u) such that 

fuu1fu = l. 

Inserting (4.5) in (4.1) and integrating, we obtain 

F=Af+B, 

where A and B are vector functions of the y's only. 
Substitution from (4.6) in (4.3) yields 

[B,A] = aA. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Now, subtracting the first from the second derivative 
with respect to u of Eq. (2.lOd), we are led to the relation 

2[Fu' Lu] + [F, Luu] - l [F, Lu] 

= guuFu + 2gu Fuu + gFuuu - l (guFu + gFuu)' (4.8) 

The commutators on the left-hand side can be readily 
calculated. In fact, using (4.3), we have 

[F, [F, Fu]] = a 2 Fu . (4.9) 

Inserting (4.9) in (2. We), we find 

Lu = (a 2 + h )Fu, 

so that 

(4.10) 

(4.11) 

On the other hand, exploiting (4.10), we can write 

[F, Luu] = (a 2 + h )alFu + ahu Fu (4.12) 

and 

[F, Lu] = (a 2 + h )aFu' (4.13) 

Putting now (4.11), (4.12), and (4.13) in (4.8), in virtue of(4.2) 
we obtain the condition 

d 
ahu =guu + -(g/), (4.14) 

du 
which gives (for g=fO) 

ah=gu +gl+{3, (4.15) 

where {3 is a constant of integration. 
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The function L can be explicitly calculated from (4.10) 
with the help of (4.5), (4.6), and (4.15). We have 

L = (a 2 + {3 la)Af + (A la)( gfu) + C, (4.16) 

where C depends on they's only. 
Substitution from (4.16) in (2.lOd) yields the commuta

tor relations 

[B, C] = 0 (4.17) 

and 

[A, C] = - (a3 +{3)A, (4.18) 

which define, together with the relation (4.7), a nonabelian 
closed (finite-dimensional) Lie algebra, which can be put in 
the standard form III(c) according to Jacobson's classifica
tion.9 

From (4.2), (4.4), and (4.15) we see that Eq. (Ll) can be 
written as 

u, + Uxxx + g + (Va)( gu + gl + {3 lux - ~alu; 

_W2+UU~ =0, (4.19) 

where g and l are arbitrary functions of the variable u. 

Special cases 
A. Case k = 0, I~O, (a = 0) 

We have found that (4.6) holds again. Equation (4.7) 
becomes 

[B,A] = O. 

From (4.6), (4.20), and (2. lOb) we have 

[F,Ful = 0 

and 

[F, Fuu] = O. 

Furthermore, from (4.10) we get 

Lu = hFu = hAfu, 

which yields 

L =A¢(u) + C, 

where 

¢u = hfu 

and C is a (vector) function of integration. 
Inserting (4.24) in (2.1Od), we get 

f[A, C] + [B, C] = gAfu. 

Now from (4.15) (for a = 0) we obtain 

g fu = - {3 f + r, 
where r is an arbitrary constant. 

Substitution from (4.27) in (4.26) gives 

[A, C] = -{3A 

and 

[B, C] = rA. 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

The commutator relations (4.28), (4.29), and (4.20), de
fine a closed nonabelian Lie algebra. When {3 =f 0, this algebra 
can be put in Jacobson's standard form III(c), while when 
{3 = 0 this algebra becomes of the type III(b).9 This algebra 
can be associated with the nonlinear evolution equation 
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Ut + Uxxx + g + hux - !mu~ = 0, 

where m is given by (4.2), g is such that 

gu +gl= -p, 

and h is an arbitrary function of the variable u. 

8.Case/=O 

(4.30) 

(4.31) 

In this case, from (4.2) and (4.4) we have m = 0 and 
k = O. Furthermore, Eq. (4.1) yields 

F = Au + B, (4.32) 

where the (vector) functions of integration A and B depend 
on they's only. We have [see (4.32)] 

[F, Fu] = [B, A ], (4.33) 

and 

[F, [F, Fu]] = u[A, [B, A]] + [B, [B, A]]. (4.34) 

Inserting (4.34) in (2. We), we obtain 

Lu = u[A, [B, A]] + [B, [B, A]] + hA. (4.35) 

Differentiating (2.lOd) with respect to u, we find 

2[Fu, Lu] + [F, Luu] = guuFu' (4.36) 

Then, substitution from (4.35) in (4.36) yields 

3u[A, [A, [B, A]]] + 3[B, [A, [B, A ]]] 

+ hu [B, A] = guuA, 

which gives 

huuu [B, A ] = guuuuA. 

From (4.38) we get 

and 

huuu [A, [B, A ]] = O. 

We have to distinguish two cases, namely 

(i) huuu = 0, [A, [B, A ]]#0 

(ii) huuu #0, [A, [B, A]] = O. 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

First we consider the case (i). From (4.40) and (4.38) we 
obtain 

h = 3a 1u
2 + 2a2u + a 3 (4.42) 

and 

g = P1U
3 + P2U

2 + P3U + P4' (4.43) 

where a i and Pi are constants. 
Inserting (4.42) and (4.43) in (4.35), we find 

L = ~u2[A, [B, A]] + u[B, [B, A ]] 

+ (a lU 3 + a 2u
2 + a 3u)A + C, (4.44) 

where C is a vector function which depends on the y's only. 
With the help of(4.44), Eq. (2.lOd) leads to the following 

set of commutator relations: 

[A, [A, [B, A]]] + 2a 1[B, A] = 2p\A, 

3[B, [A, [B, A)]] + 2a2[B, A] = 2PzA, 
[A, C] + [B, [B, [B, A ]]] + a 3 [B, A ] = P~, 
[B, C] =P~. 

(4.45a) 

(4.45b) 

(4.45c) 

(4.45d) 

Choosing all the constants Pi equal to zero, the algebra 
(4.45) becomes the prolongation algebra associated with the 
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modified Korteweg-de Vries equation: 

Ut + Uxxx + (3a\u 2 + 2azu + a 3)ux = O. (4.46) 

We notice that the algebra (4.45) can be formally ob
tained from the algebra (3.84) by putting A =0. 

Furthermore, we recall that the algebra (3.84) has been 
obtained assuming thatFu andFuu are linearly independent, 
while the algebra (4.45) has been derived in the case where 
Fuu = O. In the first case, unlikely to what happens for the 
second case, the pseudopotential defined by Eqs. (2.1) cannot 
be of the first kind. 

Concerning the case (ii), from (4.37) we get 

hu [B, A ] = guuA, 

from which one has 

gu =yh +8, 
where y and 8 are constants. 

Putting now 

hu = h, 

Eqs. (4.35) and (4.41) yield 

L = u[B, [B, A]] +Ah + C, 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

where C is a vector function of integration of the variables 
{ / ) and h is given by 

h = (lIyH g - 8u) + 7], (4.51) 

7] being a constant and y#O. 
With the help of (4.47) and (4.48) we find 

[B, A] = yA. (4.52) 

Then, substitution from (4.52) in (4.50) yields 

L = [(r - O/y)u + (g/y + 7])] A + c. (4.53) 

Inserting (4.53) in (2.lOd), we get the commutator rela
tions 

[C,A] = (r - 8jA, 

[C, B] = y7]A. 

(4.54) 

(4.55) 

We point out that the algebra defined by (4.52), (4.54), 
and (4.55) is a closed nonabelian Lie algebra which can be put 
in the stand.ard form III(c) according to Jacobson's classifi
cation. 

The NLE equation with which this prolongation alge
bra is associated is given by 

u, + U,;xx + g(u) + h (u)u" = 0, (4.56) 

where the functions g and h have to be chosen in such a way 
that the constraint (4.48) is satisfied. 

V. CONCLUDING REMARKS 

Concerning the systematic analysis of the class of NLE 
equations (1.1), carried out within the Estabrook-Wahlquist 
prolongation scheme, we have found that all the equations 
which admit nonabelian prolongations, are such that the 
functions if> (u, ux ) are polynomials in the variable U x ' 

The equations whose associated nonabelian algebras 
are infinite-dimensional are likely the only equations which 
are completely integrable. In this connection, we notice that 
the NLE equations whose nonabelian Lie algebras are finite
dimensional are not solvable by the inverse scattering meth-

Leo etal. 1727 



                                                                                                                                    

ad, since the structure constants of their prolongation alge
bras do not contain free parameters. We have seen also that 
for any equation of this kind, the search of nontrivial Back
lund transformations of the type I/J = I/J(u, Ux ' Uxx , y), where 
I/J and u are required to satisfy the original equation, fails. 
However, this result does not imply, a priori, that one might 
not find for these equations nontrivial Backlund transforma
tions using mathematical tools more suitable than those em
ployed in this work.4.5.12.13 

We point out that one can have a similar situation for 
NLE equations which may be solvable through the inverse 
scattering method, although they have nontrivial Backlund 
transformations within the scheme adopted in this paper. A 
notable example is offered by the Harry-Dym equation, 14 u, 
+ u3uxxx = 0, which is completely integrable. 15 H is worth 
to mention the fact that the Harry-Dym equation admits a 
nonabelian (presumably infinite-dimensional) prolongation 
algebra whose a quotient algebra is given by the algebra of 
SL(2, JR).16 

ACKNOWLEDGMENT 

The authors are very grateful to professor F. A. E. Pir
ani for his interest in this work and for many helpful conver
sations. 

APPENDIX A 

In this appendix we shall derive the relations (3.1), (3.2), 
and (3.3), assuming that mu ~O and k ~O. To this end, let us 
differentiate Eq. (2.1Od) twice with respect to u. We obtain 

[ Fuu ' L] + 2 [ Fu' Lu ] 
+ [F,Luu] =guuFu +2guFuu +mgFu' (AI) 

In order to calculate the commutators on the left-hand side, 
let us start from 

[Fu' L ] = - (11k )[L, [F, FuuJ], 

where Eq. (2. lOb) has been used. 
Exploiting now the Jacobi identity, we get 

[L, [F, Fuu]] = - [F,[Fuu L]] - [Fuu [L, F)]. 

(A2) 

(A3) 

Then, substitution from (A3) in (A2) and the use of (AI) yield 

[Fu' L ] = (11k )guu [F, Fu] + 2guFu + (mglk)[ F, Fu] 

- (2/k )[F, [Fu' Lu]] - (11k )[F, [F, Luu]] 

+ (glk)[ Fu, Fuu]' (A4) 

Differentiating (2. lOb) twice with respect to u, with the help 
of (2. lOa) one obtains 

[F, Fu ] = (kuJm.)Fu + (2kJm u )Fuu' (A5) 

from which one has 

[F, [F, Fu]] = (kuu Imu )[F, Fu] + (2kuk Imu)Fu' 
(A6) 

Taking now the commutator of Fu with Lu [see (2. We)] 
and using (A6) and (A5), one gets 

[Fu' Lu] = [Fu, [F, [F, Fu]]] 

= (kuJmu )[Fu' [F, Fu]] 

= 2(kuukulm~) [Fu' Fuu ]. (A7) 
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Now let us deal with [F, Luu]. From (2. We) we have 

[F, Luu] = (2kJmu)[F, [Fu' Fuu]] + k [F, [F, Fu]] 

(AS) 

With the help of (2. We), the quantity (AS) becomes 

[F, Luu] = (2kJmu)[ F, [Fu' Fuu]] + kLu + hu [F, Fu]' 
(A9) 

Resorting then to the Jacobi identity, we can write 

[F, [Fu' Fuu]] = - [Fuu' [F, Fu ]] 

= (kuu 1m.) [ Fu' Fuu ], (A 10) 

where (A5) has been employed. 
Insertion of (A 10) in (A9) yields 

[F,Luu] =(2kukuJm~)[Fu,Fuu] +kLu +hu[F,Fu]' 
(All) 

from which one has [see (A5) and (A 10)] 

[F, [F, Luu ]] 

= (2ku kuJm~)[ F, [Fu' Fuu ]] + k [ F, Lu ] 

+ hu [F, [F, Fu ]] 

= (2ku k ~u Im~ ) [ Fu, Fuu] + k [ F, Lu ] 

+ (kuJmu)hu [F, Fu] + (2kkJmu)huFu' (AI2) 

Introducing this expression into (A4), we obtain [see 
(A7) and (A 10)] 

[F L] = (guu + mg _ kuu h ) [F F ] 
u' k k kmu u 'u 

(
g 6kuk~u) + - - --- [F F ] k k m~ u' uu 

( 
2ku ) + 2gu - --;;;:: hu Fu - [F, Lu ]. (AB) 

Comparing then (AB) with the relation 

[Fu,L] + [F,Lu] =guFu +gFuu ' (AI4) 

which is readily obtained from (2.1Od), we are led to the 
expression 

(
guu + mg _ kuuhu )[F F ] 
k k kmu 'u 

+ ( .f. _ ~ ku k ~u ) [F F ] 
k k m~ u' uu 

(AI5) 

Now from (2. lOa) and (2. lOb) one has 

( 
mkuu ) ( 2mku ) [ Fu , Fuu 1 = ku - ---;;;: Fu + k - ---;;;: Fuu' 

(AI6) 

Then, from (A 10) with the help of (A5) and (2. lOb), we get 

( 
2mku ) 1 2 kk ° k k - -- Fu + - (2k u - uu )Fuu = . 

mu mu 
(AI7) 

Substitution from (A5) and (AI6) in (AI5) yields 
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1 ( ku k ~u ) + - g-6--
k m~ 

( 
2mku) ] X k - -;;;:- - g Fuu = O. (AlS) 

If one supposes that the vector functions Fu and Fuu are 
linearly independent, Eqs. (A 17) and (A IS) provide the con-
straints 

(AI9) 

Finally, comparing (BlO) with (3.49a) we get 

~aoYID = Aa2aoA, (Bll) 

where YI and A are supposed to be nonvanishing. 
From (B 11) we deduce that a o must be zero in order that 

the assumption (i) is not contradicted. 
Then, taking the commutator of (3.4ge) with A and B, 

respectively, we are led to the relations 

and 

2Y3[A, D] = - A 2a2D (BI2) 

2Y3[B,D] = -A 2a ID. (BI3) 

From (BI2) we obtain 

2Y3[A, [A,D]]= -A 2a 2[A,D]. (BI4) 

Then, substitution from (BI4) in (3.49a) yields 

-A 2a 2[A,D] +~YlhD=AY3a~. (BIS) 

Taking account of(BI2), Eq. (BlS) gives rise to the rela-
muk = 2mku' 

2k~ = kkuu' (A20) tion 

and (after slight manipulation) 

ku 2ku 
g + -g- -h =0, u k mu u 

kuu 
guu - -hu =0. 

mu 

We notice that (A 16) becomes 

[ Fu , Fuu] = O. 

(A21) 

(A22) 

(A23) 

APPENDIX B 

and 

Here we shall prove that if 

(i) [A, D]7'=O, [B, D]7'=O (BI) 

(B2) 

then the constants ao, ai' a 2, and Y3 are zero. 
In doing so, first we notice that from the Jacobi identity 

[A, [B, E]] = - [B, [E, A]] - [E, [A, B n, (B3) 

with the help of (3.49d) and (3.49c) one finds 

and 
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[E, D] = O. (B4) 

Now, taking account of (B4) and (3.49c) one has 

[E, [A, D]] = [D, [A, En = - Aao[A, D]. (BS) 

From (3.49a), employing (B4) and (3.49c), we obtain 

2[E [A, [A, D]]] = - A 2a2aoA. (B6) 

The use of the Jacobi identity and (BS) yields 

[E, [A, [A, D]]] = - Uao[A, [A, D J]. (B7) 

Furthermore, we can write 

[E, [B, D n = Aao[B, D] 

[E, [B, [B, D]]] = Uao[B, [B, D J]. 

Now substituting (B7) in (B6), we obtain 

4Aao[A, [A, D]] = A 2a2aoA. 
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(BS) 

(B9) 

(BlO) 

(BI6) 

from which we deduce that a 2 = 0 and Y3 = 0, since YI7'=0 
and [A, D] 7'=0 by hypothesis. 

In a similar manner, from Eqs. (3.49b) and (B13) one 
can see that a l = 0 and Y3 = O. 

APPENDIXC 

Here we shall prove that {32 = O. In doing so, let us take 
the commutator ofEq. (3.67b) with C. We obtain 

2[C, [A, E ']] 

+ k [C, [C, D]] + 3[C, [B, [C, D]]] = 2/3lkB. (CI) 

Furthermore, from the Jacobi identity, (3.67c), (3.S9), 
and (3.67d), we have 

[C, [A, E ']] = ~k [B, E 'J 
= ~k [C, [C, D]] + !k{3IB - {3~. (C2) 

Substitution from (C2) in (CI) yields 

3[C, [B, [C, D]]] = {3lkB + 2/32D. (C3) 

Taking the commutator of(C3) with A and using (3.SS), 
we have 

[A, [C, [B, [C, D]]]] = - j{3lk2A - j/32k2B, (C4) 

where the relation 

[A, DJ = - !k 2B 

has been used. 
Exploiting the Jacobi identity, Eq. (C4) becomes 

[C, [A, [B, [C, D]]]] 

(CS) 

-1k [B, [B, [C, D]]] = - j {3lk 2A - j {32k 2B. (C6) 

Furthermore, we get 

[A, [B, [C, D]]] = [B, [A, [C, D J]] - k [A, [C, D]] 

= -!k [B, [B, D n + ~k 3D. (C7) 

Inserting (C7) in (C6), we obtain 

- !k [C, [B, [B, D]]] + !k 3[C, D J - ~k [B, [B, [C, D]]] 

= - j {3jk 2A - j {32k 2B. (CS) 
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Taking now the commutator of (3.67a) with e, we have 

[e, [B, [B, D]]] = k 2[e, D] + 2/32kB. (C9) 

Substituting then (C9) in (C8), we find 

[B, [B, [e, D]]] = j PikA - ~ /32kB. (ClO) 

Now from (3.67b) we have 

[B, [A, E ']] + ~[B, [B, [e, D]]] 

and 

+ !k [B, [e, D]] = 2 PikA. 

Since [see (3.67c)] 

(CII) 

[A, [B,E']] + [A, [e, [C,D]]] = -/3lkA +/32kB 

(CI2) 

[B, [A, E ']] - [A, [B, E ']] = k [A, E '], (CI3) 

subtracting (Cl2) from (CII), in virtue of(CI3) we get 

k [A, E '] + ~[B, [B, [e, D]]] 

+ !k [B, [e, D]] - [A, [e, [e, D]]] 

(CI4) 

Now, using (3.67b) and the relation 

[A, [e, [e, D]]] = - !k2[e, D] - k[B, [e, D]], (CIS) 

which arises from the Jacobi identity and from 

[A, [e, D]] = -!k [B, D] -!k 2D, (CI6) 
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Eq. (CI4) leads to the relation 

[B, [B, [e, D]]] = j/3lkA - j/32kB. (CI7) 

Finally, comparing (CI7) with (ClO), we obtain/32 = o. 

'H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16, 1(1975). 
'H. D. Wahlquist and F. B. Estabrook. J. Math. Phys. 17, 1293 (1975). 
'F. A. E. Pirani, D. C. Robinson, and W. F. Shadwick. Local Jet Bundle 
Formulation of Biicklund Transformations (D. Reidel, Dordrecht, 1979). 

4M. Leo, R. A. Leo, L. Martina. F. A. E. Pirani, and G. Soliani, Physica D 
4,105 (1981); M. Leo, R. A. Leo, G. Soliani, and L. Martina, "Prolonga
tion analysis of the cylindrical Korteweg--<ie Vries equation," Phys. Rev. 
D 26,809 (1982). 

'J. Hamad and P. Wintemitz, Preprint CRMA-952, Montreal, Quebec. 
Canada, 1980. 

oR. Dodd and A. Fordy, Preprint DIAS-STP-82-08. Dublin, Ireland, 1982. 
7W. F. Shadwick, J. Math. Phys. 21, 454 (1980). 
"J. Corones and F. J. Testa, in Lecture Notes in Mathematics 515, edited by 
R. M. Miura (Springer-Verlag, Berlin, 1976). 

9N. Jacobson, Lie Algebras (Wiley, New York, 1962), Chap. I. Par. 4. 
'0F. Calogero and A. Degasperis, J. Math. Phys. 22, 23 (1981). 
II A. Degasperis, Lecture Notes in Physics 120 (Springer-Verlag, Berlin. 

1980), p. 16; F. Magri, Lecture Notes in Physics 120 (Springer-Verlag, 
Berlin, 1980), p. 233. 

12K. M. Tamizhman and M. Lakshmanan, Phys. Lett. A 90,159 (1982). 
"G. L. Lamb, Jr., J. Math. Phys. 15,2157 (1974). 
14M. D. Kruskal, Lecture Notes in Physics 38 (Springer-Verlag, Berlin, 

1975). p. 310; M. Wadati, K. Konno, and Y. H. Ichikawa. J. Phys. Soc. 
Jpn. 47, 1698 (1979). 

15M. Wadati, Y. H. Ichikawa, and T. Shimizu. Prog. Theor. Phys. 64. 1959 
(1980). 

lOG. Tondo, Bacc. thesis, Leece, 1982. 

Leo etal. 1730 



                                                                                                                                    

Characterization of canonical Bose-Fermi systems by "anti-Hermitian" 
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A complexification of graded manifold theory is given, following Kostant's procedure, but with a 
reality concept defined by "classical" correspondent to Hermitian conjugation in quantum 
mechanics. Presented herein are definitions of graded manifolds with "Hermite" coordinates and 
of "Hermiticity" on graded differential forms and graded vector fields, all in the coordinate 
independent way, and characterization of "classical" Bose-Fermi systems by graded symplectic 
forms W which are, here, "anti-Hermitian" nonsingular closed 2-forms of Z2 grading O. Also given 
are Frobenius' theorem on the graded manifold with "Hermiticity," and Darboux's theorem, 
W = ~kdPk Adqk + i ~}(€}/2)dsj Adsj , where all coordinates are "Hermite," Pk t = Pk, 
qk t = qk ,s) t = sj" Naive quantization procedures fit in with these systems. 

PACS numbers: 02.40. + m, 03.20. + i, 03.65. - w, Il.30.Pb 

1. INTRODUCTION 

Utility of "anticommuting e-numbers" is now widely 
appreciated. In an attempt to construct a unified theory of 
elementary particles, using the supergravity theory, they are 
used as parameters of superspace with Bose and Fermi dyna
mical operators. A characteristic aspect in the usage is that 
they are treated, not separately from (commuting) e
numbers, but in a combined manner so that Bose and Fermi 
dynamical variables are transformed and mixed with each 
other. The superspace is viewed as such. Another utility of 
"anticommuting e-numbers" is, as is known, that they may 
be considered as "classical" variables, which are to be quan
tized in a conventional manner, to describe Fermi or spin 
degrees of freedom. 1-4 Also in quantization, it is preferable 
to treat Bose (e-number) and Fermi ("anticommuting e
numbers") coordinates together, not separately, from a 
viewpoint of mixed coordinate transformations. As such a 
manifold as the superspace, Kostant defined an abstract 
manifold called a graded manifold where a local coordinate 
system consists of even and odd Z2 graded algebra elements, 
and the even coordinates themselves are not real numbers 
but more or less abstract ones, although there exists an alg~
bra isomorphism between the even coordinates and real 
functions. 5 Kostant investigated in detail the graded ver
sions of tangent space and of differential forms, and further 
characterized "classical" canonical Bose-Fermi systems as 
graded symplectic manifolds which are graded manifolds 
with graded symplectic forms. In his discussion on graded 
symplectic manifolds, all elements are considered as real 
ones forming real algebra, which implies that complex con
jugation is understood, to define reality concept, in the back
ground. So far as "classical" Bose-Fermi system, graded 
symplectic manifold, is concerned, the above reality concept 
allows simple structure for the system. Here in this paper, 
however, we take an alternative choice for the reality con
cept, defined by "Hermitian" conjugation, which will ap
pear below, for the following reason: Suppose quantized 

0) On I~ve of absenc~ from Utsunomiya University, Department of Engi
neenng Mathematics, Utsunomiya, Japan. 

Bose-Fermi systems are obtained somehow and we will see 
the relation between the quantized systems and the "classi
cal" counterparts by putting the Planck constant equal to 0, 
which is the conventional way in physics. Then all operators 
in the quantized systems come to form graded commutative 
algebras with "Hermiticity." We consider these systems (or 
algebraically isomorphic systems) directly as classical sys
tems.6 Here we note this reality concept is defined not by 
complex conjugation, but by "Hermitian" conjugation, 
where no distinction between them exists in the case when 
Bose (Z2 even) system is considered, but in the case when 
Fermi (Z2 odd) elements are involved, the distinction exists. 
The main purpose of this paper is to realize a kind of com
plexification of Kostant's theory such that we can define 
graded manifolds with "Hermite" coordinates, and further 
the concept of Hermiticity also on graded differential forms 
and graded vector fields, all in the coordinate independent 
way, and characterize "classical" canonical Bose-Fermi 
systems by graded symplectic forms which are now "anti
Hermitian" nonsingular closed 2-forms with Z2 grading O. 
Having obtained graded symplectic forms, we can proceed 
along the same line of Kostant, and define graded Poisson 
brackets. At this point, an important theorem, Darboux's 
theorem, is to be demonstrated; that is, if W is an "anti-Her
mitian" nonsingular closed 2-form with Z2 grading 0, then 
there exists a "Hermitian" canonical coordinate system (ql' 
P .... ·,qm,Pm,sl'· .. ,sn)suchthatw=~;;'=ldpk A dqk 
+ i~j = 1 (€j/2)dSj A dsj , where €j = ± 1. In order to prove 

the above theorem, presented is Frobenius' theorem on the 
graded manifold7 with "Hermiticity," which, important by 
itself, reads as; let {Wi J (i = I, ... ,r) be a set oflinearly inde
pendent "Hermitian" I-forms with homogeneous Z2 grad
ing, and if there exists I-forms OJ'" such that dw. = w A 0 .. , J Jl' 

then there exists a set of d/; (i = I, .. ,r) of homogeneous lin-
early independent "Hermitian" I-forms, and a nonsingular 
rxrmatrixgji such that Wi = (d/;)gJ'j. In the course of show-
• J 

mg Darboux's theorem, we have a lemma which says if there 
exists a set of Hermitian O-forms, {hi l (i = I, ... ,k<m + n) 
such that dh/s are homogeneous linearly independent 1-
forms, and {h j J satisfies Poisson bracket relations in such a 
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way as a subset of canonical coordinate system does, then 
there exists an extension of { hi J to a canonical coordinate 
system. One will find the above form of (i) fits in with the 
naive conventional quantization procedure. 8 Now we can 
understand canonical transformations in terms of differen
tial forms as in Bose systems cases. Furthermore, we can 
answer to a basic problem of constrained canonical Bose
Fermi systems, that is, existence of constraints in "standard" 
form,9 which will appear in a separate paper. In Sec. 2, a 
graded manifold theory is given with emphasis on concept of 
"Hermiticity" of graded algebra elements, graded differen
tial forms, and graded vector fields, respectively, which are 
nontriviaUy modified parts from Kostant's work, and Fro
benius' theorem is given. We ask readers to see his work for 
the basic concepts and definitions, more in detail, of graded 
manifolds and graded differential forms and so forth, which 
are not necessarily repeated here. Many notations and ter
minology are borrowed from it. In Sec. 3, we state Darboux's 
theorem and a related lemma and survey characterization of 
canonical Bose-Fermi system by the fundamental 2-form. 
Section 4 is devoted to some discussions on canonical trans
formations and on an inter-relation of a conventional quanti
zation procedure and the "classical" system presented here, 
with emphasis on "Hermiticity." The Appendix is devoted 
to the proof of Darboux's theorem. 

2. GRADED MANIFOLD THEORY WITH "HERMITICITY" 

A. Graded manifolds with "Hermiticity" 

Here we will show that by introducing "Hermiticity" 
into a graded commutative algebra over C (complex number) 
in the course of Kostant's construction of graded manifolds, 
the concept of graded manifolds with "Hermite" local coor
dinate systems with complex sheaf, can be defined. We begin 
with summing up necessary definitions. 

A: Sheaf of graded Zz commutative algebra over C 
(complex number) on X (a real manifold of dim m). 

Sheaf A over X: Correspondence for any open set U CX; 
U-A (U), with A (U) an abstract set, such that 

(i) 3 restriction map P u,v; A (U), for open sets 

VU-::JV. 

(ii)pv.w"Pu.v =Pu.w if WC VC U. 

(iii) Let uiE/\ Ui be any open convering of any open set U. 
Ifpu.uj(f) =Pu.uj(g)foraUiEA,/,gEA (U),thenf -gEA (U). 

(iv) If 3 hiE A (U;) such thatpuj.u. nu}h;) = Pupu,nu)hj) 
for aU i,jE A, then uniquely 3 hE A (U) such that 

Pu.uj(h) = hi' 
If A (U) has an algebraic structure, it is assumed in the 

following the restriction maps are morphisms of the algebra 
structure. 

Graded commutative algebra A (U): A (U) = A (U)o 
~A (U)I' A (U)o; a set of even elements, A (U)]; a set of odd 
elements. Notation for Zz grading; If I = 0 ifjEA (U)o, 
If I = 1 iffEA (U)]' An elementfE A (U)forwhich If I is de
fined, is called (Zz) homogeneous. For homogeneous/, g, 
fg = gf{ - 1)l/llgl whichimpliesfandg graded commutative, 

and Ifgl = If I + Igl· 
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We assume that for any open set U CX there is a homo
morphism of graded algebra, -: 

(2A.I) 

which commutes with restriction maps, where CtJ OC( U) de
notes a set of complex valued C oc functions. CtJ oc (U) is grad
edin the sense CtJ oc( U) = (CtJ OC( U)Jo, so that) = OiffE(A (U))]. 

Function factor CtJ ( U) of A (U): A subalgebra CtJ ( U ) 
CA (U)o, CtJ(U)3 lu and the map, 

CtJ(U)-CtJ"'(U), f-J. (2A.2) 

is an algebra isomorphism. 

ExteriorfactorD(U)ofA (U): AsubalgebraD (U)CA (U 
D ( U) is generated by 1 U and n algebraically independent odd 
elements for some n, where n is assumed a maximum of 
those, dim D (U) = 2", where algebraically independent odd 
elements (SI'OO"S,); 

siEA (U)] (i = 1, ... ,k) and SIS2· .. Sk7~'O. (2A.3) 

Splittingfactor( CC ( U ), D ( U )ifor A (U): CtJ (U); afunction 
factor of A (U). D ( U); an exterior factor of A (U) and the map, 

CtJ(U)® cD (U)-A (U), f®w-fw, (2A.4) 

is a linear isomorphism. 
A-splitting neighborhood U of odd dim n: An open set 

UCX such that there exists a splitting factor (CtJ(U), D (U)) 
for A (U), where dim D(U) = 2n. 

Gradedmanifold (X,A )ofdim (m,n) with complex sheaf 
A: X;m dimensional ordinary manifold. For any nonempty 
open set U CX, 3 covering of U of A -splitting neighborhoods 
of odd dim n. 

CC 00 ( U) is a complexification of C 00 ( U) as a vector 
space, and there exists a unique decomposition CtJ '" ( U) 
= C '" (U) .a iC '" (U). Therefore, once CtJ (U) given 
3C(U):;;;;:C oo(U)such that CC(U) = C(U) .aiC(U) (unique de· 
composition). We call C (U) as a "real" function factor, which 
is a subalgebra over R. 

A-splitting neighborhood has a covering of coordinate 
neighborhoods U, where LCS (local coordinate system) 
(ul, ... ,um ), UiEC "'(U), represents VfEC "'(U) asf = flu) with 
a suitablef(')EC "'(R m), i.e., C OO( U):;;;;:C OO(R m) locally. U is 
also an A-splitting neighborhood, and riEC( U) V = 1, ... ,m) 
such that r; = U; and thus one may adopt a notation for all 
fEC (U) such thatf = fIr) if} = flu) wheref(')EC OO(R mI· Let 
DiU) be generated by Iu and odd elements {Sj;j = 1,oo.,n I 
which are called odd coordinates. The above ( r,; i = 1 , ... ,m I 
is called even coordinates. 

A-CS (A-coordinate system): (r,oo.,r m; sw",sn); [ri I even 
coordinates and (Sj I odd coordinates, defined above. 
V fE A (U) can be uniquely written in terms of (ri ; Sj) as 

f = I (!v(r) + igv(r))sV, (2A.5) 
(vJ<n 

where v denotes (VI' vz, ... ,v") with Vj equal to 1 or 0 and 
" (v)== I vj<n, and s" denotes SI "'sz"'",sn "n. 
j~ I 

A-coordinate neighborhood: An open set UCX, which is 
an A-splitting neighborhood and is a coordinate neighbor-
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hood of X, i.e., a neighborhood admitting A-CS. 
Once given even coordinates I rj J, then 3 unique "real" 

function factor C (U) containing I rj J, but there may be an
other "real" function factor C'(U) containing I hj J even if ii j 
= rj = Uj> i.e., hj = rj + Zj, ZjE A I( U), a set of nilpotent ele

ments. 
Note that as for complex structure of A I( U) part, it is 

still an open question. Therefore in the sense that C ( U) is not 
uniquely determined owing to its A I( U) part, i.e., splitting 
A (U) = iff(U)E9A I(U)isnotunique,thequestionofcomplex 
structure of C ( U) is also open. Yet, once C ( U) is given, we 
may call C ( U) as a "real," not "Hermite" in the sense defined 
later, function factor with respect to C(U)~C =(U). 

On transformations of A -CS, we have the following pro
position. 

Proposition 1: Let UadmitA-CS (rj;sj; i = 1, ... ,m;j = 1, 
... ,n), where (r;) is aLCS for U. Let r;EA (U)o, s;EA (U)I 
such that 

r; = aj(r) + L bjy(r)sv (i = 1, ... ,m), 

(YI>2 
(v) even 

n 

s; = L Cjdr)sk + L djv(r)sv (j = 1, ... ,n). 
k=1 

(vl>3 
(v) odd 

(2A.6) 

(2A.7) 

where derivation may be ofleft or right, holds everywhere in 
U, then U admits A-CS (r;; s;; i = 1, ... ,m;j = 1, ... ,n). 

Proof is accomplished in three steps. Show U admits 
firstly A-CS (rj" =aj(r); Sj)' utilizing the invertibility of ordi
nary coordinate transformation and C (U) ~ C = (U); second
ly A-CS (rj"; Sj '), utilizing iterative process and nilpotency; 
and finally A-CS (r;'; s/), utilizing Taylor's expansion and 
iterative process with nilpotency. 

Proposition I amounts to 
..-. ~ 

~rollary 2: If (rj ') is a LCS for U and (an(s I' ",s n ')1 
as 1···aSn ) is non vanishing everywhere in U then (rj'; Sj') is A
CS. 

Now we introduce complex structure on A (X). 
"Hermitian" conjugation t: Antiautomorphism of grad

edalgebra/:A (U)_A (U), which commutes with restriction 
map, such that Va, bEA (U), (a + b)t = at + b t, 
(ab)t = b tat, (ca)t = c*at, where CEC (complex number), 
(at)t = a, with (at) = a* where * is the complex conjugation. 

(A (U)o)t =A (U)o, (A (uh)t =A (U)I and lu t = lu 

can be easily seen. 

Remark 3: t induces an linear isomorphism; 

(iff(U))t ® dD(UW-A (U), 

j®w-jw, (2A.8) 

wherejE(iff(U))t, WE(D (U))t, and (D (U))t is an exteriorfac
tor generated by algebraically independent I Sj tJ (i = 1, ... ,n) 
and lu. 
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The above follows from (A (U))t = A (U) and linear iso
morphism; '6' (U) ® cD (U )_A (U),J ® w-jw, where 
jEiff(U), wED (U). 

Remark 4; The mapping - is an algebra isomorphism, 

- :(iff( U))t_iff =(U),J_]: (2A.9) 

Thus (iff(UW is a function factor. 

One first notes (iff (U))t is a subalgebra of A (U)o contain
ing lv, and finds, a mapping f*: (iff(U))t_iff =(U) gives an 
algebra isomorphism, since so is the map -: iff ( U )-iff 00 ( U) 
and the mapping f*= -, which finishes the proof. 

Thus one has 

Remark 5: If( iff ( U), D ( U)) is a splitting factor for A (U), 
then ('6' (U))t, (D (U))t is, also. 

Let iff ( U) = C ( U) E9 iC ( U), a direct sum such that an 
algebra isomorphism -: C(U)_C =(U), (both, R-module 
understood). Then ('6'( U))t = (C( U))t E9 i(C (U))t is a direct 
sum, where -: (C ( U ))t -C = ( U), an algebra isomorphism, 
i.e., (C (U ))t is a "real" function factor as C (U). One should 
note here that for JEC (U ),P = f* = f holds, yet, not neces
sarily,ft =jandeven(C(U))t = C(U) follow. For example, 
let rj t = rj> Sj t = sj,r;'=rj + SIS2' then r;'t #r;' with 
~ = ;:, and consider a function factor C ( U) containing r j' 
(i = 1,2) with dimension of U, 2, then (C(U))t #C(U). 

We say a E A (U) is "Hermite" if a t = a, "anti-Hermite" 
if at = - a, and C (U) is a "Hermite" junction jactor if 
V aEC(U) is "Hermite". 

The above situation implies a "real" function factor is 
not necessarily a "Hermite" one. 

We know from definitions, a graded manifold (X, A ) has 

~ ~overing. ~f! -coordinate neighborhoods ~~ !e~rj; Sj: 
1- 1, ... ,m,] - I, ... ,n) be A-CS on U. Then I rj - rj - Uj J 
(real LCS on U). Let rj , =!(rj + rj t), then r j' = rj = U j and 
one finds (r;'; Sj) is A -CS from Corollary 2. Note r;'t = r;' 
("Hermite"). Let s/=!(Sj + Sj t) ("Hermite"), Sj a=!(Sj - Sj t) 

(" t' H 't ") th r a d 'C' at an 1- erml e , ensj = Sj + Sj an SI"'Sn = ~ai = r,aSI 
S2 a''''Sn a. which gives 

(2A.lO) 

It is impossible for all terms to vanish at any point in U. The 
U has an open covering of UA , AE A, such that on Vl..' AE A, 

.< 

there exists an A -CS (r;'; Sj aj ) and, thus, a "Hermite" A -CS 
(r;';s/). 

We sayan A -CS is a HCS ("Hermite" coordinate system) 
if all coordinates are "Hermite", and call a graded manifold 
(X, A ) as one with "Hermiticity", if "Hermitian" conjugation 
is defined on A. Thus the definition of a graded manifold (X, 
A ) with "Hermiticity" amounts to say 

Proposition 6: A graded manifold (X, A ) with "Hermiti
city" has a covering of neighborhoods, each of which admits 
HCS. 

Owing to C(U)CA (U)o, we have (2A.11) 

Remark 7: Let C ( U) be a "real" function factor contain
ing "Hermite" local coordinates (rj), then C ( U) is a "Her-
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mite" function factor, i.e., for allfE C (U ),jt = f and 
(C(U))t = ClUJ. 

Note again here the above C ( U) forms a subalgebra over 
R. 

Remark 8: 'r;/ aE A ( U) is uniquely decomposed into 
"Hermitian" and "anti-Hermitian" parts, i.e., 
A (U) =A h(U) tfJiA a(u), (direct sum), where A h(U) 

= !(a + at )/2laEA (U)),A a(u) = !(a - at )/(2i)laEA (U)J. 
And A h(U) =A a(u), where A h(U); R-module, and 

A (U)~C® RA h(U); R-linear isomorphism. 

Note A h ( U) is not a subalgebra even over R. 

Remark 9: Let D ( U) be an exterior factor, a subalgebra 
over C, generated by algebraically independent "Hermitian" 
odd elements (s):j = I, ... ,n) and 1 u' Then D (U) = D h 
(U) tfJiDh(U)~C® RDh(U) (direct sum), whereDh(U) de
notes a "Hermite" R-module whose basis is given by 2n ele
ments lilv)12)(lv)-I) s\ ((v) = 0, I, .. ,n), where v denotes a set (VI' 

v 2, ••• ,vn ), v) = ° or 1, and (v) = ~jVj and SV = slv'",sn Vn with 
for (v) = 0, SV = I u. 

D h ( U) is not a subalgebra over R. 

Proposition 10: Let ('tff ( U), D ( U)) be a splitting factor for 
A (U) such that 'tff ( U) = C ( U) tfJ iC ( U) ~ C ® R C ( U), and 
C ( U) be a "Hermite" function factor and D (U) be as in Re
mark 9. Then there exists a R-linear isomorphism: 
C (U) ® R D h ( U )-A h ( U) with an algebra isomorphism ~: 
C(U)-C""(U), where A (U) =A h(U)tfJiA h(U), i.e., using 
HCS explicitly, we have for allfE A (U), unique expression, 

f = ~v(fv I(r) + ifv 2(r)) l(v)l2)(lv) - I)S\ wheref~,j~EC (U), rj t 

=rj,sjt=s). 

Now we see the assumption of "antiautomorphism" on 
a graded manifold (X, A ) of dim (m, n) with complex sheaf A, 
results in saying any elements of A can be uniquely expressed 
locally as above. 

We again emphasize the difference between the com
plexification here and that of Kostant, i.e., t and *, where 
(ab)t = b tat and (ab)* = a*b *, which changes reality con
cept drastically, especially in the exterior factor; one can say 
that "real" means no appearance of i in * case, and suitable 
appearance of i in tease, \0 using real coordinates by defini
tion in both cases, and that the real part forms a subalgebra 
over R in * case, and does not in tease. 

8. "Hermiticity" on derivations on the graded manifold 

Here we show it is possible to define "Hermiticity" on a 
space of derivations. For that purpose we have to define a C
linear mapping, transposition': Der A (U)_De~A (U), 
De~A (U)-DerA (U) and C-antilinear mapping "Hermi
tian" conjugationt : DerA (U)----+De~A (U),De~A (U) 
----+DerA (U), where DerA (U) and De~A (U) denote a set 
ofleft-derivations and one of right-derivations, respectively. 
For X (EDerA (U) or De~A (U); hereafter denoted, 

L 

EDerlR IA (U)) if X is invariant under successive operations of 
'and t, then X is called "Hermite", and if X changes to - X, 
then "anti-Hermite". 
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We begin with summing up necessary definitions. 
Left-derivation X, with quadraticform xy, of A (U): 

XEEndA (U),A (U): C-module, where EndA (U) [endomor
phism of A (U)] is a graded vector space over C of hom om or
phism of graded vector space A (U) over C into itself. 
X = Xo + XI' and for homogeneous x, yE A (U) and homo
geneous X; (j = 0,1), it holds that 

Xj(xy) = (X; (x)}y + ( - I)jlxlx(X;(y)). (2B.I) 
Right-derivation X, with quadratic form x y, of A (U): 

XE EndA (U),A (U):C-module,X = Xo + Xpandforhomo
geneous x, yE A (U) and homogeneous X;, it holds that 

X;(xy) = x(X;(Y)) + ( - 1)1IYI (Xj (x)}y. (2B.2) 

Der A (U): A set of all left derivations of A (U) 
De~ A (U): A set of all right derivations of A (U) 
Note that Der A (U) is a left A (U I-module, and 

De~A (U) right one. 
L R 

Transposition': DerlR IA (U )----+DerIL IA (U ):' is C-linear, 
L 

for DerlR1A (U)3X,X' =Xo' + XI', andX'EEndA (U)and 
for homogeneousX;, x, 

X/Ix) = ( - l)ill + IxIIXj(x), (2B.3) 

from which one finds if XEDerA (U) (XEDe~A (U)), then 
X'EDe~A (U) (X'EDerA lUll. 

L 

It is shown that DerlR IA (U) forms a G LA (graded Lie 
algebra) with graded commutator, bilinear operation [X, Y], 

L 

where for homogeneous X, YEDerlR IA (U), 

L 

[X,Y]-XoY - ( - 1)IX 11 YI YoX,EDerIR1A (U), i.e., 

[X,Y] = - ( - l)IXIIYI[y, X] and Jacobi identity, 

I (-I)IXIIZI[X,[Y,Zll=O (2B.4) 
cyclic perm 

We note even if we change Lie bracket of De~ A (U), as 
[X, Y]' (- 1)lxllYI [X,y] , then De~A (U) forms a GLA, 

and then we can say the transposition' defines a GLA iso
morphism. 

L 

Remark 11: For XEDerlR iA (U), (X')' = X. (XI + X 2 )' 

= X/ + X 2', [Y,Z], = ( - 1)IYIIZI[y', ZI,] where Xl' X 2, Y, 
L 

ZEDerlR IA (U), and Y, Z, homogeneous. 

As we know Der A ( U) and De~ A ( U) are left and 
right A (U I-module, let us see how I works: 

L 

Remark 12: Let XEDerIR)A (U), aE A (U) and both ho
mogeneous, and a 0 denotes left (right) multiplication, and 
alc, right (left) multiplication. Then 

(aoX)' = ( _ 1)lalll +- IXI1a'oX'. (2B.5) 

Note the sign factor ( - 1)lalll + IX!i is not ( - l)!a llX i, and 

so' operation should not be mistaken for left-right module 
structure change. 

In explicit use ofanA-CS (5'iL) lJ.t = l, ... ,m + n), 
Der A (U) 3X is uniquely written, 
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X=XI-'al-" where al-'(SV) = luDI-'V,XI-'EA(U). (2B.6) 

Then al-' '(SV) = luDI-' v or al-' '=al-' , and 

X' = al-'XI-'( - 1)IXI(1 + 11-'11, where 1,u1=lsl-'l. (2B.7) 

Now let us define similarly a C-antilinear operation, 
L R 

"Hermitian" conjugation t : DerlRIA (U)_DerILIA (U), by: 

L 

For all XEDer(RIA (U),\fxEA (U),xt(x) = (X (xt))t. 
(2B.8) 

In fact, we see the above relation defines a C-antilinear map-
L R 

ping from DerlRIA (U) to DerlL1A (U). 
We easily see from the definition, 

L 

Remark 13: For DerlRIA (U)3X, (Xtt = x. 
L 

We note, for DerlRIA (U)3X,Y, (X + Y)t = xt + yt, 
(AX)t = A *Xt, whereAEC, [X, YF = [xt, yt]. 

Remark 14: Mappings t and t, successively operated on 
L 

DerlR1A (U), commute, i.e., totoX==%tt = xtt=totox, 
L 

XEDerlR1A (U). 

Now we have 

Remark 15: The C-antilinear mapping (tot) is 
L L 

a bijection: DerlR1A (U)~Der(RIA (U) 
such that [X, Y pt = ( - l)IXIIYI[Xtt, ytt]forhomogeneous 
X, y. 

L 

Here we come to define "Hermiticity" on DerlR1A (U). 
L 

We call XEDerlR1A (U) is "Hermite" if xtt = X, and "anti
Hermite" if xtc = - x. 

L 

Remark 16: DerlR1A (U)3Xis uniquely decomposed 
into "Hermitian" and "anti-Hermitian" parts. 

The proof is as usual. 
Let us see component expressions of t and tt where we 

note if (51-') (,u = l, ... ,m + n) is anA-CS, then so is (Sl-'t) 
(,u = l, ... ,m + n), which follows from Remark S. 

Component expression of X t: 
Let DerLA (U)3X = xl-'(a/aSI-') in theA-CS (sl-'), 

whereXI-' = XI-'(S )EA (U), thenXt = (a/asl-'tlXl-'tin theA
CS (Sl-'t), where if (51-') is a HCS, thenXt = (a/asl-')XlLt. 

Component expression of X tc
: 

Let homogeneousXEDerA (U), X = xl-'(a/aSI-') in the 
A-CS (51-'), then X tt = ( - l)iXll1 + 1I-'IIxl-'t(a/asl-'t), where if 
(51-') is a HCS, thenX tt = (- 1)IXIII + 1I-'IIXl-'t(a/as lL ). 

Component conditions in the HCS (SIL) for "Hermiti
city" pf X: Let XEDerLA (U) (EDe~A (ull, X = XIL(a/aS IL ) 
(X = a/ aS IL X IL), and X homogeneous, then X ILt 

= ( - l)IXIII + II-'IIXI-' in both cases. 

For example, we recommend readers to check consis
tency in the following case by coordinate transformation; let 
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SIL be a HCS (r, SI, S2), where (a/as 1-') all "Hermite", and 5'1-' 
be a HCS (r', sl\, S'2), where (a/as '1-') all "Hermite", as 
r' = r + is l S2,S'1 = SI, S'2 = S2. 

c. "Hermiticity" on graded differential forms 

In order to define "Hermiticity" on graded differential 
forms, we need to introduce graded differential forms both of 
left and right versions, as in the case of derivations. Defini
tion of graded differential forms (left version) was given 
clearly by Kostant in his graded manifold theory5, and for 
the purpose here, we may consider, his definition is essential
ly sufficient to start our discussion, only by replacing his 
graded manifold with the one here. And for the right version, 
the parallel definition with complete inversion of left side 
right, will work. For completeness of discussion, we review 
the definitions, in a little different way utilizing a graded 
antisymmetrization operation 2(, as in many textbooks for 
ordinary differential forms. 

L 

Der(RIA (U): GLA and a left (right) module over the 
graded commutative algebra A (U), understood left (right) 
multiplication operation. As noted by Kostant in general, 
however, we may define right (left) module structure for 
Der A (U) (De~ A (U)) by considering them as graded vec
tor space, as follows; for homogeneous X EDerL A (U), 
aEA (U), Xa (- 1)la 11 Xl aXEDerA (U). Similarly, for 
De~ A (U), left module structure is defined. Hereafter, the 

L 

module structure of DerlRIA (U) is understood as above. 
L L 

TIR)(U): Tensor algebra over DerIR)A (U) over A (U) 

such that for X, YEDerL A (U) and XE A (U), 
xX® y=x(X® Y),X® Yx = (X® Y)x,Xx® Y=X®xy. 

By iterative tensor products, we define TL (U), similarly 
TR(U), replacing DerA (U) with DerRA (U). Then 

L 

T (RIA (U) is a bigraded (Z +, Z2) algebra, where Z + denotes a 
set of non-negative integer. 

b
L 

T IRI(U): Homogeneous space in that bEZ+, where 
ol 

T IRI(U)==A (U). 
L L 

IIRI(U): Two sided bigraded ideal in TIRI(U) generated 
2L 

by all elements in T IRI( U) of the form 

X®Y+(-I)IXIIYly®X (graded symmetric), (2C.I) 
L 

where X, YEDerlR1A (U). 

b L b L L bL 

I IRI(U): I IRI(U)=o=IIRI(U)nT IRI(U). 

b
L 

b
L 

b
L 

J IRI( U): A quotient space, J IR)( U )= T IRI( U)/ 

b
L 

IIRI(U). 

Graded antisymmetrization operator 2r: 
L L 

2r: TIRI(U)~T(RI(U), is aA (U)-linear mapping as foI
L 

lows. Hereafter as far as Proposition 19, superscriptslRI are 
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deleted, no mixing of Land R understood. Let 1 XJt J 
(fJ = I, ... ,n)beabasisforDerA (U), where IX/L 1=1.u1 = 0,1. 
For all ZETn(u), 

Z=Z/L,···JtnX/-l, ®",®X/Ln [simply=ZJt(®X)/-l]' (2C.2) 

Let & be (left and right) A (U I-linear mapping: 
Tn(U)_Tn(u), as 

I 
&Z=-ZJtI£(T;.u)(®X)T/L' r:permutation, (2C.3) 

n! T 

where £(T;.u) is given; 

(

(,u) = ~,,··ftn) ) 

(T.u) = (,u~>~Ud ' 

€(T;,u)= II €(i,j), 
crossmg 

(i.)) 

€(i,j)_( - If + IJtill/L)). (2C.4) 

It is easily seen from the above illustration that €(r;.u) is 
invariant under any deformations of the lines such that 
crossings be interchanging crossings, with fixed initial and 
final order, which reads for any permutations, T I , T 2, 

€(r2r l ;.u) = €(T2;r l .u)€(rl ; .u). 

From €(I;.u) = I for all.u, 

I = €(r- \ r .u)€(r;.u). 

Thus we have 

(2C.5) 

(2C.6) 

(2C.?) 

Note, before proceeding, the above definition is inde
pendent of a basis I X Jt I chosen, and note consistency of (left 
and right) A (U)-linearity. 

From the above grouplike property of the signature fac
tor, we easily obtain 

Remark 17: &0& = &, i.e., & is a projection, defined on 
Tn(u). 

Remark 18: r(U) = (I - &)orn(U). 

The proof goes firstly by noting &or( U) = 0, which is 
easy and implies I n( U) c (1-&)0 T n( U), and secondly by not
ing any permutation r can be decomposed into transposi
tions of neighboring two elements, (I-&)oTn(U)Cr(U). 

Thus we have from decomposition, 

Tn(u) = &oTn(u) Eflr(U) (direct sum). 

Proposition 19: r(U) = &orn(U). 

Note, in component expression, 

(2C8) 

(&Z r = ~T ~ €(r;,u)Z T/L (graded antisymmetric). 
n! 

(2C.9) 

L 

" NextwedefineA (U)-linearmappings: T (R)( U)-A (U), 
L L 

" whose set is denoted as Hom~R( b d T (R I( U), A (U)) with natu-
ral properties: 
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ForeueHom~{udT"L(U),A (U)),XernL(U), we denote 
as (X leu)eA (U); aEA (U), (aX leu) = a(X leu) (A (U)-linear 
property); aEA (U), (X leu)a = (X leua). For the right 
version, invert all left side right, for example, (euIX)EA (U). 

L L L 
We write Hom~lbdTn(RI(U), A (U))==:L nIRI(U,A). 

L 

L n(RI(U,A) is Z2 graded, such that (X leu)eA(Ulk for 
k = leul + IX I (left version). Left and right A (U)-module 
structure is as usual, for homogeneous aEA ( U), 

L 

euE L n(RI( U, A ), aeu==cua( - 1 )1 0 11"'1, which coincides with 
(X laeu) = (Xaleu) for the left version, (euaIX) = (eulaX) 
for the right. 

Let lX/-l J (,u = 1, ... ,n) be a basis for De~A (U) 
= TIL ( U), where always bases are taken Z2 homogeneous. 

We take for a basis of L IL( U, A ) such that 

(X/Lla V
) = <5/Lvi u' (2C.1O) 

Then L IL (U, A ) 3eu = aJteu/L' Y = yJt XJt , and 
(Y leu) = Y/Leu/L' (the right version, similar). 

L 

Bigraded (Z + ,Z2) tensor algebra L (RI( U,A ) of 
L L 

L nIR)( U,A ) over A (U) can be considered as L (RI( U,A ) = Efl 
n=O 

L L 

L n(R)( U,A ), andL n(RI( U,A )3eu = (® ayeuJt where.u denotes 

(,u \> .. ·,.un ) as before. 
L L 

Now we consider Hom~iul (J "(R)( U I, A (U n, where 
L L 

/(RI(U) = &T"(RI(U). Let (®X)JtETnL(U), (®at 
E L nL(U,A), and «( ®X)/L I( ®an 

I IVill/Ljl 
= 1 nn <5 V,( _ 1) i<j then one finds u ,=1 ~ , 

L 

and thus defining similarly & on L "(RI( u, A ), and from 
&0& = &, 

(&X leu) = (X Im:cu) = (&X Im:cu)· (2C12) 

The right version is similar. Noting the dimension of 
L L L 

Hom~Riul (f(RI(U), A (U)) is the same as that off(RI(U), we 
have 

L L L L 

Hom~~'udJ "(RI( U),A (U)) = &L "(RI( U, A )=11 "(RI( U, A ), 
(2C.13) 

which is called a set ofleft (right) n-forms. Note the mapping 
L 

& does not change Z2 sign, and so 11 "(R)( u, A ) 
L L L 

= n "(R)( u, A )0 Efl n n(RI( U, A )1 where n n(R)( U, A Ii 
"L 0 L L 

= m:L (RI( U, A )i' We put n (R I( U, A )=A(U), 11 (R)( u, A ) 
L L 

= ; n n(RI( U, A ). Both n (R)( u, A ) will have the structure 
n=O 

of a bigraded (Z +, Z2) commutative algebra over A (U), re-
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spectively, if we suitably define a product, the graded exteri
L 

or product, on n (RI( U, A ). 
L 

Exterior product 1\: Let n n'(RI( U, A ) 3w1 = 2lw1, 
L 

"""'(RI(U A u, , )3W2 = 2lw2, and put 

1\ - (nl + n2)! WI W 2= ~(WI ® ( 2 )· 
nl!nz! 

(2C. 14) 

L L 

Remark 20, If W Efl n\(RI(U A ) W Efl "'(RI(U A) 
• 1 , 1"'\1' 2 , 1"'21' 

L 
n. + n2(RJ 

then wII\w2Efl (U, A )I"'t! + 1"'21' and 
wll\WZ = WZI\WI( - 1)1«1,1-1«1,1 (bigraded commutative), 

where IWj I = (n;. Iw, I) (i = 1,2),14111·1%1 = nln z + Iwlllwzl· 

The proof can be done from the definition of m. and the 
grouplike property of its signature factor. Here one should 
note Z2 odd I-forms commute, which makes the dimension 

L 

of n (RI( U, A ) infinity. 

Remark 21: Let lafLl (p= 1, ... ,n) be a basis for 
I L I L 

L (RI( U), i.e., n (RI( U, A ), then 

(1\ a'f=afL ' 1\ ... 1\ «" = nm( ® a'f. 
L 

If n "(RI( u, A ) 3(L1 = ~ = m.( ® a'fwfL, then 
W = (( I\a'f In!) WfL' where (LIfL is graded antisymmetric. 

Let wEfl nL(u,A ) = Hom~I;ul (J"L(U),A (U)), then, 

whose value on m.( ® X 'fEJ nL 

(U), is 

(m.( ®Xt Iw) = «( ®X)fL Im.w) = «( ®X)f' Iw), (2C.15) 

and W is considered as a graded antisymmetric n-linear map
ping from Der A (U) toA (U). Thus the following notation is 
often used; 

(2C.I6) 

The right version is similar. 
With the above identification, the equivalence between 

the definition of n L ( U, A ) here and that of n ( u, A ) by Kos
tant, is, of course, seen. Further the definitions of the exteri
or product, here and by Kostant, are identified, also. 

L 

We define the exterior differentiation d (RI, the interior 
L L 

differentiation ix
lRI and the Lie differentiation 8X (RI, in the 

L 

left and right versions, acting on n IRI( U, A ). We sum up 
properties and definitions. 

L 

n (RI( U, A ): bigraded with respect to (Z +, Zz). 
L L 

End (Rln IRI( U, A ) is also bigraded with respect (Z +' Zz). 
L L 

Thus uEEnd(Rln (RI(U, A) is ofbidgree (e, lul)-llJl, if 
L L 

n n+c 

u(n (RI(U, A l;}Cn (RI(U, A L+ lui for all (n, i)E(Z+, Zz). 

~ L L L L 

(R-) Derivation U IRI ofbidegree IlJ(RII: u(RIEEnd(RI 
L 

n (Rl( U, A ) ofbidegree IlJ I such that for all a, f3Efl L (U, A ) of 
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bidegree lexl, I~ I, respectively, 

uL (a 1\{3) = uLa 1\{3 + ( - 1 )11/ l'lqla 1\ uL{3, (2C.17) 

and for all a, {3Efl R (U, A ) ofbidegree lex I, I~ I, respectively, 

uR (a 1\{3 ) = a 1\ uRp + ( - I )lwR I'I~ IuRa 1\{3. (2C.18) 

L- L L 
(R _) derivation of n (RI( U, A ) has a left (right) n (RI( U, A ) 

module structure naturally with the left (right) exterior pro-
L- L 

duct. We denote a set of derivation of n (RI( U A ) as 
(R-) , 

L L 

Der(Rln (RI( U, A ). 

L L 

Remark 22: Der(Rln (RI( U, A ) is a G LA with a bigraded 
L L 

commutator; for homogeneous u I' u2 , u3EDer(Rln (RI( U, A ), 

L-
is a (R-) derivation ofbidegree IYII + IYzl, where 

[U I ,U2] = ( - l))~,)'I",I[uz' u l ] and 

r (- 1)1~,I'I")I[uI,[uz,u3]] = 0 
cyclic 
penn 

(2C.19) 

(2C.20) 

L 

Proposition 23: There exists a unique L- derivation d (RI 
(R-) 

L 

of bidegree (I, 0) on n (RI such that 

(i) (X IdLf)==Xf, forallXEDerA (U), 't/fEA (U). 
(d RflX >_Xof, for all XEDe~A (U), 't/fEA (U).) 

L L 

(ii) d (Rlod (RI = O. (2C.21) 

The proof is done in a few steps. See Ref. 5. 

Corollary 24: Let ISfLl (p = I, ... ,m + n) be aA-CS !rj; 
sj:i= I, ... ,m,j= I, ... ,nl. Then (JfLld LSV

) =JfLs l'=8f'l' 

1 u' and since I J fL l is a basis of DerL A (U), I ds fL l is a basis 
for n IL (U, A). Thus 't/wEfl L (U, A) is uniquely expressed as 

(2C.22) 
fL.l' 

where (1\ dr'f=drfL, I\drfL2 1\ ... 1\ drfLk , 

b;;;;'i] </-L2 < ... </-Lk <,m,(p)=k, and (l\ds)"=(ds1t'l\ (dsZ)V2 

1\ ... 1\ (dsJ", Vj = 0, I, (v)=l:; = 1 vj , and WfL"E A (U). 
(1\ dr'f 1\ (1\ dstEfllf'1 + (viL (U, A ). dw = (1\ dry" A (1\ ds)" 
(dWfLV)( _1)1f'1+(VI. 

Hereafter we delete A. 

L- L L 

(R-) interior differentiation, iX(RI, by XEDer(RIA (U): Let 

L L 

X be homogeneous X EDer(RIA (U) IX I ' and wEfl n + I (RI( U, A ), 
L 

then a graded antisymmetric n-linear form on DerlRIA (U) is 
L 

~niquely given by putting for all XjEDerlRIA (U h,) 
(/ = I, ... ,n), 
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. 
IXI I IX,I 

(XI, ... ,xn lixLUJ)==( - I) ,~l (X,xl, ... ,xn IUJ) . 
IXI I IXil 

«i/UJfXn, ... ,xI)=(UJIXn, ... ,xI,x)( -1) ,~l ), 

(2C.23) 

L 

which extends for all X;EDer(RIA (U) and makes 

(aXI,·.·,x. lixLUJ) = a(XI, ... ,xn lixLUJ) 

«ixRUJIX., .. ·,xla) = (iXRUJIXn, ... ,xI)a) (2C.24) 

OL 

valid. For all IEfl R( U, A ) = A ( U), we put i xl = 0. 
L 

Proposition 25: Let i x IRIUJ be defined as above, where 
L L L n+1 

XEDerlRIA (U)lxl' UJEfl (RI(U, A ), then ixlRIw 
n L L- L 

Efl IRI(U, A) and a (R-) A (U)-linear mapping iXIRI: 

L L 

{l IRI( U, A )-fl IRI( U, A ) is defined, which turns out to be a 
L-

(R-) derivation ofbidegree ( - 1, IX I)· 

For the proof, one uses the definition of ix L(af3 ) as above 
with the definition of the exterior product, and has 

. L( f3) (. )f3 ( 1 )lixL 1.1 0 1 (. Lf3) h I' L I I X a = I xa + - - a I x , were I x 
= ( - I, IX I), and the right version is similar. --

L 

We put, for all allXEDerlR1A (U), 

L L L 

i)R)==ix (RI + ix IRI where X = Xo + XI' " , 
(2C.25) 

We denote aLo as left multiplication by aEA (U) and aRo 

as right one. Then we have, for all aEA (U) and for all 
XEDexLA (U), 

(2C.26) 

and for XEDe~A (U) 

ixa
R = aRoix

R _(ixR)aEDe~{lR(U,A). (2C.27) 

L- L L 

(R-) Lie differentiation, OX(RI, by XEDerlRIA (U): 

(2C.28) 

which is a derivation of bidegree (D, IX I) for homogeneous 
L 

XEDerlR1A (U)IXI' from Remark 22. 
Forming graded commutators by two of the exterior 

differentiation, the interior differentiation and the Lie differ
entiations, we see 

L L L- L 

Remark 26: DerIR){l IR)( U, A )::J (R-) {l (R)( u, A) submo-

L L L 

dule whose basis is given by Id IR), i)R), OyIR); X, 
L 

YEDerlR1A (U) I forms a graded Lie subalgebra: Here we de-

l L' h .. fL d d ete (R) WIt no mlxmg 0 (R) un erstoo . 

[ix,i y ] = 0, [d, d 1 = 0, 

[ix,d] = Ox, [d,Ox} = 0, 

[ix,ey ] = i[x.y l' [ex,ey ] = elx.y J' 

Using those relation above, we have, 
L 

(2C.29) 

Proposition 27: Let UJEfl n
IR)( U, A ), homogeneous X, X; 

L 

EDerlR1A (V) (i = 1, ... ,n), then 

n IXIIIY,1 
X (YI,"'YnIUJ)= I(-I) «} (YI, ... ,[X,lj], ... ,YnIUJ) 

j~ 1 

(2C.30) 

(

X (UJI yn,···,yl)\1 ) 

n IXI IIY,I IXI L IYil . 
=/~I( - 1) ,<} (UJIYn, .. ·,[X,lj], ... ,YI ) + (-1) i~l (exRUJIYn,···,YI ) 

(2C.31) 

L L 

Proposition 28: Let UJEfl n(R)( U, A ), X;EDerIR1A (U) IX,I (i = l, ... ,n + 1), then 

n + I j - 1 + IXjl I IX,I '" 
(X\, ... ,x" + lid LW) = I ( - 1) i<i Xi (X\,···,xj, .. ·,xn + 1 IUJ) 

j~l 

d A A 

+ I ( - 1) .'~([ Xk, Xm ],xl".·,xk,···,xm,"',x" + IIUJ), (2C.32) 
k<m 

"'-
where dk.m=IXk I(~;<m IX; I) + IXm I(~i<m IX;I) + IXk IIXm 1+ k + m, andXj impliesXj is missing. 

( 

n + 1 j - I + IX;lL IX,I A) 
(dRUJIXn+ ]>· .. ,xl) = j~l (- 1) 1<) Xj(UJIXn + p ... ,xj"",x) . 

d A A 

+ L (- 1) k'~(UJIXn+ ]>···,xm,· .. Xk, .. ·,xI' [Xk,xm]) 
k<m 

(2C.33) 
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Afterwards, we make use of(2C.32 and 2C.33) for n = I 
case, in the discussion of complete integrability of "differen
tial equations" in connection of Frobenius' theorem. For 
that purpose we write it down explicitly; let notations be as in 
Proposition 28, then 

(Xt,x2IdlU) =Xt(X2IlU) 
- (- 1)lx,IIX,IX2(Xt llU) - ([Xt,x211lU ). 

(2C.34) 

In this subsection C, thus far, given are essentially noth
ing but reviews from Kostant's paper. 

Now on our graded manifold with "Hermiticity", we 
L 

define a new concept "Hermiticity" on n IRI( U, A ). For that 
purpose, we define a C-antilinear mapping t and a C-linear 
mapping I. 

L R 
n nl I 

t: n IRI( U, A )-n L (U, A ) 

L L 

such thataE!1 nIRI(U, A ),XjEDerIRIA (U) (i = 1, ... ,n), and we 
put as definition, 

(atIXn, ... ,xt )=(X\t, ... ,xn tla)t, 

(X., ... ,xn lat)=(alxn,t, ... ,xtt)t). (2C.35) 
R 

That a tE!1 nlLI is justified by confirming, from (2C.35), the 
properties, 

(atlXn , ... ,xj + • ,xj, ... ,x. ) 
( tlx ,x,x ,x )( 1)IX,llx,+ ,! + \ = a 1'1"" ; ;+1"" I - , (2C.36) 

and 

(2C.37) 

where aEA (U), and for aE!1 n
R 
(U, A ), similarly. t on 

OL 

n R( U, A ) = A (U) is understood as that defined before. 
We have an alternative definition t equivalent to the 

above. 
L R 

Remark 29: t:n nlRI( U, A )-n niL I( U, A ) is defined such 
that for n = 0, t is defined as t on A (U); for n = I, t: 

L R 

n nlRI( U, A )-n niL I( U, A ) by 

(atlX )===(Xtla) t,( (X lat)_(aIXt) t), (2C.38) 
L R L 

• m 
where aE!1 (R)(U, A ),XEDerILIA (U). For all aE n IRI 

kL 

(U, A ),V/3E n IRI(U, A), we put 

(a/3)t = /3 tat. (2C.39) 
L 

Then since n IRI( U, A ):3 Y is expressed in the A -CS (51") as 

Y = (dS r(YI"/(p)!), (2C.40) 

where abbreviated notation is used as in Remark 21, and 
11"1 L 

(ds rE!1 IRI( U, A ) understood, thus we have defined yt for 
L 

all yE!1IRI( U, A ). The definition of t here is equivalent to t 
before. 
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Proof can be performed by showing (a/3)t = (3tat from 
the definition (2C.35) with the definition of the exterior pro
duct. 

We sum up properties oft as a proposition. 

L R 

Proposition 30: t: n IRI( U, A )-n IL I( U, A ) gives a bi
graded algebra anti-isomorphism, i.e., for all a, (3E 

L 

nIR1(U,A), 

(a+{3)t=at +{3t, (a/3)t={3tat, (at)t=a (2C,4I) 

and t keeps bidegrees unchanged. LetfEA (U), then 
L R 

(dIRI)t = dIL!ft. (2C.42) 

Next we define a C-linear mapping, transposition Ion 
L 

nR(u, A). 
L R 

I: n nIRI(U, A )-n nILI(U, A): 

OL 

Forn = O,aE!1 R(U, A) =A (U), weputa l = a,andforn>l, 
L R 

let lUE!1 nIRI(U, A )Iwl and XjEDerlLIA (Ultx.l (i = 1, ... n), we 
put 

R 

ThatlU'E!1 nlLI( U, A) is justified by confirming, from (2C.43), 
the properties. 

(lUI IXn, ... ,xj+. ,xj, ... ,x.) 
-( IIX,x,x ,x)( 1)lx;llx;+.I+. 
- (i) 1'1"" i ;+1"" 1 - (2C.44) 

and 

(lUI IXn , .. .x.a) = (lU'IXn , ... ,x\)a, (2C,45) 

where aEA (U), and for lUE!1 n
R 
(U, A ), similarly. 

L R 

Proposition 31: ': n IRI( U, A )-n IL I( U, A ) gives a bi
L 

graded algebra isomorphism, i.e., for all a, /3E!1IRI( U, A), 

(a + /3)' = a' + /3 ',(a/3 )' = a'{3 ',(a')' = a (2C,46) 

and' keeps bidegrees unchanged. Let fEA ( U), then 
L, R 

f' = f, and (d IR!f) = d IL!f (2C.4 7) 

Proof can be performed by using the definition (2C.43), 
firstly showing (alU)' = alU', and secondly using the definition 
of the exterior product and showing (a{3)' = a'/3' for a, 

L 

/3E!1IRI( U, A ). 
Similarly as in case of t, we can give an alternative 

definition of ',utilizing the above properties. 
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L 

Remark 32: t and' on n IRI( U, A ) commute, i.e., for 
L 

aEfl (RI( U, A ), 

(2C.48) 

For proof, we make use of Remark 14, and the defini
tions (2C.35) and (2C.43). 

L L 

Proposition 33: '0 t: n (RI( U, A )-n IRI( U, A ) gives a bi
graded algebra antiautomorphism which is C-antilinear and 

L 

bidegree preserving, i.e., for all a, {3Efl (RI( U, A), 

(a + {3 )t' = at' + {3t',(a{3 )t' = {3t'at ',(at ')t' = a 
(2C.49) 

OL L L 
For all IEfl (RI( U, A )P' = It and (d IRy-)t' = d IRy-t. 

(2C.50) 

L 

Now we reach a concept, "Hermiticity" on n R( U, A), 
which is our main concern of this subsection. 

L L 

"Hermiticity" on n IRI( U, A ): We call wEfl IRI( U, A ) is 
"Hermite" if wt' = w, and "anti-Hermite" if wt, = - w. 

L 

Remark 34: n IRI( U, A ) 3w is uniquely decomposed 
into "Hermitian" and "anti-Hermitian" parts, and 

L L L 
n nR( U, A )k = n nIRI( U, A )~ Ell in nIRI( U, A)~ (k = 0,1), 

(2C.51) 
L 

where n "IRI( U, A )~ denotes a set of "Hermitian" forms of 
bidegree (n,k ). 

The proof is as usual. 

Further we will define "Hermiticity" on 
L L L 

DerlRln IRI( U, A ) in the same way as we did on DerlRIA (U). 
L L R 

"Hermitian" conjugation t: DerlRln IRI(U, A )_DerILI 
R L L R 

n ILI( U, A ): Let uEDerlRln IRI( U, A ) and aEfl IL I( U, A ), and 
we put as definition, 

uat=(uat)t. (2C.52) 
R R 

That utEDerILIDerILI(A,U) is justified by confirming ut 

defined as (2C.52) satisfies (2C.18) [or (2C.17)]. 

L L L 
Remark 35: Let uEDerlRln IRI( U, A ), aEfl IRI( U, A ) and 

L 

a lRlo denote left (right) multiplication (exterior product) then 
L L L L- L 

alRlouEDerlRln IRI( U, A) [(R-) n IRI( U, A I-module property 

L L 

of DerlRln IRI( U, A I], 
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L R R R 

(aIRIOu)t = (at)IL 10utEDeriL In ILI(U, A ). (2C.53) 
L L 

Let u I' u2EDerlRIn IRI( U, A ), then 

(u l + u2)t = u l
t + u/, [U I,U2r = [ult.u/],(ut)t = u, 

(2C.54) 

and t keeps bidegree unchanged. 
L R L R 

Remark 36: (i) (dlRlt = diLl, (ii) (ixIRI)t = ixtlLI, (iii) 
L R L 

(OxIRI)t = O)LI, whereXEDerlRIA (U). 
L L 

We proceed to transposition' on DerlRln IRI( U, A ). 
L R R R 

Transposition ': DerlRln ILI( U, A )_DerIL In IL ~ U, A ): 
L L 

Let homogeneous uEDerlRln IRI( U, A ) of bidegree I y I and 
R 

aEfl mILI(U, A )Ial ofbidegree Iql = (m, lal), then weputaC
linear mapping' such that 

u'a-(ua')' ( - 1)1~1'lIql + !I, (2C.55) 
R 

where 1 = (1, 1), which extends for aEfl IL '( U, A ). That ut 
R R 

EDerlL 'n IL '( U, A ) is justified by confirming (2C.18) [or 
(2C.17)]. 

Remark 37: Let notation be as in Remark 35. Then it 
holds 

L R R R 

(aIRIOu)' = (- l)ICJI'II~1 + l'atlL 10u'EDeriL In ILI(U, A), (2C.56) 
L L 

and' keeps bidegree unchanged. Let VI' v2EDerlRIn IRI( U, A ) 

be homogeneous. (u l + u2)' = u l ' + u2,'(u')' = U, 

[VI> v2 ]' = (- l)I~,II~,I[v/, vn. (2C.57) 

Note (2C.56) is a generalization of (2B.5), which is in
c1udedin (2C.56) by putting u = Ox with restriction ton O( u, 
A ), and putting a = aEfl O( U, A ). 

Remark 38: 
L L L R L 

(i) (d IRI)' = - dlRI, (ii) (i)RI)t = ix,ILI, (iii) (OxIRI)' 
R L 

= 0x,ILI, whereXEDerlRIA (U). 

For proofs of (i), (ii) of Remarks 36 and 38, we first note 
bidegrees unchanged, and so it is sufficient to check the ef-

L L L o I 
fect on n IRI( U, A ) and n IRI( U, A ). As for OX IRI we use its 
definition with (2C.54) or (2C.57) 

L L 

Remark 39: t and r on Der(Rln (RI( U, A ) commute, i.e., 
L L 

for t uEDerlRln IRI( U, A ), 

(2C.58) 

L L L L 
Proposition 40: '0 t: DerlRI,a IRI( U, A )_DerIRln IRI( U, A ) 

Hideo Nakajima 1740 



                                                                                                                                    

gives a bidegree preserving C-antilinear isomorphism such 
L L 

that for uEDerIR)J} IR)( U, A ), and homogeneous v, 
L L 

wEDeriRIJ} IRI( U, A), 

(utt)tt=u and [v,wltt=(_I)I~I·IWI[vtt,wtt]. (2C.59) 

L L 

Now we define "Hermiticity" on Der1R1J} IR)( U, A ). 
L L L 

"Hermiticity" on DerIR)J} IRI( U, A ): We call uEDerlRI 

L 

J} IR)( U, A ) is "Hermite" if u tt = u, and "anti-Hermite" if u tt 

= -u. 

L L 

Remark 41: DerIR)J} IR)( U, A ) 3 u is uniquely decom
posed into "Hermitian" and "anti-Hermitian" parts, and 

L L 

Der1R1J} IR)( U, A )Im.k I 

L L L L 

= (DerIR)J} IRI( U, A ))hlm.k ) $ i(Der1R1JJ IRI( U, A ))hlm•k I' 
(2C.60) 

where (m,k ) denotes the bidegree with integer m and k = 0, 
1, and h denotes a "Hermitian" space. 

ties: 

Proof goes as usual. 

We combine the definitions and write down the proper-

L L 

Remark 42: For homogeneous uEDerIR)JJ IRI( U, A ) and 
L 

aEflIRI( U, A ), 

(2C.6I) 
L L L L L 

(i)dIR)tt = _ d 1R1, (ii) (ixIRI)tt = (ixt,IRI), (iii) (OXIR))tt 
L 

= Ox ttIR), 

L 

whereXEDerlR1A (U). 
L L L 

If we note ix + y IRI = i x IR) + i y IR) by definition, we have 
the following remark. 

Remark 43: Decomposition into "Hermitian" and 
"anti-Hermitian" parts is as follows: 

ix = iXh + ix .' Ox = Ox' + Ox., (2C.62) 

where DerA (U)3X =X h + X a, andX It andXa are "Her
mite" and "anti-Hermite", respectively. In this remark we 

L L 

delete all lRI, understanding no mixing of lRI. 

It is useful to write down the following as a remark from 
a practical point of view. 

Remark 44: If aEfl n( U, A ) is "Hermite" i.e., a tt = a, 
then 

(2C.63) 
L L 

where no mixing of lRI understood, we have deleted IRI. 
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It is easy from Remark 42. 

D. Poincare's lemma and Frobenlus' theorem 

Before going into discussions on Poincare's lemma and 
Frobenius' theorem, let us clarify a concept of "linear inde

pendence" of I-forms, I aiJ (i = I, ... ,k + p) and of deriva
tions, IXi J (i = I ... ,k + p), and also let us see "Hermiticity" 
condition of them in matrix form. 

Let the total dimension of the graded manifold (X, A ) be 
(m, n) where even dimension m, odd n, and Ube anA-coordi

nate neighborhood and (sl';11- = I, ... ,m + n) be aA-CS. 
where Isl"J (p = I, ... ,m) even coordinates and Isl"J 

I L 

(11- = m + 1, .... m + n) odd ones. Suppose aiEfl IRI( U. A)o 
I L 

fori = 1, .... k,aiEfl IRI(U, A)I fori = k + l .... ,k + pandXiE 
L L 

DerlR1A (u)o for i = 1, ... ,k, XiEDerlRJA (U)I for 
i = k + l .... ,k + p. In the matrix notation, we always write 
(ai;i = 1, ... k + p) in a row vector (a) for aiEflIL (U, A) and in 
a column vector (a) for aiEflIR (U, A ), and (Xi; 

i = l, .. ,k + p) in a column vector (X) for XiEDe~A (U) and 
in a row vector (X) for XiEDe~ A (U). We can express, in the 
left version, unambiguously, 

(2D.l) 

where 

M= (Z ++ 
-+ 

N+-) 
N--

(2D.2) 

andM++; (mXk),M+-; (mXp).M-+; (nXk),M--; 
(nXp),andN++;(k Xm),N+-;(k Xn),N-+;(pXm),N--; 
(p X n), and all elements of M + - , M - + , N + - , N - + are Z2 

odd, while others are Z2 even. We call such matrices like M, 
as (m + n) X (k + p) matrices and such like N as 
(k + p)X(m + n). In the right version, 

(a) = M (ds), (X) = (a)N. (2D.3) 

We call (a) and (X) are linearly independent if rank if 
= k + p and if rank N = k + p, everywhere in U, respec

tl.vely, wh~re Mij = (Mij) ..... Nij = (~) and note 
M+- =M-+ = OandN+- =N-+ = O. The concept of 

linear independence is independent of A-CSs used. 
We define for aiEfllL (U, A ), 

(af =(at ), (2D.4) 

where aitEflIR (U, A ) and thus (at) is a column vector, then 
for aiEflIR ( U, A ), 

(af -, = (at). (2D.5) 

Similarly, for XiEDerA (U), 

(Xf-(X t
), 

and for XiEDe~A (U), 

(X)T-'=(X t ). 

(2D.6) 

(2D.7) 

For a (m' + n') X (k' + p') matrix M, where M ijEA (U), we 
define transposition T: M-M T. 
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(Z + + t - M - + t), 
M T = +-t M--t (2D.8) 

where t denotes the ordinary transposition, and of course 

M - . 
T-' _ ( M + + t M - + t) 

_M+- t M-- t (2D.9) 

. 1 L 
We also define for a'Efl (R)( U, A ). 

(a)t=(at ), (2D.1O) 
L 

for XiEDer(R)( U, A ) 

(X)t=(xt), (2D.ll) 

where column or row vectors should be understood proper
ly, and for matrices M, 

(2D.I2) 

We consider matrix multiplication MN, for a while, 
only for such matrices, e.g., M; (k' + p') X (m' + n'), N; 
(m' + n') X (q' + r'), and then MN; (k ' + p') X (q' + r'). 

Remark 45: 

(MN)T = NTMT, (MN)t = NtMt, 

(MN)Tt=MTtNTt, MTt=MtT' 
and (MTt)Tt = M, 

where T may be replaced with T - 1. 

(2D.13) 

Remark 46: Let notations be as in (2D.I ) [or (2D.3)], i.e., 
ILL 

alEfl (R)(U, A), XiEDer(R)(U, A), then 

(a)T = MT(dt)T, ((a)T-' = (dt)T-'M T-'), (2D.I4) 

(X)T = (afN T, ((X)T -, = NT'(a)T-'), (2D.I5) 

(a)Tt = (dt)TtMTt, ((a)T-' = M T-'t(dt)T-'t),(2D.I6) 

(X)Tt = NTt(a)Tt, ((X)T-'t = (af-'tNr-'t). (2D.I7) 

For the proof, use Proposition 31, (2B.7), Proposition 
30 and the component expression of xt. 

Hereafter we work only in the left version, though 
translation to the right version is trivial. 

We call those matrices like M and N in (2D.I l as compo
nent matrices (CM) of (a) and of (X), in the A-CS (til), and 
denote a set of(m' + n'lX(k I + p') matrices as 
J/(m' + n')X(k' + p'), and we call Mis a "Hermitian" com
ponent matrix (HCM) if MEJI and M Tt = M, an "anti-Her
mitian" component matrix (AHCM) if MEJI and 
M Tt = - M. We define a set of 
HCMEJI(m' + n') X (k' + p') as JV'(m' + n') X (k ' + p'). 

Remark 47: Let (a) = (dt )M, (X) = N (a), in HCS (t Il). 
Then all a i are "Hermite" if and only if MsYt", and all Xi are 
"Hermite" if and only if NsYt". 

Remark 48: Let M&7t"(m' + n') X (k ' + p'), 

NEK(k' + p') X (r' + s'), then MNEK(m' + n') X (r' + s'). 

Remark 49: Let I aij = (i = I, ... ,k + p; k<.m, p<.n) be 
linearly independent homogeneous I-forms, i.e., 
(a) = (dt)M, whereMEJI(m + n)X(k + p) and rank 
M = k + p. Then I ail can be extended to linearly indepen
dent homogeneous I-forms lall } (p = I, .. ,m + n) such that 
(a) = (dt)M', M' = EJI(m + n)X(m + n), rank 
M' = m + n. We could have all extended parts be "Her
mite". As for IXi }, the similar statement is valid. 

Remark 50: Let Idl i } (i = I, ... ,k + p; k<.m,p<.n) be 
linearly independent homogeneous I-forms, then I dl i} can 
be extended to linearly independent homogeneous I-forms 
[dill} (/1 = I, ... ,m + n). If all IP}EC ""(U), then 3A-CS 
(f IIp II i}. We could have all extended parts be "Hermite". 

For the proof, we note the extended part can be taken 
from the A-CS used. 

Remark 51: Let I all} (p = I, ... ,m + n) be linearly inde
pendent homogeneous I-forms, i.e., (a) = (dt)M, 
J/(m + n)X(m + nl3Misnonsingular, 3M -I. Then there 
exist uniquely IXIl } (p = I, .. ,m + n) such that 

<X:Jall ) = Oil VI u' (2D.I8) 

Further if I allj are all "Hermite", then [XIl } are all "Her
mite". Interchanging the roles of [allj and I XIl }, the similar 
statement is valid. 

For the proof, one sees that N = M -I, where 
(X) = N(a). If MEK(m + n)X(m + n), then 
M -1E£'(m + n) X (m + n), which can be proved by putting 
M = Mo + MI where Mo is Zz even part and MI odd, then 
M- I = (l:Z=o( -Mo -IMl )Mo -1E£'(m + n)x(m + n) 
since Mo -I, Mo -IM1E£'(m + n) X (m + n). Thus one notes 
the nonsingular subset of JV'(m + n) X (m + n l forms a 
group. 

Let n (U, A ) 3w = wh + wa where wh
, "Hermite" and 

wa
, "anti-Hermite". If dw = 0, then dwh = dwa = 0 from 

Remark 44. Thus, for Poincare's lemma, we may consider w 
is "Hermite", without any loss of generality. 

Poincare's lemma: Let U be a contractible neighbor
hood, and "Hermitian" wEfl k + I(U,A) (kEZ+). If w is 
closed, i.e., dw = 0, then there exists a "Hermitian" ("anti
Hermitian") eEfl k (U,A ) when k = even (k = odd), such 
that w = de. 

Aside from Kostant's algebraic proof, we will sketch an 
analytical proof, the cylinder construction, is possible as in 
the ordinary manifold cases, which are found in many text
books. 12 

Proof Let us imbed (U, A) of dim (m, n), as a graded 
submanifold, into a graded manifold (I X U, B ) of dim 
(m + I, n), where I = R, such that 

(U,A)~ 

(U,A)--l> 
B (I XU) ~ A (U)) 
B(IXU)~ A(U) 

(2D.19) 
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Let (t, S 'I"; f-l = 1, ... ,m + n) = (t,r· j
, s'i; i = 1, ... ,m,j = 1, ... ,n) 

be a HCS for (I X U, B), tEB (I X U)o, and 
(Sl"',f-l = 1, ... ,m + n) = (r\si;i = l, ... m,j = 1, ... ,n)beaHCS 
for ( U,A ) such that 

j;*({I") = sl" (i = O,l),jl*(t) = lu,jo*(t) = Ou, (20.20) 

wherejj*(i = 0,1) is an algebra homomorphism compatible 
-~ 

with t, conjugation, is assumed. (t, r ') is a LCS for I X U, and 
Pl for U, and j; * (i = 0,1) induces an algebra homomor
phismjj *: '(;00 (I X U)--+'(;=(U) such that 

..--. --" -
ji*(r'l") = rl" (i = 0,1), jl *(t) = 1, jo*(t) = O. (20.21) 

An algebra homomorphism compatible with d,j; *: 
fJ P (I X U,B )--+fJ P (U,A), pEZ + is induced for i = 0,1. 

Integration in terms of an even coordinate, say t, is well 
defined as follows: If a,F(t,s ') = A (t,s ') holds for given 
A (t,s ') EB (I X U), then F(t,s ') is well defined up to 
C(S')EB(I XU). Thusjl *F(t,S') - jo*F(t,S') 
= F (l,S ) - F (O,S )EA (U) is unambiguously defined, and we 
put symbolically 

f dtA (t,S) ifl*F(t,S') - jo*F(t,S')' (20.22) 

Note the above integration preserves Z2 grading. 

Thus we can define a C-linear mapping, 

K:fJ P+ 1(1 X U, B )--+fJ P(U,A) (pEZ+), 

such that 

KO(ds'rAI"(t,s') = Ou 

and 

(20.23) 

(20.24) 

(20.25) 

where note IK I = 0, and if aEll P (I X U, B) is "Hermite," 
then 

(20.26) 

The basic property of K is valid: For all aEll (I X U, B), 

Koda + d(Koa) = Ul* - jo*)a. (20.27) 

Uis contractible: 3tP V,r)EC =(1 X U) such that tP i(l,r) 
= '1, tP i(O,r) = rOi (roiER ). 

Let us define a mapping tP: (I X U,B )--+( U,A ) by 
tP *: A (U)--+B (I X U), such that 

(20.28) 

thenj; *tP *:A (U)--+A (U)(i = O,l):jl*tP * is an identity map
ping andjo *tP * (t) = rOi 1 u,jo *tP *(si) = Ou, and then 
jl *tP *:fJ k + l(U, A )--+fJ k+ I(U, A) (kEZ+): 

jl *tP *w = w, jotP *w = 0 for all wEll k+ I( U, A ). 
(20.29) 

Put a = tP *w in (20.27), then from dw = 0 and (20.29), 

w = d [Ko(tP *w)], (20.30) 

where Ko(tP *w)={}, the {} has suitable "Hermiticity" stated 
in the lemma, which fo]]ows from (20.26), Remark 44 and 
that tP * preserves "Hermiticity."Q.E.O. 

Next we discuss Frobenius' theorem on our graded 
manifold with "Hermiticity", which is, as far as we know, 
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new in incorporation of "Hermiticity". 
We discuss Frobenius' theorem in such a way that it 

leads us to existence ofO-forms which can be extended to A
CS. Then some condition is needed on Z2 even forms. Thus 
we prepare a concept, "real" forms: Let fJ ( U) be an ordinary 
(real) exterior algebra on the real manifold U, and fJc! U) be 
complexification of fJ (U). Since - is a homomorphism 
- :A (U)--+'(;=(U), - induces a homomorphism: 
fJ (U, A )--+fJc! U), whichwealsodenote -:fJ (U, A )--+fJc! U), 
where note s = 0, ds = 0 for an odd sEA (U).13 We ca]] 
(UEll ( U, A ) is a "real" form if wEll ( U). All Z2 odd elements 
Ell ( U, A ) are "real". 

Remark 52: If Z2 even "real" I-forms [WijEllI( U, A )0 
~ 

are linearly independent, then [w' j Ell (U) are also linearly 
independent. 

If [(UiJ are "Hermitian" I-forms, then they are "real". 

Frobenius' Theorem: Let U be a sufficiently small con
tractible neighborhood of PEU, and [w j

; i = 1, .. ·,k-
+ p J Ell! ( U, A ) be linearly independent homogeneous 
"real" I-forms, and [Wi; i = 1, .. ·,k J be Z2 even, and [w' + k; 
i= 1,,,,,pI beZ2 0dd. Then 

k+p 

dd = I wi{}/ (i = 1,· ... k + pI, (20.31) 
i~ 1 

where (}/Ell!( U, A ), if and only if 
k+p 

Wi = I (df i)M/ (i = 1, .. ·,k + pI, (20.32) 
i~l 

where [dfi; i = 1, .. ·,k + p I are linearly independent homo
geneous "real" I-forms, and in the notation as (20.1), Mji 
= ~ i, M is a nonsingular (k + p) X (k + p) real matrix. In 

the above statement, further, if [Wi; i = 1, .. ·,k + p j are 
"Hermitian" I-forms, then in (20.32), [Iii are "Hermi
tian" O-forms, and M is a nonsingular (k + p) X (k + p) 
HCM. 

Proof "IF' part is trivial, and therefore we show "only 
if" part. The proof is performed in the analytical method, 
which is found in many textbooks 12 in the ordinary manifold 
case. However, we should be careful about dealing not with 
functions but with elements of sheaf A (U), but we fu]]y make 
use of the fact that there exists an isomorphism -: 
C (U)--+C ""( U). As in the ordinary case, we consider a suffi
ciently sma]] neighborhood, for even coordinates, but there 
are no such counterparts for odd coordinates. 

We first note if we put Wi = ~J:rw'W/ with a nonsin
gular (k + p)X(k + p) matrix N, then for (wi: 
j = 1, .. ·,k + pi, the condition (20.31) holds. Note it is possi
ble to take N such that w' be in the form (20.33) and "real." 
Thus it is sufficient to prove (20.32) for w', and we can as
sume, 

Wi = dr/- dTjitPii (1],Tj), 

where (1]i, Tji; i = 1, .. ·,k + p;j = 1, .. ·,m + q) is a HCS for 
A (U) and r/ = t (i = 1, .. ·,k), 1]i+k = i (i = 1, .. ·,p), r/ =? 

.. ~~ 

(i = 1, ... ,m), Tj' + m = S' (i = 1, .. ·,q). Thus (t, rJ; i = 1, ... ,k; 
j = 1, ... ,m) is a LCS for U. We assume, without any loss of 
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,..........~ 

generality, r = r' = 0 at PeU, and U is sufficiently small. 
In the first step, we will show that for a differential 

equation 

as i(t) = 1jV)ii(S (t ),t1j) (~= I,.··,k + p ) , 
at }=I, ... ,m+q 

(20.34) 

or alternatively, for an integral equation 

5 i(t) = 1]i + f' dt '1jV)ji(s (t '),t '1j), 
Jl/ xu 

(20.35) 

there exists a unique solution 5 itt )EB (I XU) with boundary 
conditionsi(I u ) = 1]ieA (U) andsi(Ou) JieA (U) such that 
(5 i(t), 1ji) for fixed t, t = tol u (O.;;;to';;; 1), be anA-CS for A (U). 
Here one notes, in the statement above, strictly speaking, we 
should have considered, as we did in the proof of Poincare's 
lemma, morphisms of graded manifolds many times, for 
every time when we did substitutions in the arguments of 
function notation. For simplicity of notations, we neglect 
those processes and instead do with substitution in argu
ments of the function notation as such, and also ignore sub
scripts ofOu or 11 x u' with proper understanding. Here (t, 1]i, 
1ji) is a A -CS for B (I XU), and tEB (I X U )0' Now let us start 
with an integral equation 

(20.36) 

where~EB(I X U),at~ = 0,7ECoo(I X U),si(t)EB(I XU). 
If we expand both sides of (20.36) in terms of odd coordi
nates (Si, si; i = 1,.··, p;) = I,. .. ,q), 

5 illy(t) = ~IlY + L dt'G illY (SaP (t '),r,t '), 

where 

5 itt )==.t'?s illy(t), ~==.t' ?~IlY 

and 

(20.37) 

(20.38) 

and Il = (PI,.··IlI/t)), 1 ';;;Ill < ... <Ill/t) <P, l' = SIl'SIl,,. .. ,sIl,,,,, 

for (P) = 0, 1'=1, and? similarly understood and 
Gilly(·,.,.)E'G'oo(I X U). An important remark is that 

a . 
--.. - GIllY = 0 for (a) > (P) or (,8) > (v). (20.39) 
as

l 
ap 

Let us take - on both sides of (20.36) for i = I,.··,k, and 
then we have the integral equations in the same form as those 
appearing in the ordinary manifold case in Ref. 12, which are 
real integral equations following from Wi being "real," and 
all discussions in the ordinary case apply, which say, for 

~~ 

sufficiently small U, for fixed t (O.;;;t.;;; 1), (Sl(t), r';l:....1 ... ,k; 
} = I,.··,m) is a LCS for U, which coincides with (r, r') at 
t = 1. Equations (20.37) for (P) + (v) > 0 are complex ones, 
but from general argument on integral equations ofthis type, 
from the original form (20.36), and from (20.39), which 
make iterative method applicable in (20.37), starting from 
the solution for (P) + (v) = 0, one finds there exists a solution 
5 illY (t), if we use a A -CS (r, r, AS, AS) where A is a small 
positive number, such that 5 illy(I) = A with (P) = 1, (v) = 0 
and 5 illy(I) = 0, otherwise for (P) + (v) > o. General argu-
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ment on (20.37) for small t, can now be extended to (O.;;;t.;;; 1), 
and it holds 

.r~ ./ 

det a(silly(t)) #0, 

a(s 'ap(I)) 

which derives the followings from (20.39); , ... / 
det (a!;~ )) #0, (i,) = I,. .. ,k) 

and 

(
asi+k(t)) .. 

det . #0 (I,) = 1, ... ,p). 
a(AS) , 

(20.40) 

Summing up all of the above, we have a solution 5 i(t) 
(i = I,.··,k + p) for O.;;;t.;;; 1, to (20.36) in A-CS (r, AS, r, AS) 
with sufficiently small U such that (5 i( 1); i = l,. .. ,k + p) 
= (r,A.s) and (Sl(t), r, AS; i = 1,. .. ,k + p) is anA-CS for fixed t, 

O.;;;t.;;; 1. Here one notes that if one changes s-( 1/ A )s in 
(20.38) with the solution to (20.37) unchanged, there results 
another solution 5 itt ) to (20.36) in the A -CS (r, s, r, S) such 
that (5 i(t), r, s; i = l,.··,k + p) is an A-CS for fixed t, O.;;;t.;;; 1, 
which coincides with (r, s, r, S) at t = 1. 

Following steps are exactly the same as those in the 
ordinary manifolds case. We substitute, 

(5 i(t ),t1ji; i = 1,. .. ,k + p; ) = 1,.··,m + q) for (1]\1ji), 
(20.41) 

in (20.33) and we put 

wi(t )=dnt) - d (t1ji)tPii(S (t ),t1j)Efl V X U,B), 
(20.42) 

where note that Wi = Wl( 1 )Efll( U, A ). We work in an A -CS 

for B (I XU), (t,p, 1ji; i = 1,. .. ,k + p;) = 1,.··,m + q), where 
Ii_SilO) (i = 1,.··,k + pl. Then 

k + p al' i(t ) m + q 

d(t) = I d/ i -~-. + I d1jiFji(t), 
i= I a/' i= I 

where 

F'i (t )-as i(t) - tP'i (5 (t ),t1j)t. 
a1j' 

Under the substitution (20.41), we put 
k+p m+q 

(20.43) 

(20.44) 

O/(t )=dtPii(t) + I d/hQhij(t) + I d1jhR hlj (t), 
h= I h = I 

(20.45) 

and then consider the condition (20.31) and compare terms 
proportional to dtd1ji on both sides of (20.31), we obtain 

k+p 

atFji(t) = - I Fjh(t)Ph;(t) (20.46) 
h = I 

with 

Fj;(O) = 0 (i = 1,. .. ,k + p; ) = l,.··,m + q) (20.47) 

from (20.44). Ifwe consider expansion on both sides of 
(20.46) like (20.37), then given coefficient functions of Phi(t) 
are isomorphic to those EC 00 (I XU) and we have linear dif
ferential equations isomorphic to those which satisfy Lips
chitz's condition and have unique solutions identically van
ishing for O.;;;t.;;; 1. Thus we have Fji(t) = 0 and Wi = wi( 1) 
= I.;!r d/ i (a1]i la/i) where note the appearing matrix is 
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nonsingular and "real" from ('1/. r;) being the original A-CS. 
Further. if [al) are "Hermite". then NEK(k + p) X (k + pl. 
and [a/i) are also "Hermite". and r.h.s. of(2D.34) are also. if 
S i(t ) are. and we have "Hermitian" solutions S i(t). to 
(2D.35) and (f,r;) is a HCS. Q.E.D. 

We do not know if Frobenius' theorem is valid or not 
when we relax conditions. "real" or "homogeneous." How
ever it may be. we are not interested. at least. in the latter 
case. since nonhomogeneous O-forms are not suitable as co
ordinates. chain rule of derivations invalidated. 

As corollary of Frobenius' theorem. we have the com
plete integrability condition for the following equations. 

Corollary 53: Let [Xi' i = l ... ·.k + p) be linearly inde
pendent homogeneous "real" derivations. where "real" is 
similarly defined as in I-forms. and the dimension of graded 
manifold be (k + m.p + q) even dim. k + m. odd dim.p + q. 
Consider differential equations of lEA (U). where U is con
tractible. 

Xf=O. (2D.48) 

where IXil =O(i= l ..... k) IXi+kl = 1 (i= 1 ..... p). There 
exist homogeneous solutions [I j;j = 1 ... ·.m + q) which 
can be extended to an A-CS [P'; f-l = 1 ..... (k + m) 
+ (p + q)) ::J [I j). if and only if it holds that 

k +p 

[X,,xj] = I C/Xh• (i.j= 1 ..... k+p). (2D.49) 
h~l 

where Cij hEA (U). Further if all [Xi) are "Hermite". then all 
[p: i = 1 ... ·.m + q) can be "Hermite". 

The proof goes in the same way as in the ordinary mani
fold case. since (2C.34). Remarks 49.50.51. and Frobenius' 
theorem are available. 

3. GRADED SYMPLECTIC MANIFOLDS WITH 
"HERMITICITY" AND HAMILTONIAN FORMULAS 

We call a graded manifold with "Hermiticity". (X. A ). 
which is given a nonsingular "anti-Hermitian" closed 2-
form W of Z2 degree zero. as a graded symplectic manifold 
with "Hermiticity". (X. A .w). The 2-form. w. is called as an 
"anti-Hermitian" symplectic form. 

Now we can proceed as in the usual way. to define Pois
son bracket bilinear operation on A (U). which gives a graded 
Lie algebra structure on A (U). We survey the process here 
emphasizing "Hermiticity" structures. 

wgivesaA (U)leftlinearmap:DerA (U)_fl l(U.A ).by 
ixw for XE Der A (U). Since w is nonsingular. and the map is 
an isomorphism. we can define a A (U) left linear mapping. 
fl l(U.A )3a-X(a)E Der A (U) by 

(3.1) 

Remark 54: If aE{]l( U. A ) is homogeneous. thenX(a) is 
homogeneous. IX(a) 1= lal· 
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Remark 55: For/EA (U)lfl' 

XJt = ( - 1)lfl(Xf)tt. (3.2) 

Thus for homogeneous "Hermitian" f, Xf is "Hermite" 
("anti-Hermitian") if I II = 0 (I II = 1). 

For the proof. use Remark 42. in the definition (3.1). 

Definition 01 Poisson bracket [ • ): C-bilinear mapping 
[ • ): A (U) ® cA (U)-A (U) such that forf, gEA (U). 

[f,g)=(Xfldg) =Xfg. (3.3) 

Remark 56: For homogeneous f, gEA (U) and hEA (U). 

[f,gh) = [f,g)h + (- 1)lfllglg[f, h). (3.4) 

For the proof. estimate Xf(gh ). 

Theorem 57:A (U) is a graded Lie algebra with respectto 
the bracket operation [f, g); for homogeneous f, gEA (U) 

[f, g) = ( - 1)1 + Ifllgl [g,fJ, (3.5) 

I (- 1)1 fllh I [f, [g. h ) ) = 0 (Jacobi identity). (3.6) 
cyclic 

perm 

Furthermore I-Xf is a homomorphism of graded Lie 
algebras. that is 

X1f,gl = [Xf.Xg ]. (3.7) 

for f, gEA (U). where i xrw = df 

Proof (3.5) follows from 

[f,g) =ix/xgw= - (Xf.Xglw). 

(3.7) from Remark 26. 

ix w = d ! f, g) = di x dg = ex dg = ex i x w 
If. 11'1 t f f J II' 

= [ex .ix ]w = i[x x lW f II' f. II' 

and (3.6) from (2C.32) with n = 2. Xl = Xf' X 2 = X g• 
X3 = X h • Q.E.D. 

Remark 58:Let homogeneous f, gEA (U). then 

(3.8) 

(3.9) 

(f,g)t=(_l)lfllgl{/t,gt) (3.10) 

which implies iff, g are "Hermite". then (f, g) is "anti
Hermite" ("Hermite") when III = Igl = 1 (otherwise). 

For the proof. use Remark 42 and (3.2) on 

(3.11 ) 

Now we give Darboux's theorem on our graded sym
plectic manifold with "Hermiticity". which makes so called 
canonical coordinates explicit. Besides "Hermite" p's and 
q's on the alternating part. "Hermite" odd coordinates on 
the quadratic part appear. and difference from Kostant's 
case consists in that the normalized coefficient of the qua
dratic part is ( + i/2) or ( - i/2) here instead of ( + 1/2) or 
( - 1/2) in his case. Therefore in the sense above. there is also 
here. an invariant. the signature of the quadratic part as Kos
tant noted in his case. However we note later from physical 
point of view that the coefficients should be all ( + i/2) in 
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connection with the conventional quantization procedure 
and the requirement of positive definite metric of state vec
tors. And one will find the "anti-Hermiteness" of our sym
plectic form w fits perfectly with the conventional quantiza
tion. 

Let dim (X, A, w) be (m',n). Then from w being nonsin
gular, one finds m' = 2m even, considering - of component 
matrix of w whose antisymmetric part has nonzero determi
nant. 

Definition 01 "Hermite" A-canonical coordinate system 
(HCeS): Let w be as above. If there exists a HCS (t 1'; 

fL = 1,··,2m + n)=(i; qi; t: i = 1, .. ,m;j = 1, .. ·,n), where 
Itl'l = 0 for fL = 1, .. ·,2m, and It I' + 2ml = 1 for fL = 1,· .. ,n, 
such that 

m n 

W = I dpkdqk + I i(€/2)ds jds', (3.12) 
k= I j= I 

where ej = + lor - 1, then we call the HCS (pi; qi; sj) as 
"Hermite" A-canonical coordinate system (HCCS). 

Such a coordinate neighborhood U as above which ad
mits a HCCS is called an A -canonical coordinate neighbor
hood. 

Darboux's theorem: Any graded symplectic manifold 
(X, A, w) with "Hermiticity" can be covered by A-canonical 
coordinate neighborhoods. 

The proof is similar to the method adopted in Ref. 9 in 
the ordinary manifold case, and is accomplished in a few 
steps by making use of Corollary 53. The detail is given in the 
Appendix. 

Remark 59: In HCCS (pi; qi; sj: i = 1, ... ,m;j = 1, ... ,n), 

Xp' = -~,Xq' =~,Xsi = -ie}~, (3.13) 
aq' ap' as] 

and as a consequence one has Poisson bracket relations, 

(3.14a) 

and 

{ , j = 0 for other combinations. (3.14b) 

Thus for J, gEA (U),J = 10 + II 

{J,gj = I {Ia,gj, (3.15) 
a =0,1 

(3.16) 

and 

mala ag ala ag 
(fa,gJ = I -a k -;-;--a k -a k 

k= 1 q up 'P q 
n aJ: ag + I i( - 1)ltale) ~-., (3.17) 

j= I as] as] 

The signature of w, a pair of numbers of odd coordi-
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nates ej = 1 and of those ej = - 1, is invariant which is 
seen; let 

w = (dt)(11 12)(dt)T 

in the notations, (2D.l )-(2D.17) in HCS (t). Then 

I1t= -11 

(3.18) 

(3.19) ----andl1 - - is symmetric and let 11 - - = ifl - -', then 11 --, 
is real symmetric, and now the result is known as Sylvester's 
law of inertia. 

Finally we consider time evolution of elements 
l(t)EA (U), where t is considered as a real parameter. We as
sume there exists some element HEA (U)o called Hamiltonian 
which is "Hermitian" and governs the time evolution by 

al 
--XHI= {H,JJ = - (J,H J. 
at 

(3.20) 

Note the opposite sign found in (3.20) to that of classical 
mechanics appearing in the standard textbooks comes from 
that considered is, here, the time evolution of an element of 
sheaf A (U), one may think, of functional form in a fixed coor
dinate neighborhood, while in the standard textbooks, the 
time evolution of values along the orbits in a fixed coordinate 
system. 

In the time evolution (3.20), aEfl (U, A ) changes accord
ing to 

a = Bx"a, (3.21) 

and especially one should note, 

w = Bx"w = 0, (3.22) 

which gives invariants wk where k = 0,1 , .. ,m in the ordinary 
symplectic manifold of dim 2m, while here k is not limited by 
m, i.e., kEZ+, and those invariants bear statistical signifi
cance in the former, while the meaning of them is not quite 
clear yet in the latter. 3 

One may say here the physical meaning of classical 
Bose-Fermi systems, itself, is not clear. Truly we admit that 
in the direct sense, but, we believe it will play important roles 
in connection with quantized Bose-Fermi systems, especial
ly in symmetry properties, so called sypersymmetry, of the 
quantized systems, such as those in supergravity theories 
and BRS symmetries in gauge theories. 

Here we would like to comment on the relation between 
parameters and dynamical variables of Bose and Fermi 
properties appearing in the theories mentioned above, in 
connection with the graded symplectic manifold here. Bose 
parameters, say A. iEC, can be always incorporated in the 
graded symplectic manifold in the form A. il u, where 
d (A. 1 u) = O. However, as far as the graded manifold we have 
discussed concerns, there is no room for constant odd ele
ments Vi, dv' = O. Therefore we need to prepare two types of 
graded manifolds with "Hermiticity", BandA (U), B for the 
parameters and A (U) for the dynamical variables, where B of 
dim(O,k JandA (U)ofdim(2m,n)andweassumeA (U)tobeB 
module and Z2 property of A (U) to be affected by Band 
d (b 1 u) = 0 for all bElJ. Then with an "anti-Hermitian" 
symplectic form w, we obtain a graded symplectic manifold 
(X, A, w) which allows coordinate transformations including 
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parameters of Bose and/or Fermi type. 
Finally in this section, we cite a lemma which is a by

product in the proof of Darboux's theorem. We call a set of 
homogeneous "Hermitian" O-forms I P; 
i = 1,··,k < 2m + n J such that Idl i

) are linearly indepen
dent, as sub-HCCS (SHCCS) if I Ii) satisfy Poisson bracket 
relations among them like a subset of HCCS. 

Lemma 60: If I Ii; i = 1,···,k < 2m + n,fiEA (U) 1 is a 
SHCCS, then the SHCCS I Pl can be extended to a HCCS 

If'"l::JSHCCS IP1· 

4. DISCUSSIONS AND CONCLUSIONS 

Firstly we remark that canonical transformations, here, 
including those mixing Z2 even and odd dynamical varia
bles, are now treated on the same level as those of classical 
mechanics, which are found in many textbooks. From (3.12), 
two HCCS's, (pi; qi; si) and (p'i; q'i; s'i) are related such that 

(U =da =da', (4.1) 

where a and a' are "Hermitian" I-forms and suitably ex
pressed by (pi; q'; si) and (p'i; q"; s'i), respectively, for exam
ple 

m n £_ . . 
a = I /'dl + I i ....!...slds1

. 

k~1 i~1 2 
For fixed choices of a and a', there exists "Hermite" 
FEA (U)o such that 

a -a' =dF, 

(4.2) 

(4.3) 

since d (a - a'l = 0 from (4.1). Conversely by giving a suit
able functional form of "Hermitian" F, various types of ca
nonical transformations can be formed through (4.3), just as 
discussed in the standard textbooks 14 of classical mechanics, 
which we do not repeat here. 

Secondly we extend the definition of canonical coordi
nate systems such that it admits some non-"Hermitian" co
ordinate systems, which are useful especially in quantum 
mechanics. If we put 

ak-_I_(pk_iqk), akt=_I_(pk+iqk), (k= I,.··,m) 
ji ji 

(4.4) 

thenp\ qk are uniquely expressed by ak, akt, and thus all 
elements/EA (U) can be expressed by (a\ ak t; s': k = I,.··,m, 
j = I ,..·,n). In this sense, (a\ ak 

\ s') may be included in A
CS's although the ¥s~ does not fit the definition of A~CS 
given before since a ,ak t~c ro( U). In thisA-CS (a k; akt;s'), (U 

has the form, 

rn " C . . 
(U = I idaktdak + Ii....!... ds'ds', 

k~1 ,~1 2 

and Poisson bracket relations are 

I a\a'tl = - iOki Iv (k,j = I,···,m), 

[s\siJ = -iciOkilv (k,j= I,···,n), 

and for other combinations 

, J =0. 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

Conversely if there exists a set (a k
; akt; si: k = I,···,m; 

j = l,.·.,n), such that ak, akt, Z2 even and si, Z2 odd 'Her
mite," and (4.5) holds, then by the relation (4.4) we find a 
HCCS (pk; qk; si). Thus we may include such a system in the 
definition of A-canonical coordinate system and we denote it 
as CCS. Further for a pair of odd element si, say SI and S2, 

which have the same ci' C1 = C2' we define new elements b, 
b t by 

(4.9) 

then 

(4.10) 

By the similar argument to that on a, at, we may include a 
system IS 1') such that b, b t appear instead of Sl, S2 in HCCS 
or CCS above, into the definition of CCS. In this case, 

Ib,btl = -icll v , (4.11) 

and for b, b t with other elements, 

[b, J = I b t, 1 = o. (4.12) 

Now let us see how this classical system fits in with the 
conventional quantization procedure in simple-minded lev
el, although we know that the procedure applied to mani
folds having nontrivial global structure, is not justified and 
ignores the problem of operator orderings. The procedure 
reads: for a set of operators (t 1') corresponding to a ccs (51'), 
put 

[tl',tV] = ilsl',svj'i', (4.13) 

where 

[tl',tV]_tl'tv - ( - W;~llntvtl', (4.14) 

and we assume tl' is a Hermite operator if 51' is "Hermite". 
From (4.13), it follows that 

[ji,gi] = - iOki 1, (4.15) 

[ 
~k ~ i) - £ ~1 s,s - CiUki ' (4.16) 

and for all other combinations among (jl; gk; Si) 

[ , ] = O. (4.17) 

Here first note if we use Kostant's graded symplectic mani
fold which differs in reality concept from ours, and respect 
(4.13), then the r.h.s. of(4.16) becomes imaginary while the 
l.h.s. of(4.16) is Hermite from realness ofs, which is a contra
diction. Secondly note ci on the r.h.s. of (4.16) should be 
positive since the l.h.s. of(4.16) is a positive definite operator. 
Thus we put c, = 1. Next let us see the commutation rela
tions in use of a\ Qit or b \ bit, where we assume n is even. 

[ak,Qi t ] = Ok, 1, (4.18) 
~k~·t ~ 

[b ,b'] =okjl, (4.19) 

and for all other combinations among (a\ ak 
\ b J; bit: 

k = I,. .. ,m,j = 1,. .. ,nI2), 

[ , ] = O. (4.20) 

(4.18) is seen in harmonic oscillator models, and (4.19) ap
pears in treating fermions. We do not say a or b is an an nihil-
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ation operator, which should follow from the structures of 
Hamiltonians. Finally note if we start from a Lagrangian 
including fermionic part then it leads to a constrained Ha
miltonian system and requires special treatment, i.e., Dirac's 
method, which appeared in Ref. 3 and which will be dis
cussed elsewhere in connection with the problem of exis
tence of constraints in 'standard' form 9 in the graded sym
plectic manifold case. 

As conclusions we sum up what is accomplished in this 
paper. A kind of complexification of graded manifold theory 
is given, which is different from Kostant's one in reality con
cept. As a conjugation operation to define reality concept in 
complex shief over U, A (U), we adopt t "Hermitian" conju
gation; for a, b, EA (U), (ab )t = b tat while Kostant adopted 
fora,bEA (U)(ab)* = a*b *. We have shown the assumption 
of the existence of antiautomorphism of A (U) reduces to the 
existence of "Hermite" coordinate systems. We also defined 
"Hermiticity" of derivations of A (U), and of differential 
forms and of derivations of differential forms, all coordinate 
independent way. We have characterized "classical" Bose
Fermi systems by the graded symplectic forms UJ, which are 
"anti-Hermitian" nonsingular closed 2-forms of Z2 grading 
zero. Frobenius' theorem on the graded manifold, and also 
Darboux's theorem on the graded symplectic manifold are 
given. A comment on the relation of the dynamical variables 
and the parameters which appear in the theory in the super
space, is given in terms of the graded symplectic manifolds. 
A remark is given on the canonical transformations. We 
have seen how our system fits in with the naive conventional 
quantization procedures. Finally, we would like to note that 
it seems theoretical physicists use t for the reality concept 
while mathematicians, more or less, who talk about mani
folds, use' and discuss a real subalgebra. In this situation, we 
would like to emphasize the contents presented here are new 
in that t is incorporated into the graded manifolds, as far as 
we know. 
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APPENDIX 

Here we prove Darboux's Theorem by proving Lemma 
60. We work on A (U) over U, sufficiently small contractible 
neighborhood. We prepare Lemmas Al and A2 for Lemma 
A3 which is nothing but Lemma 60. 

Before going into the lemmas, we consider general 
properties of a component matrix of the "anti-Hermitian" 
symplectic form UJ in some A -CS (s 1'; Il = I, ···,N). The UJ is 
characterized by (i) UJ tl = - UJ, (ii) UJ; nonsingular 2-form, 
i.e., the linear map: DerA (U)_a l(U,A ),byixUJ,isnonsingu
lar, (iii)dUJ = 0, and (iv) IUJI = O. Let (s 1';1l = I,.·.,N) beanA
CS. Then UJ can be written as 
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UJ = (ds) a (dsf, 
2 

(AI) 

where the notation is as those used from (2D.I) to (2D.I7) 
and a is the component matrix. Only from Z2 property, one 
may assume, by putting 

_ (a + + 
fl- a-+ 

a +-) a -- , (A2) 

that 

a + +1= -a++, fl + -I=a-+, a - -'=fl--. 
(A3) 

Further if(SI';1l = 1,.··,N) is a HCS, then from UJtl = - UJ, 

one may assume fl be "anti-Hermitian" matrix, i.e., fl t 
= - fl where t is defined (2D.12), and together with (A3) 

one sees components of n + + are "Hermite" and those of 
a + - n - + anda - - are "anti-Hermite". From thedefini

tion of Xf' i.e., 

ixjUJ=dj, 

one obtains 

(A4) 

Xf = (al)Ta -I(a), (AS) 

where dl = (dS )(al) and (al) should be understood as 

(a/)~(' + ')X(I + 0) if III = 0, (A6) 

and 

(a/)~(' + ·)X(O+ I) if III = 1. 

Thus one finds 

X5~S"= !SI',SYj =(n-Ity, 

and also 

(A7) 

(A8) 

(a - I) + +, = _ (n - I) + + , (a - I) + -, = _ (n - 1) - + , 

(a- I )- -'=(n- I )--, (A9) 

and if!S 1'; Il = I ,. .. ,N) is a HCS, then components of 
(n -1)+ +, (n -1)+ - and (a -1)- + are "Hermite" and those 
of (a -1)- - "anti-Hermite". From (ii), we have 

dedi #0. (AlO) 

Now we give lemmas, where we suppose the total di
mension of the graded symplectic manifold with "Hermiti
city" be N. 

Lemma A 1: Let lsi; i = l,. .. ,k <N j be a set of homo
geneous O-forms such that IdS i; i = I,. .. ,k } be linearly inde
pendent "real" I-forms and 

(All) 

be valid. Then there exists aA-CS (if;1l = I,. .. ,N) such that 

Isi,1Jj}=O (i=I,. .. ,k; j=k+I,. .. ,N) (AI2) 

and 

(A13) 

Further if Is i; i = I, .. ·,k } are all "Hermite", thenA-CS (if; 
Il = I,. .. ,N) could be HCS (if; Il = I,. .. ,N). 

Proof We first note from (3.7) and the definition of XI' 
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that 

[Xs" XsJ] 

-x - ~ (_I)ISml(l+lsil+ldlaCij(S)X - C'J(sl - ~ m sm. 
m=l as 

(AI4) 

Now Corollary 53 can be applied since IXs' ) are "real". In 
the case that Is i) be all "Hermite", IXs' 1 are all "Hermite" 
or "anti-Hermite" from Remark 55, and then multiplying 
X s' suitably by i, we may apply the last part of Corollary 53. 
(A13) is trivial from the definition of Poisson bracket.Q.E.D. 

We have defined a notion SHCCS Is i; i = l, .. ·,n <N) 
just above Lemma 60. Here we introduce a notation 
SHCCS~ lSi; i = l, .. ·,k + m <N 1 which implies that it is a 
SHCCS lSi; i = l, .. ·,k + m 1 and that 

det 1f!11 #0 (i,j = l, .. ·,k) (AI5) 

and 

Isi,si+ k
) =0 (i= l, ... ,k+m; j= l, ... ,m), (AI6) 

and sometimes SHCCS~ Is i; i = l, .. ·,k + m 1 is written as 
SHCCS~ Is~;s{:i= l, .. ·,k;j= l, ... ,m) or simply 

SHCCS~ Is~; s {J. 

Lemma A 2:For any SHCCS~ Is i; 
i = l, .. ·,k + m <N 1 =SHCCS~ Is~; s~ J, there exists a 
HCS (rf; /L = l, ... ,N) such that 

(1]J,. .. ,1]k + m)=(S 1 ,,,.,S k + m), (AI7) 

ISL1] j l = 0 (i = l, .. ·,k; j = k + m + 1, .. ·,N), (AI8) 

Is i,1/ j l = 0 (i = l,. .. ,k + m; j = k + 2m + 1, ... ,N), 
(AI9) 

and .....--......-
det Is; ,1/ j l #0 (i = l, ... ,m; j = k + m + l, .. ·,k + 2m). 

(A20) 

Proof From Lemma AI, there exists a HCS (%; 1/6 
i = I, .. ·,k + m;j = k + m + I, ... N) such that 

and 

IS i,1/6 1 = 0 (i = l,. .. ,k + m; j = k + m + I, ... ,N) 
(A21) 

Xs' = kim Isi,1jgl ~ (i= I,. .. ,k+m). (A22) 
a = 1 r:J7fu 

From linear independence of IXs'; i = l, .. ·,k + m 1 we ob
tain .....--......-

det Isi,1j6 1 #0 (i = I, .. ·,k + m; j = l,. .. ,k + m). 
(A23) 

From the definition ofSHCCS~ lSi) =SHCCS~ Is~, s {J, 

o = Isi,stl 
k+m at j 

= I fsi,1j~1 ~~ (i=l, ... ,k+m; j=l,. .. ,m). 
a= 1 v'IO 

Since there exists an inverse of the matrix {t i, 1j6 ) , 
(i,j = 1,· .. ,k + m) from (A23), we have 
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(A24) 

as{ . 
-- = 0 (j = I,.··,m; a = l,. .. ,k + m), 
a1jg 

(A25) 

that is, S { (j = l,. .. ,m) is expressed only in terms of 1/g 
(a = k + m + 1, .. ·,N) which is denoted as 

s{ =s{(1/o) (j= l,. .. ,m). (A26) 

From linear independence of {ds {;j = I , ... ,m I, it follows ----
rank (as f) = m (j = 1, ... ,m; a = k + m + 1, ... ,N). 

a1/g 
(A27) 

From (A22), we have 

{ f:' i f:' j 1 k ~ m I f:' i -a 1 as i (.. I k ) (A28) 
~2'~2 = ~ ~2,1/0 a-a I,J= , ... , . 

a = 1 1/0 

From the definition of SHCCS~ I s ~; s f I, .....--......-
rank Is~,sll =k (i,j= l, ... ,k), (A29) 

and then from (A28) we obtain 

(art) rank __ 2 = k (j = l, .. ·,k; a = l,. .. ,k + m). 
a1jg 

(A30) 

Now from (A27) and (A30), we may assume without loss of 
generality, that there exist a HCS (s ~ '''''s~; s: , ... ,s ';'; 1j~ + 1, 

... ,1j~ + m; 1/~ + 2m + l,''',1/{j). Now again from Lemma AI, we 
obtain a HCS (s ~ , .. ·,s;; 1/,k + l,"',1/,N) such that 

IS~,1/'j) = 0 (i = l, .. ·,k; j = k + 1, .. ·N). (A31) 

Putting Is: , .. ·,s ';'; 1]~ + 2m + 1 '''',1/{j1 =1; 1 , ... ,; N - k - m I, 
and using the above HCS (s ~; 1/,j: i = I ,. .. ,k;j = k + I ,. .. ,N), 
we find 

k a;j 
0= Is~,;jl = a~l Is~,s~1 as~ (i= l,. .. ,k), (A32) 

and then 

a; j = 0 (a = l, .. ·,k; j = l,. .. ,N - k - m). (A33) 
as~ 

Thus we have 

;j = ;j(1/') (j = 1,· .. ,N - k - mI. (A34) 

From linear independence of I d; j;j = I ,. .. ,N - k - m I, 
-----rank ( a; i) = N _ k _ m 
a1/'J 

(i = l,. .. N - k - m; j = k + l, .. -N). (A35) 

Now from (A35) we may assume, without loss of generality, 
there exists a HCS (5 ~ , .. ·,s ~; s : ,. .. s ';'; 1/,k + m + 1,. .. , 1]'k + 2m; 

1/~+2m+ 1"",1/{j) which is exactly theHCS (rf;/L = 1,. .. ,N)in 
the Lemma A2 from (A8) and (AW). Q.E.D. 

Here we quote Lemma 60 as Lemma A3. 

Lemma A 3: For any SHCCS~ It i; 
i = l, .. ·,k + m <N j, there exists a HCCS (51-';/L = 1, .. ·,N) 
such that SHCCS~ Iti) c HCCS(s 1-'). 

Proof For a given SHCCS~ It ~; t { j, we have a HCS 
(rf;/L = 1, .. ·,N) in Lemma A2. If there exists an even coordi-
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nate ri for somejE I k + 2m + 1 ,.··,N J, satisfying (A 19), then 
adding the ri to the SHCCS: 15' i; i = I,. .. ,k + m J, we ob
tain a SHCCS: + [ 15' i; ri: i = I,. .. ,k + m J and thus we may 
assume, without loss of generality, that the above (ri; 
j = k + 2m + I,. .. ,N J are all odd coordinates, which will be 
written as I; i; i = 1 "",r J where r = N - k - 2m, i.e., HCS 
(if, f.l = I,. .. ,N)=HCS (5' ~ ""'5'~; 5': "",5';"; r/ + m + [, 

... ,r/ + 2m; ; [,. .. ,; r). Considering a matrix I if, 7(J 
(,u,v = I,. .. ,N) in Lemma A2, and noting (A8) and (AlO), we 
find 
~ 

detl;a,;PJ::;60 (a,/3= I,. .. ,r). 

We define a matrix 1;,; J symbolically as 

I;,; Jap l;a,;P J 

(A36) 

(A37) 

and then 1;,; J is a symmetric matrix whose components are 
all "anti-Hermitian" Z2 even elements. Then mUltiPlfn:-' 
each component by i, we define a matrix i(;,; J. Now il;, J 
is a real symmetric matrix, which can be diagonalized by 
some real orthogonal matrix written as 6 such that 

- ,--...-
Oil;,; JO' = d, (A38) 

- ,--... 
and components of 0 are given by those of i I ;,; J, and we 
write symbolically 

- ...-...-
0= O(i(;; J). (A39) 

Here we can define a matrix 0 unambiguously from 6 since 
components of il;,; J are all Z2 even elements, as 

O-O(il;,; J). (A40) 
r iIiitba='" ............... _ 

Since O(i( ;,; J) = O(i( ;,; J), the notations 0 and 0 are rel-
evant. Let us define 

;'a -OaP;P or ;' = 0;, 

and consider a new matrix i I; ',; , J ; 

i I; ',; 'J = Oi I ;,; J 0' + (proportional to ; ). 
.--.,... 

Noting (; a J are all Z2 odd, and; a = 0, we have 
~ -,.-.,;-

il;',;'j =Oil;,;jO'=d, 

where 

det d ::;60. 

From 

15' i,;aJ = 0 (i = I,. .. ,k + m; a = I,. .. ,r) 

and Jacobi identity (3.6), we find that 

(A41) 

(A42) 

(A43) 

(A44) 

(A45) 

l5'i,l;a,;P j J = 0 (i = l,.··,k + m; a,/3 = I,. .. ,r). 
(A46) 

Noting; ,[ being expressed only in terms of! ;,; J and; from 
(A40) and (A41), we have 

ar'[ . ar '[ 
(5'i,;,[J = t.; (5'i,(;a,;PJ J a(;:,;PJ + ~ 15",;aJ J;a 

=0. 

From (A43) and (A44), it follows 

i(; '[,;'!'J ~O, 
and it is well-defined that 

; "[=( ± il;'[,; ,[ J)-[/2;'[. 
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(A47) 

(A48) 

(A49) 

Again from (A47) and Jacobi identity (3.6) we have 

15",I;'I,;'[JJ=O (i=l,. .. ,k+m). (A50) 

From (A49) with (A47) and (A50), we see 

(5",;"[J=O, (i=I,. .. ,k+m). (A51) 

Noting, from Jacobi identity (3.6), that 

1;'[,(;'1,;'1 J J = 0, (A52) 

and noting also (; '[)2 = 0, we obtain 

1;"I,;"lj =(±i!;'I,;tlJ)-(l/2)2(;'[,;tlj = +il u .(A53) 

Here we note from (A51) and (A53) that we have obtained a 
SHCCS: + I (5'~;; "[; 5'il ; i = l,. .. ,k;j = l,. .. ,m j. Now by 
iterative process we may assume without loss of generality 
r = N - k - 2m = O. Considering positions of zero compo
nentsofthematrix(n-[)I'" = (7t,7(j (,u,v= 1,. .. ,N)in 
Lemma A2 with k + 2m = N, we can tell positions of zero 
components of the matrix n and obtain 

E m 

W = I dpadqa + I i ~ d:ld:l + I d5' ( 0i' (A54) 
a P 2 j~1 

where a and /3 summation give 5'2"terms, and OjEfl[( U, A). 
From dw = 0 we see d P:j~ [ d5' (OJ) = 0, and from 
Poincare's Lemma, we put 

m 

I d5' (OJ=dw'. (A55) 
j~ I 

From the form (A55), we derive the following form, 

w' = f d5'{(Aj - as) +dS 
i~ I a5' ( 

(A56) 

which gives the form as 

f d5'{Oj =dw' = - f d5'~d(Aj - as). (A57) 
j~ I j~ [ a5'}1 

Putting 

and 

f:' i - 'i A as - 'j !>[=q'i---' p, 
a5'}1 

f:'j a j A as - 'TT j if l5' j
l I = I, 

!> [= , j - a5' ~ = - , 

(A58) 

(A59) 

we find from wt ' = - wand from Iwl = 0 that without loss 
of generality, we may assume that p'j be "Hermite" and 'TT j 

"anti-Hermite", and 

(A60) 

15' ~ I = 0 term has an ordinary even coordinate form dp'jdq'i, 
and l5' j

l I = 1 term can be rewritten as 

dajd'TT j = ~i(dsj+ dsi+ - dsi_ dsi_ ), 

where 

Allp'i, q'i, si+ ' si_ are "Hermite". Q.E.D. 
Finally let us note the above proof is valid for 

(A61) 

(A62) 

k = m = 0, i.e., for SHCCSg 15' 'j which implies Lemma A3 
is Darboux's theorem. 
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Cartan structures on Galilean manifolds: The chronoprojective geometry 
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A new geometry is constructed over Galilean manifolds expressing the compatibility requirement 
between the conformal equivalence notion of two Galilean structures and the projective 
equivalence notion of two affine connections. It is shown that it is the very geometry of the 
Newtonian cosmology (chronoprojective flatness is equivalent to isotropy of Newtonian 
cosmological models); moreover, it also explains various "accidental" symmetries in classical 
mechanics. 

PACS numbers: 02.40.Dr, 02.40.Sf 

INTRODUCTION 

Let P 2( V) denote the bundle of frames of second -order 
contact over a manifold Vand let L be a Lie group with a 
closed subgroup L ° such that dim(L / L 0) = dim( V). An 
L / L ° Cartan structure over the manifold V is a subbundle P 
of P 2( V) with structure groupL ° and a canonically associated 
Cartan connection wwith respect toL; then it is in fact possi
ble at each point of V to identify up to the first-order V with 
the homogeneous space L / L 0. Moreover, if we suppose that 
V is endowed with some (tensorial) structure a, it is then 
implicitly wished that Land L ° have been artfully chosen to 
ensure that the homogeneous space L / LOis canonically en
dowed with a structure of the same kind as the original struc
ture a. 

Classical examples of Cart an structures are provided by 
the projective and conformal geometries. I In the projective 
geometry L = PGI (n,JR) the projective general linear group 
and L / L ° = IF' n (JR) is the projective space, a projective struc
ture exists over any n-dimensional manifold V, i.e., V can be 
endowed with a class of symmetric connections which all 
determine the same set of geodesics. In the conformal geom
etry of Riemannian manifolds Vn , L = O(n + 1,1), and L / 
LOis a quadric diffeomorphic to the n-sphere Sn' i.e., Vn is 
endowed with a class of metric tensors which are proportion
al to each other. Note that because of the existence of a ca
nonical connection (the Levi-Civita connection) over a Rie
mannian manifold there is a natural notion of conformal 
equivalence between torsion less symmetric linear connec
tions corresponding to the above class of metrics. 

A Newtonian space-time consists of a Galilean mani
fold (V4' t/J, y) and a chosen compatible symmetric linear 
connection r, a so-called Newtonian connection. 2 Obvious
ly, a projective structure on (V4' t/J, y, r) can be defined if 
space-time is endowed with a class of symmetric connec
tions which give the same geodesics as r when parametriza
tion is disregarded. On the other hand, it is also possible to 
introduce the notion of conformal equivalence on the Gali
lean manifold (V4' t/J, y). But, since a Newtonian connection 
is not canonically associated with the Galilean manifold this 
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conformal equivalence notion does not yield a possible con
formal structure over a Galilean manifold. Rather, one is 
naturally led to consider the compatibility between the pro
jective structure and the conformal equivalence on the base 
manifold, and in this paper we show that the solution of this 
problem can be given by a particular Cartan structure we 
shall call the chronoprojective geometry. 

I t is worth noticing that it is possible to consider a mani
fold with compatible projective and conformal structure; 
this is known as a Weyl structure, and, for instance, a Weyl 
structure over a Lorentzian manifold is a model of Weyl 
space-time, which has been studied in Ref. 3. Although both 
approaches are similar, results are somewhat different be
cause the Weyl geometry does not proceed from a Cartan 
structure. 

This paper is organized as follows: 
Section I consists of a brief recall of Galilean manifolds 

(V4' t/J, y) and the principal fiber bundle of Galilean frames 
H(V4)' 

In Sec. II, the conformal equivalence notion between 
two Galilean structures (V4' t/J, y) and (V4' t/J', y') is described, 
and the notion of conformal Galilean connection is intro
duced. 

In Sec. III, the so-called chronoprojective group is de
fined and a chronoprojective Cartan structure P endowed 
with its natural torsion less Cartan connection is described. 

In Sec. IV, the notion of admissible connection is de
fined, and the relations between two admissible conformal 
Galilean connections belonging to the same Galilean Cartan 
structure are studied and give rise to the chronoprojective 
equivalence notion. Finally, the chronoprojective transfor
mations of a Galilean manifold are defined. 

In Sec. V, the topology of the homogeneous space can
onically associated with a chronoprojective Cartan struc
ture, i.e., of the chronoprojective space-time, is described. 

In Sec. VI, three equivalent definitions of infinitesimal 
chronoprojective Galilean transformations are given respec
tively on the base manifold V4 , on the bundle of first-order 
frames over V4 , and on the bundle of second-order frames. 

In Sec. VII, the notion of chronoprojectively flat struc
ture inherent to the above-developed geometry and the asso
ciated Weyl's curvature tensor are introduced. It is shown 
that the chronoprojective geometry is the very geometry of a 
Newtonian space-time and that any isotropic Newtonian 
space-time is chronoprojectively flat. 
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Chronoprojective transformations are responsible for 
various "accidental" symmetries (Kepler problem, charged 
particle in a Dirac magnetic monopole field). As well those 
transformations which reproduce the direction of the pre
symplectic form of the evolution space of a massive test par
ticle and project onto space-time transformations are 
in fact chronoprojective transformations. In particular, in
finitesimal canonical transformations at most generate a 12-
dimensional subalgebra of the chronoprojective algebra al
ready known in the literature as the Schr6dinger algebra. 
Originally, the Schr6dinger group had been introduced as 
the largest group of space-time transformations which leave 
invariant the Schr6dinger equation describing a free massive 
particle4la) and the harmonic oscillator.4Ib) An exhaustive 
classification of all compatible Hamiltonians has been given 
in Ref. 5(a) and the various types of mutual of two-, three-, 
and four-body interactions which are consistent with the 
Schr6dinger invariance have been exhibited. 5Ib) The Schr6-
dinger group is also a subgroup of the inhomogeneous two
sheeted symplectic group and has been studied from this 
point of view in Ref. 6, where an explicit expression of the 
Maslov index which characterizes metaplectic representa
tions relevant in quantum mechanics is given. 

This paper is a purely descriptive one; for conciseness 
proofs are generally omitted which are adapted from the 
ones used in projective and conformal geometries (see Ref. 1 
and references therein), and italicized sentences take the 
place of propositions. 

I. GALILEAN MANIFOLDS 

A Galilean manifold is defined as a triple (V4' t/J, y), 
where V4 is a four-dimensional Coo-manifold, t{;E!iJ ( V4 ) is a 
differential I-form of class one and y is a positive semidefin
ite symmetric contravariant tensor field of degree 2 such that 
Ker y is generated by t/J. 

Let us now recall some properties we need for the fol
lowing. Let us denote by Sx the associated space with t/J at 
XEV4: 

Sx = {wETx(V4)lwJt/J = O} dimSx = corankt/J = 3. (1.1) 

Any element of Sx is called a spacelike vector. 
The class of t/J being identified with the codimension of 

the intersection of Sx with the associated space with dt/J, the 
condition class t/J = 1 implies that dt/J = O. Let S ~ be a com
plementary subspace to the space generated by t/J in T ~(V4), 
for each x the inner product y x : T ~(V4) X T ~(V4)- IR defines 
a linear isomorphism of S ~ onto Sx as follows: with each 
aES ~(V4) is associated WaESx defined by 

(1.2) 

One gets also an inner product, denoted by gx' in Sx by set
ting 

gx (W a, W t3 ) = Yx (a,/3). (1.3) 

If we denote by U the unique vector field such that 

UJa = 0 VaES~, UJt/J = 1. (1.4) 

U generates timelike vectors, and any vector YETx (V4) 
can be written as Y = W y + ; y U, where W yESx and; y is a 
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function on V4 linear with respect to Y. These properties are 
related to the fact that a Galilean manifold can be described 
as a bundle over a one-dimensional manifold, the projection 
being known as the universal time function. Obviously, gx 
can be extended to an indefinite fiber metric gx over Tx (V4) 
by setting 

gx(Y'Y') =gx(Wy,Wy'). (1.5) 

Let us introduce some notations which will be useful for 
the following: for p<.,n 

on -Pip) = {gEGI(n,IR)lgSP(n),g 

OnO_p}Mn }, 

Mn being the n X n square matrices 

0n_p(P) = {gEGI(n,IR)I'gSp(n)g 

(
On_ p 

= Spin), Spin) = 0 

con -Pip) = {gEGl(n,IR)lgSP(n)'g 

=,,{2S P(n), AEIR: = IR -IOj}, 

COn _pip) = {gEGI(n,IR)I 'gSp (n)g = A 2Sp(n), AEIR}. 

Note that Oo(p) = Oo(P) is the usual orthogonal group den
oted by O(n). 

Let P 1(V4) be the bundle oflinear frames over V4 ; then 
IR4 is the standard fibre of the tangent bundle T( V4 ) associat
ed with P I( V4). Since any element rEP I( V4) over XE V4 can be 
considered as a 1 - 1 linear mapping of IR4 onto Tx (V4 ): 

y.----+ry = Y, it is possible to associate with gx a bilinear form 
( , )s on IR4 defined by 

(y,y')s = (r-Iy,r-Iy') =g(y,y'). (1.6) 

This bilinear form can be written 

(1.7) 

where y is written as a column 4 X 1 matrix and' y as a row 
1 X 4 matrix. Obviously, ( , )s is invariant by 0 1(3), and it is 
easy to verify that this group is a semi direct product of the 
homogeneous Galilei group IR3(xO(3) by a dilatation, iso
morphic to IR3(x(0(3) ® IR). The in variance of ( , )s by 0 1(3) 
implies that relation (1.6) is independent of the choice of r 
modulo a right action of an element ofOI(3) as a subgroup of 
GI(4),IR into P I( V4 ), i.e., it leads to a reduction of P I( V4 ) to a 
OI(3)-structure. Consequently, with any Galilean manifold 
(V4' t/J, y) can be associated in a canonical wayan 01(3)-struc
ture (of course, the converse is not true in general). The intro
duction ofa connection in an 01(3)-structure over a Galilean 
manifold (V4' t/J, y) leads to the following properties on the 
base: 

(i) Vyy= 0, 

(ii) Vyt/J!\ t/J = 0 

for all YETx(V4) and XEV4. But from t/J it is possible to con
struct the degenerate symmetric covariant tensor field of de
gree two W = t/J ® t/J. Then, corresponding to the fiber metric 
Wx , another degenerate bilinear form over IR4 is induced, 
which can be written as 

(y,y'), = ySI(4)y' (1.8) 
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in compatibility with (1.7), due to the kernel condition link
ing y and t/J. One checks that ( , ), is reproduced up to a 
positive scalar r, under the transposed action of 0 1(3), and 
from (ii) one gets in particular that the magnitude of time like 
vectors is not preserved by parallel transfer. 

Let us then consider the intersection ofOI(3) with the 
group 03( 1) which keeps ( , ), invariant, that is, the full ho
mogeneous Galilei group H which is a double covering of 
R3<2<0(3). Hence one is led to introduce a principal fiber bun
dle H (V4 ), which can be considered as an H-structure of de
gree 1, thejiber bundle of Galilean frames, corresponding to a 
cross section IT y."': Vc-+P I ( V4)1 H. On an H-structure it is pos
sible to consider a so-called Galilean connection r y .", , which 
is the reduction of a linear connection with respect to which 
lTy.", is parallel; then the parallel displacement of fibers of 
P I( V4 )1 H preserves both fiber metrics g and 1/1, so that, with 
respect to a Galilean connection, yand 1/1 are parallel: 

Vy=O and VI/I=O. ( 1.9) 

Let 8 = [8 1''E,[iJ(P 1(V4)),/L = 0,I,2,3l be the canonical 
I-form of P 1(V4) restricted to the bundle of Galilean frames 
and 

and 

w; + wi = 0 for j,kE[ I,3]l 

= {wo = I w6l, w = I w/l } 
be the connection I-form on H (V4 ) defining a Galilean con
nection on V4; the four I-forms (J' and the six I-fonns td~ 
define an absolute parallelism on H (V4 ). Then by using stan
dard techniques one can show that it is not possible to define 
in a canonical way a unique Galilean connection on a given 
Galilean manifold. Hence it is clear that the geometry of a 
Galilean manifold is a less rigid structure than the geometry 
of a pseudo-Riemannian one, since, for instance, with a given 
Lorentzian manifold is associated a unique torsion-free con
nection (the Levi-Civita connection) on the fiber bundle of 
Lorentz frames while there does not exist a privileged (tor
sion-free) Galilean connection associated with a Galilean 
manifold. 

II. CONFORMAL EQUIVALENCE ON A GALILEAN 
MANIFOLD 

In Sec. I, the group 01(3):::::H<2<R" which keeps invar
iant the bilinear form ( , )s and reproduces up to a positive 
factor r, the bilinear form ( , ),' has been introduced. On the 
other hand, we have seen that ( , ), is kept invariant by 
01(3)n03(I). Moreover, the bilinear form ( , ), is also invar
iant under CO I(3)n03( 1), which also reproduces up to a posi
tive factor r; the bilinear form ( , )s' So there are naturally 
introduced two dilatations which are gathered by defining 
the group L I = COI(3)nC03( 1) :::::H<2«Rs ® R,). 

Now let us consider the cross section lTy ,,,, parallel with 
respect to a given Galilean connection and corresponding to 
a given embeddingH (V4)~P I( V4). Then IT y,'" composed with 
the natural mapping v:P I( V4 )1 H-+P I( V4 )/ L I defines a cross 
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section of P I ( V4 )1 L I. Hence we are led to introduce a princi
pal fiber bundle L I( V4 ) ~ P I( V4 ) with structure group L I 
the bundle of conformal Galilean frames. Moreover, the 
cross section VOlT y. '" is parallel with respect to the linear con
nection associated with the considered Galilean connection. 
Therefore, this linear connection is reducible to a connection 
in L I( V4 ). Connections arising in this way will be called con
formal Galilean connections. One can then consider H (V4 ) as 
a reduced bundle of L I (V4 ) and r y.w as a reduction of a con
formal Galilean connection. 

Now let us consider another triple (V4'¢"y'). Corre
sponding to this geometrical structure on V4 there is again a 
cross section lTy'.w': V4-+P I( V4)1 H and another embedding 
H (V4) ~ P I (V4)' In each fiber ofP 1(V4) the two embeddings 
H (V4 ) ~ p I( V4 ) define two H-orbits which are assumed to 
belong to an L I-orbit. This entails that VOlT y.I/' and VOlT)/.I/" 

define the same P 1(V4)1L I cross section, and, consequently, 
the two Galilean structures are associated with two embed
dings H (V4 ) ~ P I (V4 ) corresponding to only one embedding 
of L I (V4 ) into P I( V4 ). This situation occurs if the following 
notion of Galilean conformal equivalence is introduced: 
Wesay that the two triples (V4' I/I,y) and (V4' 1/1 ',y') areconfor
mally equivalent if y' = Ps Y and 1/1' = p, 1/1, where Ps and p, 
are positive suitably differentiable functions on V4 • 

Let JI be the canonical projection 
P 1(V4)-V4 [L 1(V4)-+V4, respectively], then 

(
13®( Ps oJI)(U)ln ) 

A (u) = (p,oll)(u)-J!2 

identified with an element of IRs ® IR, characterizes the ele
ments of L I which, on each fiber of P I( V4 )[L I( V4 ), respective
ly], relate the two concerned H-orbits. 

But due to the lack of a uniquely defined torsion-free 
Galilean connection, there does not exist a one-to-one corre
spondence between the conformal equivalence classes ofGali
lean structures on V4 and the em beddings L I( V4) ~ P I( V4) 
that is with the L I-structures, while such a one-to-one corre
spondence exists in the conformal geometry over pseudo
Riemannian manifolds. Merely a conformal equivalence 
class of Galilean structures corresponds to various embed
dings into principal L I-bundles on V4 , and we have to consid
eroneL I-bundle and its embedding intoP I( V4 ) only if a con
formal Galilean connection is arbitrarily chosen. With 
respect to this conformal Galilean connection one has 
V¢ = X, ® ¢ and Vy = Xs ® y, where XS and X, are I-forms 
on V4; then, if the triple (V4' t/J', y') is conformally equivalent 
to (V4' t/J, y), one gets 

. h' 1 dp, Vt/J' = X; ® ¢ Wit X, = X, + -2 - , 
p, 

(2.Ia) 

Vy' = X; ® y with X; = xs + dps . (2.Ib) 
Ps 

Now let rp be a diffeomorphism of a Galilean manifold 
(V4' ¢, y) onto itself, (p the corresponding linear isomorphism 
of the tensor algebra T(rp -I(X)) onto T(x) and;P the induced 
automorphism of P I( V4 ). The transformations rp of V4 such 
that (py = Ps Y and (p¢ = p, ¢ are called the conformal Gali
lean transformations of V4 • In general such a transformation 
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qJ is not an affine transformation; moreover, rp neither leaves 
invariant any linear connection nor maps any L I_structure 
on to itself. 

Several examples are known showing that the above 
considered set of transformation qJ of V4 is an infinite trans
formation group. Note that infinite transformation groups 
already appear when we look for Galilean automorphisms 
(accelerated frames) q;r = rand q;1/I = 1/1. 

Hence it is pointed out once more that a Galilean struc
ture is a less rigid geometrical object than a Lorentzian struc
ture since conformal transformations of a Lorentzian mani
fold induce automorphisms of a CO(3, 1 )-structure and 
generate a transformation group of dimension at most equal 
to 15, while, according to the foregoing, the transformations 
of the basis which reproduce the geometrical Galilean struc
ture generate in general an infinite-dimensional transforma
tion group. 

111. CHRONOPROJECTIVE CART AN STRUCTURE ON A 
GALILEAN MANIFOLD 

Let us consider the Lie group 0 2(3) which is from now 
on named the chronoprojective group (the reasons for this de
nomination will be clarified in Sec. VI). 0 2(3) is a 13-dimen
sional Lie group which can be written as 0 2(3);:::: (JR3 ® JR3) 
(x(0(3) ® GI(2,lR)). 

Let us also consider the subgroup L ° generated by the 
elements of 0 2(3), which admit '(0,0,0,0,1) 
as eigenvector; LOis nine-dimensional and can be written as 
lR3(x(0(3) ® lR ® S2) where S2 is the two-dimensional solvable 
group. Let &2(3) be the Lie algebra of02(3) which as a vector 
space can be decomposed as &2(3) = f O + a, where f O is the 
Lie algebra of L ° and a is a four-dimensional Abelian Lie 
algebra. The subalgebra fO is not reductive into &2(3). 
! [&2(3),a] is not contained into a.l &2(3) is but a 2-graded 
Lie algebra, i.e., it can be written as 

(3.1) 

such that [gp,gq] Cgp + q with gp = ° when I pi> 2 and 
there exists a unique (up to a conjugation) element Dingo 
such that [D,gp] = pgp' In fact, g2 = g _ 2 = lR and [g2,g -2] 
is proportional to D. 

Moreover,gl =g_1 = lR3 and [g1,g_l] = 0, 
go = 0(3) ® lR2. Note that f O = go + gl + g2 and 
a = g _ 2 + g _ I' The class of the identity eE02(3) in the con
nected homogeneous space 0 2(3)1 L ° will be called the origin 
of02(3)IL ° and denoted by o. There is a natural representa
tion p, usually called the linear isotropy representation of L ° 
on the tangent space of02(3)IL ° at the origin o. But 
T, (02(2)/L 0) = &2(3)1/'0 = a from the above decomposi
tion; then the linear isotropy representation is defined by 
p(g)x = Ad(g)x(mod!,O) for gEL 0 and XEa, where 
p(g)EGl(4,JR). 

This representation is not faithful and possesses a one
dimensional kernel, uoEJR parametrizing an element of this 
kernel. p is faithful on a subgroup JR3 (X(CO(3) ® R) only, 
which is called the linear isotropy group of the homogeneous 
space. This group is isomorphic to the group L 1 introduced 
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in Sec. II, and, in fact, L ° can be written as a semidirect 
product L ° = lR(xL I and there is a natural injective homo
morphism k:L '_L 0. 

Let G 1(4) and G 2(4) be the structure groups of the fiber 
bundles of first- and second-order frames, respectively. 
There is a natural homomorphism G 2(4)_G 1(4), the kernel 
of which is denoted N 2(4). One has the exact sequence 

D-N 2(4)_G 2(4)_G 1(4)-1. 

L 0 can be isomorphically embedded into G 2(4) and there is a 
natural coordinate system in G 2(4) given by ! s;, ,s;,v =,(,/<, /1, 
v = 0,1 ,2,3l, where! s;, l is a natural coordinate system in 
G 1(4);::::GI(4,lR) so that the natural embedding 
G 1(4) ~ G 2(4) is given by ! s;" ° l. In the present case the 
isomorphic embedding of L 0 into G 2(4) is given by 

and the injective homomorphism k:L I_L ° is realized by 
[s;, ,0 l with the above-defined s;, . 

If P denotes an L ° -structure of degree 2 on V4 , then PI 
kerp is a subbundle Q of P I( V4 ) with L 1 C G 1(4) as structure 
group. Conversely, let Qbe anL I_structure of degree 1 and k 
an injective homomorphism from L 1 into L 0. L 1 acts on the 
left on L ° as follows (a,n)_k (a)m, aEL 1, mEL 0. So we can 
introduce the associated fiber bundle (Q XL 0)/ L 1 = Qk' 
which is a principal fiber bundle, the k-extension of Q, with 
respect to the right action of L ° over Qk given by 

((q'm),m') f---+fJ'(mm'), qEQ, m,m'EL 0, 

q'm denoting the class of(q,m) into Qk' If k is chosen as above 
then the k-extension of Q will be an L ° -structure of degree 2. 

Now let us recall that a Cartan connection 1 with respect 
to 0 2(3) in an L O-structure Pis a I-form we on Pwith values 
in the Lie algebra &2(3) satisfying the following conditions: 

(a) we(A *) = A for every AE!'o, (3.3a) 

whereA * is the fundamental vector field corresponding toA. 
(b) (Rg)*we = ad(g-')we for every element gEL ° 

(3.3b) 

where ad is the adjoint action of LOon &2(3). 
(c) we(X)#O for every nonzero vector X of P. 

(3.3c) 

Let (O,e) be the canonical form on p 2(V4), where ° = [fl"E 
G;(P 2

( V4 )),/1 = 0, 1,2,3l is an lR4 -valued one-form and eis a 
gl(4,lR)-valued I-form. 

Then let [ufo·, wi,!, wg, wg:, j= 1,2,3,4 =0,1,2,3l be 
the (g-2 + g_1 + fI)-valued I-form obtained by restricting 
to P the canonical form (O,e) on P 2( V4 ), it can be called the 
canonical form of P. [The above-used couples of indices are 
related to the graduation of 0 2(3) as follows: wg. isg_ 2-val
ued, [ula, l isg _I-valued, [w;,wg, wg: l is go-valued and [ufo, l 
is gI-valued.] One can show that this set of 12 1-forms 
whose values in each point are linearly independent can be 
supplemented in a unique way by a g2-valued 1-form wg' to 
give rise to an & 2( 3 i-valued 1-form defining a natural Cartan 
connection We for p, The natural Cartan connection is tor
sionless, i.e., the g -2 and g -1 components of its curvature 2-
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form fl vanish, and its curvature satisfies the following condi
tions: 

The component of fl which takes its value on the dilata-
tion D vanishes, i.e., flD = 0; (3.4a) 

" flj k I £.- Ejkl ° 1\ Wo' 1\ Wo' = 0, j,k,lE [ 1,2,3]; (3.4b) 
j,k,! 

L Ejkl fl~ I\w~, I\wg, = 0, 'lf1,j,k,lE[1,2,3]; (3.4c) 
j,k 

" II 0' . k £.- Ejklu 0' 1\ Wo' 1\ Wo' = 0 'If I, j,k,lE [ 1,2,3 ], (3.4d) 
j,k 

where Ejkl denotes the three-index permutation symbol. 
This is proved by standard techniques which have been 

described for the projective and conformal geometries in 
Ref. 1 and for the contact geometry in Ref. 7; the appropri
ate construction for the present case will be given elsewhere 
in a more technical paper.g 

Equipped with this unique Cartan connection, the L 0_ 

structure P is parallelizable. Then the basic theorem (Ref. 1, 
p. IS) following which the group ~ of automorphisms of a 
parallelizable manifold M is a Lie transformation group 
such that dim~<dimM, can be applied and ensures that the 
group of automorphisms of P which preserves the Cartan con
nection is a Lie group with dimension at most equal to 
dimP = 13. Such an L O-structure endowed with its natural 
Cartan connection will be called a chronoprojective Cartan 
structure. 

IV. LO·EQUIVALENCE OF TWO ADMISSIBLE 
CONFORMAL GALILEAN CONNECTIONS 
CHRONOPROJECTIVE TRANSFORMATIONS 

Now let us consider the conformal Galilean connec
tions over V4 introduced in Sec. II, Among them the torsion
free connections are in one-to-one correspondence with the 
cross sections r: V4---+P 2( V4 )1 L I, Composed with the natural 
mapping f-l:p2(V4)1L l---+p 2(V4)1L 0, these connections 
give rise to sectionsf-lo r: V4---+P 2( V4 )1 L 0, i.e., to reductions of 
P 2( V4 ), In other words, every torsion-free conformal Galilean 
connection r defines a reduction of the structure group of 
P 2( V4 ) to L ° and induces an isomorphism % of L I( V4 ) into 
P 2( V4), Then r will be said to be admissible If it belongs to a 
Galilean Cartan structure P, that is to say, if it induces Pin 
the above-described manner, i,e., if the corresponding sub
bundle Q of relations (3.4) defining the unique natural Car
tan connection. Let us denote by 'Jf/ theel-valued curvature 
form of the conformal Galilean connection r and by e the 
R4-valued canonical form of P I( V4 ) restricted to Q and 
viewed as a (g -2 + g _I)-valued I-form. 
form of the conformal Galilean connection r and by e the 
R4 -valued canonical form of P I( V4 ) restricted to Q and 
viewed as a (g __ 2 + g _ I )-valued I-form. 

For convenience of notation, we shall set flw = !fl~, 
fl ~ - tYk fl g:, fl D) and we can write 

.'}('*flw = 'lr - !%*([wg',e]) + e0141\%*(wg') (4.1) 

so that from relation (3.4), one gets 

'lrg = %*(wg,) 1\ eO, (4.2a) 
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" "' .... / k / £.- Ejkl" ~ 1\ e 1\ e 
j.k,! 

= ~%*( wg) 1\ L Ejk/e j 1\ e k 1\ e I, 
j,k.! 

L Ejkl 'Jf/~ 1\ e k 1\ e ° 
j.k 

= !%*( wg) 1\ L Ejk/ej 1\ e k 1\ eO, 
j,k 

= !%*(wg') 1\ L Ejkle j 1\ e k 1\ eO, 
j,k 

(4.2b) 

(4,2c) 

(4.2d) 

This first set of constraints has to be supplemented by an
other coming from the pullback to Q of relation (3.3b). It is 
expressed by a condition on the Ricci curvature tensor of r 
which provides a tenuous link between r and the structure of 
the base Galilean manifold (V4,I/I,y); explicitly one gets 

Ric = ip ® 1/1 - 41/1 ® ip, (4.3) 

where ip is an arbitrary covariant tensor field of degree one. 
Finally a conformal Galilean connection r is admissi

ble if its curvature form satisfies (4,2a, b, c, d) and its Ricci 
curvature tensor can be written as in (4.3), 

Let us note that this notion of admissibility can be ap
plied to connections of any subbundle of Q in particular to 
Galilean connections since any Galilean connection maps to 
a well-defined connection r by the homomorphism which 
defines the embedding of H (V4 ) into the L I_structure Q. One 
verifies that admissibility conditions for a Galilean connec
tion reduce to 

Ric =pif/=pl/l®l/I, (4.4) 

where p is an arbitrary function on V4 • 

In the following we shall speak of admissible connec
tion without specifying the concerned subbundle of L I( V4 ) if 
it is unnecessary, and by "abus de langage" we shall speak of 
admissible Galilean manifold to nominate a quadruple 
(V4,I/I,y,r), where r is an admissible Galilean connection, 

Two admissible torsion-free connections are said to be 
L O-equivalent if they belong the the same Galilean Cartan 
structure P. It can be shown that two admissible torsion-free 
connections defined by the (go + gl)-valued 1-forms (J) and (J)' 

are L O-equivalent if there exists a g2-valuedfunction son V4 

such that 

(J)' - (J) = %*([e,soll]), (4.5) 

where II is the projection ll:P---+V4, 
Moreover, we have to ensure the compatibility between 

the L ° -equivalence of two connections rand r ' and the con
formal equivalence of (V4,I/I,y) and (V4,I/I',y'), i.e., to express 
that the covariant derivative with respect to the connection 
r I reproduces 1/1' and y'. Locally the L O-equivalence is ex
pressed by a projective equivalence of Christoffel's symbols 
which can be written 

(4.6) 

where 17 is an R-valued function on V4 , then the compatibility 
is expressed by the following relations: 
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1 dp X; =XI + __ 1 - 21]¢, 
2 PI 

(4.7a) 

dps 
X; = Xs + - + 21]¢, (4.7b) 

Ps 
which lead to 

d (Ps .p:l2) = Ps .p:12 (r; - xs + X; - XI)' (4.7c) 

Therefore, we can say that the two quadruples (V4, ¢, y,r) and 
(V4'¢' ,y',r ') are chronoprojectively equivalent if (V4'¢'Y) and 
(V4,¢',y')areconformallyequivalent,randr 1 areL O-equiva
lent, and relations (4.7a,b,c) are satisfied. 

From the above relations (4.7) it is clear that, in general, 
the L a-equivalence of two conformal Galilean connections 
does not lead to the situation described in Sec. II, that is, to 
consider only one embedding of L I( V4 ) into P I( V4 ) (which is 
expressed by (2.1a) and (2.1b). So it is significant to speak for 
example of the L ° -equivalence of two conformal Galilean 
connections. Nevertheless, it is worth noticing that relations 
(4.7) are greatly simplified in the case of the L a-equivalence 
of two Galilean connections for which they reduce to the 
following relations 

dp, 
-=41]¢, 
p, 

dps 

Ps 
with 

(4.8a) 

(4.8b) 

p, .p:12 = constant function on V4. (4.8c) 

This expresses the fact that two L a-equivalent Galilean con
nections are mapped into the same conformal Galilean con
nection in L I( V4 ) under the corresponding homomorphisms 
of H (V4) into L 1(V4)' 

A (local) diffeomorphism rp of V4 induces a local iso
morphism '7P of the bundle P 2( V4 ) if'7P sends a chronoprojec
tive Cartan structure P into itself then rp will be called a 
(local) chronoprojective Galilean transformation of V4. From 
this definition it is clear that a transformation of V4 is a 
chronoprojective Galilean transformation if and only if it is a 
conformal Galilean transformation which transforms an ad
missible conformal Galilean connection into an L ° -equivalent 
one such that (4.7a, b, c) are satisfied. 

V. THE HOMOGENEOUS SPACE 02(3)/Lo: THE 
CHRONOPROJECTIVE SPACE-TIME 

Let M = 02(3)/L 0; it is easy to see that 
M = (R3 X (R2 - ! 0 J ))llit Taking into account that 
R2 - ! 0 J can be considered as a nontrivial principal R-bun
dIe over the one-dimensional projective space over R, i.e., the 
unit circle S I, M can be described as a vector bundle of stan
dard fiber R3 overS I associated with R2 - ! 0 J, so thatMis a 
good candidate to be a Galilean manifold with S I as time 
axis. Otherwise, R - {O J is also a trivial R + -principal bun
dle, so thatM can be equivalently written as (R3 xS I)ld'? and 
appears as generalized Mobius space. Moreover, it can be 
shown that M is also an homogeneous coset space of the 
group G = (R3 X R3)Q«0(3) (ill SO(2)) a ten-dimensional sub
group of 0 2(3). OnegetsM = G /H, whereH denotes the full 
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homogeneous Galilei group. Hence G can be considered as 
the fiber bundle of Galilean frames over M. 

By considering the Maurer-Cartan form over G it is 
easy to verify that M is endowed with a Galilean structure 
and possesses a torsionless Newtonian connection ro with a 
null spatial component curvature. 

In fact, (M,¢,y,rO) is an exact solution of the Newton 
vacuum field equations with a unit reduced cosmological 
constant and is the model of a chronoprojectively fiat New
tonian space-time (see Sec. VII) endowed with a globally 
nontrivial structure over the temporal projective line S I; this 
justifies the denomination of this type of geometry over Gali
lean manifolds. 

Let us consider 0 2(3) as a principal L a-bundle over M. 
0 2(3) can be identified with a chronoprojective structure in 
the following manner: on the one hand, eachfE02(3) is a 
transformation of02(3)/L 0; on the other hand, any neigh
borhood of the origin 0 of02(3)1L ° can be identified with a 
neighborhood of 0 in R4 in a natural way. Then any 2-jet off 
can be considered as a 2-frame of02(3)/L ° and the setf(o) of 
all 2-frames obtained this way defines a chronoprojective 
structure which can be identified with 0 2(3). The Maurer
Cartan form of 02( 3) becomes the natural Cartan connection 
of this chronoprojective structure over M, so it has no curva
ture (and no torsion); moreover, it is clear that 0 2(3) is the 
group of chronoprojective transformations of this chrono
projective structure over the chronoprojective space-time. 

VI. INFINITESIMAL CHRONOPROJECTIVE GALILEAN 
TRANSFORMATIONS 

In the previous sections chronoprojective Galilean 
transformations have been introduced as (local) diffeomor
phisms rp of V4 such that rp induces in a natural manner an 
automorphism '7P of the chronoprojective structure P. Equiv
alently (and by construction) they can also be defined as the 
conformal Galilean transformations of V4 , which prolonged 
to a mapping (p of P I (V4 ) into P I ( V4 ) transform an admissible 
conformal Galilean connection into an L a-equivalent one 
such that (4.7a,b,c) are satisfied. 

Every vector field X on V4 generates a one-parameter 
local group of (local) transformations. 9 This local group of 
transformations prolonged to P I( V4 ) and to P 2( V4 ) induces a 
vector field X 1 onP I( V4 ) anda vector field X /I onP 2( V4 ), then 
we call X an infinitesimal chronoprojective Galilean transfor
mation if the local one-parameter group generated by X in a 
neighborhood of each point of V4 consists of local chrono
projective Galilean transformations. 

It can be shown that the following conditions are mutu-
ally equivalent: 

(A) On p2(V4l: 
(i) X /I is tangent to P at every point of P; 
(ii) the Lie derivative with respect to X /I of the natural 

Cartan connection is zero: Lx" We = 0; 
(iii) the Lie derivative with respect to X /I of the standard 

horizontal vector field B corresponding to t (tER4) is zero for 
everyt· 

The standard horizontal vector field associated with 
eachelementt = (t O,t I,t 2,t 3) ofR4 is the unique vector field 
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B on P with the following properties: 

W;;,(B) = s'\ A = 0,1,2,3, 

(6.1) 

wI(B) = wg(B) = wg:(B) = wt(B) = 0, j,k = 1,2,3. 

(B )OnP 1(V4): (iv) The Lie derivatives with respecttoX' of 
the I-form OJ r = [wo,OJ J of a Galilean connection which in
duces Pand of the canonical I-form e = [eo:o I = I eo, e l , 

j = 1,2,3 J of P I( V4 ) reduced to the L I-structure Q satisfy the 
following properties: 

Lx'wo = -! ((Et +E,)oJl)Wo+{lJ, 

Lx'OJ = 0, 

Lx,e = -! (EsOJljO, 

Lx,eo =! (EtoJl)e 0, 

(6.2a) 

(6.2b) 

(6.2c) 

(6.2d) 

where (; is afunction on Q and Es and Et are two functions on 
V4 which are related by 

Jl *(dEs) = -!Jl * (dEt ) = - (;eo. (6.3) 

[In particular, note that X' is tangent to the L I-structure at 
every point of L 1(V4) c:..... P 1(V4)'] 

(C) On V4 : (v) The Lie derivatives with respect toX of the 
tensors which define the Galilean manifold satisfy thefollow
ing properties: 

LxlJl=Et IJI (6.4a) 

(or equivalently Lx¢ = !Et"/J which implies dEt A ¢ = 0), 

LxY= EsY, (6.4b) 

supplemented by 

K (X, Y) = 17 ® Y + 17( Y) ll. for all vector fields Yon 
V4 , (6.4c) 

where K (X, Y) = R (X,Y) - VyAx, where Ax is the deriva
tion defined by Lx - V x (V denotes the covariant deriva
tion) and R is the curvature tensor of an admissible connec
tion which induces P; ll. denotes the identity tensor of type 
(1,1), while 17 is a covariant tensor field of type (0,1). 

From (a) and (b) we deduce that 

UtEs) = -! U(Et) (6.5) 

and 

(6.6) 

W y(Et) = 0, for any vector field Y, 

where W y denotes the spatial component of Yand U is de
fined in (1.4). Moreover, one gets 

U({;x) = !Et 

where (; is the timelike component of X. 
From (c) we deduce that 

17 = U(Es)¢' (6.7) 

Note that locally (c) is nothing else that the infinitesimal 
form of relation (4.6) which expresses the L a-equivalence. 

By determining all the vector fields X " satisfying (i), (ii), 
and (iii), all the vector fields X' satisfying (iv) and all the 
vector fields satisfying (v) one gets three different realiza
tions of the Lie algebra aut(P,wc ) of the automorphisms of 
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the considered P structure. By the basic theorem recalled in 
Sec. III, one knows that the dimension of this Lie algebra is 
at most equal to 13. Moreover, it is easy to show that if the 
Lie algebra aut(P,wc ) is of dimension 13, the natural Cartan 
connection has vanishing curvature and torsion (the con
verse being in general not true). 

VII. FLAT CHRONOPROJECTIVE GALILEAN 
STRUCTURES. APPLICATIONS TO COSMOLOGY AND 
MECHANICS 

Let P and P , be chronoprojective Galilean structures on 
Galilean manifolds Vand V', respectively. A diffeomorphism 
f V4---+V ~ is called chronoprojective Galilean (with respect to 
P and P ') iff is prolonged to a mapping P 2( V4 ) onto P 2( V ~) 
maps Ponto P'; hence it is a bundle isomorphism, By the very 
definition of P and P', the diffeomorphismf can also be called 
chronoprojective Galilean with respect to the admissible con
nections rand r', which induce P and P', respectively. A 
chronoprojective Galilean structure P is called fiat if, for 
each point of V4 , there exists a neighborhood ud and a chron
oprojective Galilean diffeomorphism of uk' onto an open 
subset of the chronoprojective space-time M, M being taken 
as the standard model of chronoprojectively flat space-time 
by virtue of its properties given in Sec. V. 

From usual argument one can show that a chronopro
jective structue P on a Galilean manifold V4 is fiat if and only 
ifits natural Cartan connection has vanishing curvature, 

The Weyl 's curvature tensor is defined by using the sub
set flw (cf. Sec. IV) of the components of the natural Cartan 
connection curvature of P which generates a 2-form with 
values in the Lie algebra t l and which can be lifted totheL 1-

structure Q identified with the quotient P Ikerp (p denoting 
the linear isotropy representation of L ° defined in Sec. III). 
The Weyl's curvature tensor is of type (1,3), its components 
are expressed as functionals of the Christoffel's symbols r ~" 
of a connection r in Q which induces P, and are invariant 
under the L a-equivalence. One gets 

W~vp = R ;vp + j(8;R(pv) - 8~R(pp)) 
- !(8~Rll'vj - 8~Rll'pj - 28;R lvpj ), (7.1) 

where R ;vp are the components of the curvature of an ad
missible connection in a local coordinate system, R(pv) 
= !(Rl'v + Rvl') and R Il'v j = !(Rl'v - Rvl')' where Rl'v are 
the components of the Ricci tensor given by Rl'v = 

~~~o R ;(7v' 
Then one can show that a chronoprojective structure isfiat if 
and only if its Weyl's curvature tensor vanishes. 

The expression (7.1) is formally identical to the one of 
the projective Weyl's curvature tensor. In fact this means 
that a chronoprojectively flat space-time is globally projecti
vely flat and that the time-constant slices are conform ally 
flat with respect to the induced metric. 

Isotropic Newtonian space-time is chronoprojectively flat 

By Newtonian space-time we mean a Galilean mani
fold (V4 ,¢,y) equipped with a Newtonian connection, i.e., a 
Galilean connection whose curvature fulfills the nontrivial 
identity 
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S·R (X,r(1]))'Y = 1]·R (Y,r(S )):X (7.2) 

for any I-form Sand 1] on V4 and vector fields X and Yand 
which satisfies the field equations given by 2,10 

Ric = (41TGp - A )CJI, (7.3) 

where G is the Newtonian gravitational constant, p is the 
matter density, and A the cosmological constant. Hence a 
Newtonian space-time is just what has been called an admis
sible Galilean manifold in Sec. IV [relation (4.4)]. So the 
chronoprojective geometry is the very geometry associated 
to a Newtonian space-time. 

At each point of V4 one can find a preferred coordinate 
system (a Galilean chart) such that the Newtonian laws of 
gravity correspond to r bo = (/>.j and all other r ~{3 vanish. II 
(/> denotes the Newtonian potential which satisfies Poisson's 
equation .J (/> = 41TGp - A. 
From relation (7.1) it is easy to see that the components of the 
Weyl's curvature tensor vanish except the Wbok compon
ents. Moreover, one checks that the components Wbok van
ish if and only if ajak (/> = j8jk (41TGp - A ). These condi
tions just express the cosmological isotropy hypothesis. 
Therefore, the chronoprojective structure over an isotropic 
Newtonian space-time isjiat. However, this does not entail 
that the automorphism group of the chronoprojective struc
ture over an isotropic space-time reaches its maximal di
mension. 

Let us exhibit two examples for which the maximal di
mension is reached. This will be performed by looking at 
those vector fiels X on V4 which satisfy the system (6.4a,b,c). 

A. The isotropic empty space-time with a cosmological 
constant 

It corresponds to p = O. In a Galilean coordinate sys
tem, let So, S j (j = 1,2,3) denote the components of a vector 

field X which verifies the system (6.4). By setting a = ~A 13 

for A;;.O and a = i~IA 1/3 for A <0, one gets 

SO = c( 1 - cosh2at )/2a2 + b sinh(2at )I a + a, 

S j = L{xk + A j coshat + Vj sinh(at )/a - ~csxj, 

c/ = 4b cosh2at - 2c sinh(2at )Ia, (7.4) 

Cs = 2d - !c/, 
1] = 2(c cosh2at - 2ab sinh2at ) dt, 

where L = [L { J is a rotation matrix belonging to the Lie 
algebra of 0(3) and a, b, c, d, A j, V jEIR. 

The family of vector fields we thus get depends upon 13 
real parameters. The Lie bracket of two such vector fields is a 
vector field of the family and one verifies that the generated 
Lie algebra is 0 2(3), the algebra of the chronoprojective 
group. 

In terms of the above parametrization the commutation 
relations of 0 2(3) are expressed by 
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L" = [L ',L], 

V" =L'V-LV' + V'(b+a) 

- V(b' +d')+aA' -a'A, 

A" =L'A -LA'+ Va'- V'a 

+A(b' -d') -A'(b-d), 
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a" = 2(b 'a - ba'), 

b" = ca' - c'a, 

c" = 2(c'b - cb '), 

d" =0, 

(7.5) 

wherecEg_2' AEg_I' (L, b, d)Ego, VEgI' and aEg2' These re
sults still hold in the case a = 0 which corresponds to A = O. 

From these results one can establish that the local dif
feomorphisms which keep invariant the Galilean structure 
(i.e., which correspond to Cs = 0, c/ = 0, 1] = 0 implying 
a = b = d = 0) generate ten-dimensional Lie subalgebras of 
0 2(3), which are the Galilei Lie algebra if A = 0 and the two 
so-called Newton Lie algebras for A > 0 and A < O. Note that 
these three Lie algebras can be obtained as contractions 
when the velocity of light tends to infinity of three ten-di
mensional subalgebras of the algebra so(4,2), namely, the 
Poincare algebra and the two De Sitter algebras so( 4,1) and 
so(3,2), respectively. 12 

If one looks for the diffeomorphisms (S 0 = 0) which 
keep invariant the leaves of the foliation induced by t/J (slices 
of constant t ), one gets another ten-dimensional subalgebra 
of the chronoprojective algebra which is the semidirect sum 
of the isochronous (derived) Galilei Lie algebra g' by a dila
tion Rd (parametrized by d). Then it is worth noticing that 
0 2(3) can also be interpreted as the derivation algebra of 
g'DRd (where D is the semidirect sum symbol). 

B. The Newtonian cosmological model 

We consider here the Newtonian cosmological model 
No introduced in Ref. 13, which is globally strictly equiva
lent to the Friedmann model. There is no cosmological con
stant (A = 0) and the model is fully determined by the two 
constants Band K in the function q:{r) = (B I K )( 1 - cosha1') 
with a = i.JK for K > 0 and a = fiKT for K < 0, where it has 
been set 1'(t) = f(41TGp(t )/3B )1/3 dt. B can be interpreted as 
the galactic matter density and 1p(1') is related to the Hubble 
coefficient Hby H = 1p(1')-2d1p (1')ld1'. 

The resolution of the system (6.4) now leads to 

f:" 0 ( ) { 2 cosha1' - 1 2b sinha1' } 
~ =1p l' - C + ---+a, 

a 2 a 

f:"j-Lj k Vjcosha1'-l 
~ - k X + 

c = / 

a 2 

A j sinha1' 1 Cs j 

+T-a-- 22 x , 

8 
sinha1' 4b cosh2a1' - cosha1' 

- c--+ 
a cosha1' - 1 

2 
a sinha1' + a , 

cosha1' - 1 

Cs = 2d - !c" 

1] = ( aa
2 

+ 4(c cosha1' - ab Sinh21')) dt, 
cosha1' - 1 

(7.6) 

whereL = [Ljk J is a rotation matrix belonging to 0(3), a, b, 
c, d, A j, V jER. Again the family of vector fields satisfying 
(6.4) depends upon 13 real parameters and generates the Lie 
algebra of the chronoprojective group. This result remains 
valid for a = 0 (K = 0). 
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By looking for the diffeomorphisms which keep invar
iant slices of constant t, once more one gets the semidirect 
sum of the isochronous Galilei Lie algebra by a dilation. But 
the invariance algebra of the the Galilean structure in the 
previously mentioned sense is only the nine-dimensional 
isochronous Galilei Lie algebra which is a subalgebra of the 
in variance algebras of the cosmological constant model. 

A Newtonian model Nil with a cosmological constant 
A can also be considered, which appears as the Newtonian 
analogous of the Friedmann-Gamov-Lemaitre (FGL) mod
el describing the large scale properties of the universe. 14 In 
fact, Nil is strictly equivalent to the FGL model by neglect
ing the radiation pressure, so the expansion of the universe 
can be described by Nil in the present matter-dominated era 
far from a hot period. 

Then it is worth noticing that Nil also admits the maxi
mal 0 2(3) invariance which strengthens the fact that the 
chronoprojective geometry is the very geometry of Newton i
an cosmology. 

Infinitesimal automorphisms of the evolution space of a 
massive test particle 

It has been shown in Ref. 2 thatH (V4 ) endowed with the 
closed 2-form u = m ' () 1\;;;0 can be considered as the evolu
tion space of a freely falling massive (m =1= 0) particle into the 
Newtonian potential <P, which induces the Galilean connec
tion of the configuration space V4 • More explicitly, the leaves 
of the characteristic foliation Ea of er project upon noniso
tropic geodesics of V4 (the possible world lines of the parti
cle), and the quotient H (V4 )1 Ea is a six-dimensional mani
fold: the space of motions of the particle. 

First it is interesting to note that two L 0 -equivalent Gali
lean connections rand r' without torsion, i.e., which belong 
to the same chronoprojective structure P, have the same geode
sics, up to a change of parameter s vs. s', which, according to 
(4.6), must satisfy 

2st/; dxl' + d 2S = 0 . 
I' ds' ds'2 

(7.7) 

Let us then define a geodesic of a chronoprojective structure P 
as a curve Xs in V4 given by 

Xs = il '((expsB )uo) (7.8) 

for some standard horizontal vector field B and for some 
point uoEP, where il' :P-V4 is the projection. It can be 
shown that if one disregards parametrization, every geodesic 
of P is a geodesic of an admissible Galilean connection r 
which induces P such that any tangent vector is an eigenvector 
of the Ricci tensor of r corresponding to a null eigenvalue. 
But according to (4.4) every tangent vector to a geodesic lies 
in the kernel of t/;, so chronoprojective geodesics are space
like and cannot correspond to world lines of freely falling 
massive particles. 

Now let us study the behavior of the presymplectic 
form u under chronoprojective transformations. From (6.2) 
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it is easy to verify that 

Lx·er = - Wc, + 2cs ) 0 il]er, 

and, according to (6.3), X' appears to be an inifintesimal ca
nonical similitude [or a conformal (pre)symplectomor
phism]. Thus it has been shown that the group of (local) 
chronoprojective transformations is a (local) group of auto
morphisms of the presymplectic form and, in particular, the 
Hamiltonian vector fields over H ( V4 ) defined by Lx' u = 0 
generate a particular Lie sub algebra of the chronoprojective 
algebra which is described below. One can see that the two 
above-given realizations of the chronoprojective algebra ob
tained for cosmological models are characterized by 
c, + 2cs = 4d. If d = 0 is set into the chronoprojective Lie 
algebra, one gets a 12-dimensional sub algebra of (P(3) 
known in the literature as the Schrodinger Lie algebra and 
denoted by sch. As a matter of fact, tY 2( 3) :::: sch 0 lRd . There
fore, the Hamiltonian vector fields over V4 correspond to 
d = 0 and generate either the whole Schrodinger Lie algebra 
or only a subalgebra of it according to the considered model 
of space-time. 

Finally, it can be shown that "accidental" symmetries 
in various problems such as the rising of the Lie algebra 
&2(3) EB J 2 of canonical simplitudes of the Kepler problem 
(virial theorem) and of the Lie algebra &(3) EB &(2,1) 15 of 
canonical transformations of the phase space of a charged 
particle moving in the field of a magnetic monopole can be 
introduced as chronoprojective transformations. If> 
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Time-dependent vector constants of motion, symmetries, and orbit 
equations for the dynamical system r = fr([V(t)/U(t)}r - [J-Lo/U(t)}r- 2
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The most general time-dependent, central force, classical particle dynamical systems (in n
dimensional Euclidean space, n = 2 or 3) of the form (a) r = lr F(r, t), (r-r· r, 
r = I k Xk , k = 1, .. . ,n), which admit vector constants of motion of the form (b) 
1= U(r, t)(LXv) + Z(r, t)(Lxr) + W(r, t)r (L rXv,v f)areobtained.ltisfoundthattheonly 
class of such dynamical systems is (c) r = lr( UU -Ir - fLoU -l r -2), for which the concomitant 
vector constant of motion (b) takestheform(d)I = U(LXv) - U(Lxr) + fLor-lr, wherein (c) and 
(d) U = U(t) is arbitrary (#0). The dynamical system (c) includes both the time-dependent 
harmonic oscillator and a time-dependent Kepler system. Based upon infinitesimal velocity
independent mappings the complete symmetry group for the dynamical system (c) is obtained. 
This complete group of [2 + n(n - 1)/2] parameters contains a complete Noether symmetry 
subgroup of [1 + n(n - 1)/2] parameters. In addition to the n(n - 1)/2 angular momenta, there is 
an energy-like constant of motion also associated with the Noether symmetries. By means of the 
vector constant of motion (d), the orbit equations of the dynamical system (c) are obtained. A one
dimensional procedure for obtaining constants of motion developed by Lewis and Leach is 
applied to the effective one-dimensional system concomitant to (c). Relations between constants 
of motion so obtained and those mentioned above are determined. 

PACS numbers: 03.20. + i, 95.1O.Ce, 41.70. + t 

1. INTRODUCTION time-dependent dynamical system (1.4), (1.5) were easily in
tegrated. It is well known that the classical time-independent 

Kepler dynamical system 1.2 

r" = ~ <Po 
-

lr 7' <Po=const, 

(1.1) 

(n = 2 or 3) admits the Laplace-Runge-Lenz vector con
stant of motion 

Ao <P 0- I(LXv) + r/r, V-f, 

where 

L=rXv 

is the angular momentum. 3 

( 1.2) 

(1.3) 

In a recent paper4
•
5 we determined all time-dependent 

dynamical systems of the form 

r=lr<P(t)/r, (1.4) 

which admitted quadratic constants of motion with explicit 
time dependence. In particular it was shown for the choice 

<P (t) "to/(at +,8), a,,8, "to=consts, (1.5) 

that the time-dependent Kepler system (1.4) admits the time
dependent vector constant of motion6 

at +,8 a r 
A_ --(LXv) - - (Lxr) + -. 

"to "to r 
(1.6) 

This time-dependent system (1.4), (1.5) with concomitant 
vector constant of motion (1.6) is a generalization of the time
independent system (1.1) with concomitant vector constant 
of motion (1.2). By use of(1.6) the orbit equations for the 

In this present paper we continue with the analysis of 
time-dependent central force dynamical systems which ad
mit vector contants of motion. We determine the most gen
eral (central force) dynamical system of the form (n = 2 or 3) 

r = lr F(r, t), (1.7) 

which admits a vector constant of motion of the form 

1= U(r, t )(LXv) + Z (r, t )(Lxr) + W(r, t Jr. (1.8) 

The class of dynamical systems (1. 7) with concomitant con
stant of motion of the form (1. 8) includes the dynamical sys
tem (1.4), (1.5) with constant of motion (1.6). 

In Sec. 2 we determine the unknown functions F(r, t), 
U(r, t), Z(r, t) and W(r, t) appearing in (1.7) and (1.8) and 
thereby obtain the class of central force systems (1.7) with 
their associated time-dependent vector constants of motion 
(1.8). This result is summarized in Theorem 2.1 and Corol
lary 2.1. 

In Sec. 3 we determine the complete groups of dynami
cal symmetries of the class of dynamical systems obtained in 
Sec. 2. These symmetries are based upon infinitesimal map
pings which are functions of Xi and t (velocity-independent). 
It is shown that the above-mentioned complete group of 
symmetries includes a subgroup of Noether symmetries, and 
the concomitant Noether constants of motion are obtained. 
In addition to the anticipated angular momenta, these 
Noether constants of motion include a time-dependent "gen
eralized energy" integral. The vector constants of motion of 
the form (1.8) are not among these Noether constants ofmo-

1761 J. Math. Phys. 24 (7), July 1983 0022-2488/83/071761-11 $02.50 © 1983 American Institute of Physics 1761 



                                                                                                                                    

tion. The results of Sec. 3 are summarized in Theorems 3.1 
and 3.2. 

In Sec. 4 a procedure is formulated for obtaining the 
orbit equations for the class of dynamical systems derived in 
Sec. 2. This procedure is based upon the concomitant vector 
constant of motion (1.8). 

In Sec. 5 we determine the subclass of those dynamical 
systems obtained in Sec. 2 for which the force F (r, t ) is pro
duct-separable. 

In Sec. 6 we give several examples which illustrate the 
procedure of Sec. 4 for determining the orbit equations. 

In Sec. 7 a one-dimensional procedure for obtaining 
constants of motion developed by Lewis and Leach 7 is ap
plied to the effective one-dimensional dynamical system as
sociated with the dynamical system determined in Sec. 2. 
Relations between the constants of motion so obtained and 
those derived in Sees. 2 and 3 are determined. 

2. DETERMINATION OF F, U, Z, W 

For I (1.8) to be a constant of motion of the dynamical 
system (1.7) we must have2 

i~o. (2.1) 

After forming the total time derivative i of(1.8) we eliminate 
r by (1.7) and replace Lxr and Lxv, respectively, by 

Lxr=yZv - (r· v)r, (2.2) 

Lxv (r· v)v - v2r, v2 = v· v. 

This leads to the equation 

i ~ v[ (r· V)2 u'r 

+ (/V)(U. t +Z+rZ.r)+rUF+yZZ.t + W] 

+ r[ _ v2 (r· v) U.r + v2(U.t + Z) _ (r· V)2 Zr 
r r 

(2.3) 

- (r • v) (U: + Z.t - + w:r) + W:t ] ~ O. (2.4) 

When (2.4) is expressed in rectangular coordinates 
Xl, x 2

, ... ,xn (n = 2 or 3), we obtain after rearrangement 

X ij-:i.im [(8~x ixj - 8 ;"xjx k )(1!r)U.r ] 

+x'xj[8 kxi(U +Z+rZ ) } ,I ,r 

- 8 jxk(U.t + Z) - X ixjX k(1!r)Z.r] 

+ x '[ 8 7(rUF + yZZ.t + W) 

- XiXk [UF /r + Z.t - (1!r)W:r] 1+ XkW:t ~ O. (2.5) 

In order that (2.5) hold identically in the x's it follows 
(after appropriate symmetrization) that 

(l/r)U [8 mxixj - 8 '!'xjx k + 8 j xixm - 8 mxmxk 
.r k I k ) 

(2.6) 

W, + Z + rZ.r)(8 ;Xi + 8 7x j) - 2(U.t + Z)8 jx k 

- (2/r)Z.rx ixjX k = 0, (2.7) 

(rUF + yZZ.t + W)8 7 - (1!r)(UF + rZ.t - W:r)xixk = 0, 
(2.8) 

W. t =0. (2.9) 

From (2.9) we have 
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W=W(r). 

From (2.8) with i=lk it follows that 

UF + rZ.t - W:r = O. 

(2.10) 

(2.11) 

Hence by use of (2.11) in (2.8) with i = k it follows that 

UF + rZ.t + W /r= O. (2.12) 

In (2.7) by contraction on i and} we obtain 

U. t + Z = O. (2.13) 

Use of(2.13) in (2.7) followed by contraction on} and k gives 

Z.r = O. (2.14) 

Hence 

Z=Z(t). (2.15) 

By contraction on m and k in (2.6) we obtain 

U. r(nx ix j -8jyZ) =0. (2.16) 

Ifin (2.16) we choose i =} (not summed), we find (since n > 1) 

U. r = O. (2.17) 

Hence 

U= U(t). (2.18) 

It now follows from (2.13), (2.15), and (2.18) that 

ZIt) = - U(t). (2.19) 

From (2.10), (2.11), and (2.12) we obtain 

dW + W = O. (2.20) 
dr r 

Integration of (2.20) gives 

W = flr/r, flo = const. (2.21) 

By means of (2.19) and (2.21) we find that each of (2.11) 
and (2.12) reduces to 

UF - rV + flo/yZ = O. (2.22) 

We exclude the case U = 0, since (2.19), (2.21), and 
(2.22) then imply Z = W = 0, and hence by (1.8) 1-0. 

From (2.22) we find 

F(r, t) = (V /U)r- (1!U)flo/yZ. (2.23) 

We have thus proved that (2.18), (2.19), (2.21), and (2.23) 
[where U (t )=10, but otherwise arbitrary] are necessary for 
(2.5) to hold. By inspection it is easily seen that these condi
tions are also sufficient. 

We summarize the above work in the following 
theorem. 

Theorem 2.1: A necessary and sufficient condition that 
a time-dependent central force dynamical system (of two or 
three dimensions) of the form 

r = Ir F(r, t), ( 1.7') 

where r = Irr is the radius vector from the center of force, 
admits the time-dependent vector first integral of the form 

1= U(r,t)(LXv) +Z(r, t)(Lxr) + W(r,t)r (v r) (1.8') 

is that 

U = U (t) =10 (otherwise arbitrary), 

Z= - U(t), 
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W = poIr, Po = const, 

F = (t; IU)r - (l/U)J..lolr. 

The dynamical system (1.7') and its concomitant vector first 
integral (1.8') will then have the respective forms 

r = ir[(t; IU)r - (l/U)polr], (2.24) 

1= U(t )(LXv) - U(t )(LXr) + porlr. 0 (2.25) 

For the case Po = 0, the dynamical equation (2.24) re-
duces to the form of a time-dependent oscillator. 8.9 Hence we 
may state the following corollary. 

Corollary 2.1: The time-dependent oscillator (in two or 
three dimensions) 

r = iT (t; I U )r, U (t) #0, otherwise arbitrary, (2.26) 

admits the time-dependent vector constant of motion 

1= U(LXv) - U(Lxr). 0 (2.27) 

Remark 1: In the rectangular coordinates the time-de
pendent oscillator (2.26) has the form 

Xi - (V IU)xi = 0, (2.28) 

which has the general solution 

Xi = a iU + b iUS, ai, b i=consts, 

where 

(2.29) 

(2.30) 

Remark 2: When expressed in rectangular coordinates 
x i the components of the vector constant of motion I (2.27) 
lead to the constants of motion F i , 

(2.31) 

The pi are Noether constants ofmoti(\ll of the time-depen
dent oscillator. This may be verified by taking (V- - ~ V I U 
and C i = Uin Eqs. (6.21) and (6.25) of Ref. 9. 

Remark 3: For the case Po = I, U=(at+p)lAo 
(a, p, Ao = const), the dynamical system (2.24) and constant 
of motion (2.25) reduce, respectively, to the time-dependent 
Kepler system (1.4), (1.5) and constant of motion (1.6).4 

3. SYMMETRY MAPPINGS OF THE DYNAMICAL 
EQUATION (2.24) 

In the preceding sections we determined which central 
force dynamical systems (1.7) admit vector constants of mo
tion of the form (1.8). This led to the class of dynamical 
systems (2.24) with concomitant vector constant of motion 
(2.25). 

In this present section we shall determine the symme
tries of the dynamical equation (2.24), which in rectangular 
coordinates takes the form 

. . (V . 110 Xi) _2 . . E '==.X' - _X'- c..-_ = 0 r _D··X'X l 

U U r ' I)' 
(3.1) 

where U = U (t ) # 0 and Po # o. 10 For generality in the sym
metry analysis we shall consider (3.1) to be an n-dimensional 
dynamical system for arbitrary n (i.e., for n> 1). 

These symmetries will be based on infinitesimal map
pings of the form 
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Xi = X i + Dx i, Dx i=5 '(x, t )Da, 

t = t + Dr, Dr =5 0(X, t )Da. 
(3.2) 

The procedure for obtaining symmetries of (3.1) is deter
mined by the requirement that DE' = 0 whenever E' = O. 
For systems derivable from a Lagrangian this process will in 
general include Noether symmetries as a subcase. This pro
cedure for obtaining symmetries is discussed in complete 
detail in previous papers. II In the paper referred to in Ref. 9 
it is shown that for any dynamical system based upon a La
grangian of the form 

(3.3) 

(where x i are rectangular coordinates in an n-dimensional 
Euclidean configuration space), the above-mentioned sym
metry procedure leads to mapping functions 5 i , 5 ° of the 
form 

5 i = Aj(t )xjx i + B j(t)xj + C i(t), 

50 =Aj x) +B(t), 

(3.4) 

(3.5) 

where thefunctionsAj (t ),B (t), B j(t), and C' (t ) appearing in 
(3.4) and (3.5) must satisfy the conditions l2 

. .. k .. . 
Ak V,k D;" + Urn V,i - (AkX + B)D;" 

+ 2(Amx i + Akx kD ~ +.8;,,) = 0, (3.6) 

-(AkXi+AmxmD~ +B~Wk 

+ 2(Amx m + in V,i 

+ V,ik(Am xmxk + B :'xrn + C k) 

+ V,it(Amxm+B)=O. (3.7) 

For the dynamical system (2.24) it follows that the po
tential energy V appearing in (3.6) and (3.7) is given by 

I U _2 I Po 
V(x,t)= - 2" U r - u7' (3.8) 

We now proceed with the solution of(3.6) and (3.7) for 
the functionsA k , B;", and C i

. By means of(3.8) we elimi
nate the V derivatives in (3.6) and obtain 

We consider the two cases n > 1 and n = 1. 

Case 1, n> 1 (Po#OPO 

In (3.9) consider m #i and differentiate with respect to 
xm to obtain 

Hence (3.lO) implies 

Ak = 0 (k = l,oo.,n). 

Use of(3.11) in (3.9) gives 

2.8 ~ - iJD ~ = O. 

G. H. Katzin and J. Levine 
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Integrating (3.12), we obtain 

B; = Vl (t)c5 5 + b 5, b 5 = const. (3.13) 

It follows that (3.11) and (3.13) are necessary and suffi
cient to satisfy (3.9). This leaves (3.7) to be solved. 

Use of(3.8), (3.11), and (3.13) in (3.7) followed by multi
plication of the resulting equation by r leads to 

r{(c i
- ~Ci) 

.[ 1 .. · . U (- U UU )]} 
+x' '2 B - 2B U +B U- + [j2 

+ flo x iX kX m [( J... E _ B U )c5 k _ 3b k ] 
U 2 U m m 

+ flo xkxm(c ic5 ~ _ 3C kc5~) = 0. 
U 

(3.14) 

Since n > 1, r is irrational in the x's. It follows thatthe coeffi
cient of r in (3.14) must vanish because the remainder of the 
terms in (3.14) are polynomials in the x's. Since the coeffi
cient of r is a polynomial in the x's, we are thus led to the 
conditions 

Ci - (U /U)C i = 0, (3.15) 

!B - 2EU /U + B( - U /U + UU /U 2
) = 0, (3.16) 

(Vl- BU /U)c5 ~ - ~(b ~ + b;;') = 0, (3.17) 

Cic5~ -~(Ckc5~ +cmc5~)=O. 

From (3.18) it follows that 

Ci=O. 

From (3.17) we obtain 

b ~ + b ;;' = 0, m =I- k, 

Vl- BU /U - 3b;;: = ° (m not summed). 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

From (3.21) it follows that 

b: = b ~ = ... = b ~ -b l = const (3.22) 

and 

E - 2BU /U = 6b l . (3.23) 

Equation (3.23) can be solved for B (t) to give 

B (t) = b2 U 2 + 6b 1S, S f U -2 dt, b2 = const. (3.24) 

Equations (3.20) and (3.22) may be combined to give 

b i - i+b"i i_ j- t j - W j IU j' W j - - Wi - cons. 

By use of (3.25) we may express (3.13) in the form 

B 5 = (Vl + bl )c5 j + W j. 

(3.25) 

(3.26) 

Equation (3.16) remains to be satisfied. A straightfor
ward calculation based on (3.23) shows that (3.16) is satisfied 
identically. 

Equations (3.11), (3.19), (3.23), and (3.26) are necessary 
conditions for the two basic equations (3.9) and (3.14) to be 
satisfied. It is easily shown that these four conditions are also 
sufficient. By use of these four conditions the mapping func
tions 5 i and S° of(3.4) and (3.5) are determined to have the 
form 

5 i = b l (6UUS + 4)x i + b2( UU)x i + W jx j, (3.27) 
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(3.28) 

Hence the symmetry mappings of the dynamical equations 
(2.24) are given by (3.2), (3.27), and (3.28). As is known these 
mappings will include Noether mappings as a special case. 13 

We now investigate which of the mappings determined 
by (3.2), (3.27), and (3.28) are Noether mappings. A mapping 
of the form (3.2) will be a Noether mapping ifand only if 
there exists a function T(X, t) which satisfies the equation 13 

d dT 
c5.st' + X - & = - - c5a. 

dt dt 
(3.29) 

Expansion of (3.29) [with use of the relation 13 c5x' 
= (t' -x'tO)c5a] gives 

a.st' (t '- x 'to) + ax 5' + ax S° + xto + ~ = 0. 
ax' ax' at 

(3.30) 

If(3.27), (3.28) and the Lagrangian.st' as determined by (3.3) 
and (3.8) are substituted in (3.30), the resulting equation may 
be written in the form 

x'x'[b l ] +x'[6b l (U
2S+ UUS+ U-IU)x' 

+ b2(U
2 + UU)x' + T. i ] 

+ bl [,-2(9UUS + 7U /U + 3UUS) + 2flolrU] 

+ b2 [!,-2(3UU + UU) + T. l ] = 0. (3.31) 

Equation (3.31) must hold identically in the x's. Since 
(3.31) is a polynomial in the x's, we obtain the conditions 

b l =0, 

T .• = - b2( U 2 + UU)x', 

T.l = - !b2,-2(3UU + UU). 

(3.32) 

(3.33) 

(3.34) 

It is found that the integrability conditions To'j = Toj' 

and To'l = Tol' are identically satisfied. The solution for T is 
easily found from (3.33) and (3.34) to be 

T = - !b2,-2(U 2 + UU). (3.35) 

(The constant of integration has been dropped.) 
Hence in order for the mapping functions (3.27) 

and(3.28) to define a Noether mapping, it is necessary and 
sufficient that bl = ° and that T have the form (3.35). (The 
sufficiency is easily proven.) 

We now return to the general symmetry solution de
fined by (3.2), (3.27), and (3.28) in order to obtain a set of 
generators which define the complete group of dynamical 
symmetries, and also to determine the subgroup of Noether 
symmetries. Since in these symmetry solutions bl' b2, and 
the n(n - 1)12 W j's are arbitrary constants, this leads to the 
following 2 + n(n - 1 )/2 mapping vectors. 

5 '(bl) = (6UUS + 4)x', 50 (btl = 6U 2S, (3.36) 

5 '(b2 ) = UUx', 5°(b2 ) = U 2
, (3.37) 

5'(wi)=c5~xj-c5jxk, SO(wi) =0. (3.38) 

From (3.36)-(3.38) we find the concomitant generators 
of the form X =5' a, + 50a, to be, respectively, 

BI = (6UUS + 4)x'a, + 6u 2sa" 

B2 = uUx'a, + u 2a" 

G. H. Katzin and J. Levine 
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{}ij =Xiaj -xjai . (3.41) 

These generators define the [2 + n(n - 1 )/2]-param
eter complete group of dynamical symmetries with group 
algebra 

[Ba' {}ij] = 0, a = 1,2, 

[BI' B 2] = - 6B2 , 

(3.42) 

(3.43) 

[{}ij' {}k/] = Djk{}i/ - Djl{}ik - Dik{}j/ + Dj/{}jk' (3.44) 

As determined above, in order for mapping functions 
5 i and 5 ° of (3.27) and (3.28) to define a Noether symmetry, 
we must set b l = O. Hence the generators defining the sub
group of Noether symmetries are B2 and the {}ij' This sub
group defines the (complete) [1 + n(n - 1)12]-parameter 
group of Noether symmetries. 

Case 2, n = 1 (#0#0)10 

It is easily shown in this case [that is, for the one-dimen
sional dynamical system (3.1)] that the symmetry mapping is 
again given by (3.27) and (3.28) (with b l = 0 for the Noether 
symmetry). 

Weare now prepared to state the following theorem. 
Theorem 3.1: A necessary and sufficient condition that 

the n-dimensional (n> 1) dynamical equations (Xi rectangu
lar coordinates) 

Xi = (U /U)xi - (flolU)xi /r, 

U=U(t), arbitrary (#0), #0#0, (3.1/) 

associated with the Lagrangian [refer to (3.3) and (3.8)] 

Sf' = !DijX i x j + !(U /U)r - (l/U)#oIr, 

r=Dijxix j , 

admit infinitesimal symmetry mappings of the form 

Xi = Xi + 5 i (X, t )Da, 

t = t + 5 0(x, t )Da, 

is that 

5 i = b l (6UUS + 4)x i + b2 UUx i + cu jx j , 

S° = bl (6U 2S) + b2 U 2
, 

(3.45) 

(3.46) 

(3.27') 

(3.28/) 

where S-fU -2 dt and b l , b2, and cu j (= - cu~) are arbi
trary constants. The mapping vectors (3.27') and (3.28/) de
fine a complete group of dynamical symmetries of 
2 + n(n - 1 )/2 parameters with generators defined by 

BI=(6UUS + 4)xiai + 6U 2Sat> (3.39/) 

B 2=UUX
i ai + u 2a" 

{}ij==X iaj - xjai . 

These generators have the group algebra 

[Ba' {}ij] = 0, a = 1,2, 

[B I , B 2 ] = - 6B2, 

(3.40/) 

(3.41/) 

(3.42/) 

(3.43/) 

[{}ij' {}k/] = Djk{}j/ - Dj/{}ik - Dik{}j/ + Dj/{}jk' (3.44/) 

The mappings (3.46) defined by (3.27') and (3.28/) with b l = 0 
are Noether mappings wherein 

r(b2 ) = - !b2r( UU + U2
), (3.47) 
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'T(cu J) = O. (3.48) 

These mappings define the [1 + n(n - 1)12]-parameter 
complete group of Noether symmetries (with generators B2 
and {}')) which is a subgroup of the above-mentioned group 
of [2 + n(n - 1 )/2] parameters.D 

Concomitant with each Noether symmetry mapping 
there will exist a Noether constant of motion of the form l3 

I = aSf' £- i _ ( aSf' Xi _ Sf') 5 0 + 'T. (3.49) 
N ax' ~ ax' 

Hence we may state the following theorem. 
Theorem 3.2: The dynamical system described in 

Theorem 3.1 admits the 1 + n(n - 1 )/2 Noether constants 
of motion: 

IN (b2 ) 

= UUXiXi - U 2 (!DijX'X
j 

- [!(U /U)r + (flolU)l/r]J 

- !( UU + U2)r ~ k, (3.50) 

IN(cu j) = X ixj - xjx i. 0 (3.51) 

Remark 1: Note that in (3.50) the term in the braces is 
the total energy [refer to (3.8)]. 

Remark 2: The Noether constants of motion (3.50) and 
(3.51) (based upon the complete group of Noether symme
tries of Theorem 3.1) do not include the constants of motion 
which are the components (in rectangular coordinates) of the 
vector constant of motion I [(2.25)]. 14 

Remark 3: It is of interest to note (n = 2 or 3) that the 
vector constant of motion I [(2.25)], the Noether constant of 
motion IN (b2 ) [(3.50)], and the angular momentum L [(1.3)] 
associated with the time-dependent dynamical system (2.24) 
are functionally related in that 

I· I = - 2IN (b2)L· L + fl~. (3.52) 

A similar dependence between analogous constants of mo
tion A, L, and E3 was found for a time-dependent Kepler 
system.4

•
6 This same functional dependence also exists 

between the Laplace-Runge-Lenz vector constant of motion 
Ao, angular momentum L, and energy E for the time-inde
pendent Kepler system. (See, for example, Ref. 1, Chap. 3.) 
These similarities are not unexpected since the time-depen
dent dynamical system (2.24) includes both of the above
mentioned Kepler systems. 

Remark 4: In obtaining the complete Noether symme
try group ofthe dynamical system (3.1), we assumed flo # 0 in 
order to exclude the case of the time-dependent oscillator for 
which the complete Noether symmetry group is 
known. 9

,15,16 It turns out however that the Noether symme
tries so obtained (with #0 # 0) form a subgroup of the com
plete N oether symmetry group for the time-dependent oscil
lator. Hence the Noether constant of motion IN (b2 ) with 
flo = 0 given by (3.50) will bea Noether constant of motion of 
the time-dependent oscillator (2.26). In fact, if we assume 
#0 = 0 in In (b 2 ), then it reduces to one of the Noether inte
grals C2(B) given by Eq. (6.24) of Ref. 9. This is easily verified 
bytakingcu(t)= - ~U /U,B(t)_U 2 ,andco = OinEqs.(6.24) 
and (4.13) of Ref. 9. 

Remark 5: For the case U = (at + f3 )lllo, flo = 1, the 
dynamical system (3.1) reduces to the time-dependent 
Kepler problem (1.4), (1.5) (discussed in Ref. 4), and the 
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Noether constant of motion IN (bz) given by (3.S0) reduces to 
the Noether constant of motion I t( f-Lz) of this time-depen
dent Kepler problem [Eq. (4.28) of Ref. 4]. 

4. ORBIT EQUATIONS 

We now develop a procedure based on use of the vector 
constant of motion (2.2S), which in general will lead to the 
orbit equation for the dynamical system (2.24) determined by 
a given function U(t). 

In two dimensions the vector constant of motion (2.2S) 
may be expressed in terms of rectangular coordinates in the 
form 

1= 'iJx + 'iyly, 

where 

(4.1) 

Ix ~ lo( - Uy + Uy) + f-LoXlr ~ kx' kx = const, (4.2) 

Iy ~ lo(Ux - Ux) + f-Loylr ~ ky, ky = const, (4.3) 

and the angular momentum L (1.3) reduces to 

L z = (xy - yx) ~ 10, 10 = const. (4.4) 

In terms of the plane polar coordinates r, 1/>, Eqs. (4.2), 
(4.3), and (4.4) take the respective forms 

(f-Lo -/orU¢ )cos I/> - lo( Ur - Ur)sin I/> ~ kx, (4.S) 

(f-Lo - 10rU¢ )sin I/> + lo( Ur - Ur)cos I/> ~ ky, (4.6) 

L (r, ¢) r¢ ~ 10 , (4.7) 

Equations (4.S) and (4.6) are solved for the coefficients 
of the sin I/> and cos I/> terms to obtain 

f-La - 1 ~ U/r ~ kx cos I/> + ky sin 1/>, (4.8) 

la( Ur - Ur) ~ ky cos I/> - kx sin 1/>, (4.9) 

where ¢ was eliminated by use of (4.7). 
Define the function M(I/» by 

M (I/» f-La - kx cos I/> - ky sin 1/>. (4.10) 

By means of(4.1O), Eqs. (4.8) and (4.9) may be written in the 
respective forms 

U(t) ~ rM(1/> )II~, 
Ur - Ur ~ - M'lla, 

(4.11) 

(4.12) 

where the prime indicates differentiation with respect to 1/>. 
In order to obtain the orbit equation in the form 

r = r(1/> ), it is convenient to make the change in variable 

r = 1Iu, (4.13) 

where we regard u = u(I/». By means of(4.7) and (4.13) we 
find 

¢ ~ lou z. 

By use of (4.13) and (4.14) it then follows that 

r=-Iau', 

.. ...:... 12z " r-- aUU' 

(4.14) 

(4.1S) 

(4.16) 

Equations (4.11) and (4.12) transform into the respec
tive forms 

1766 

U(t) ~ M(I/> )11 ~u, 
u'M - uM' + IoU ~ O. 

(4.17) 

(4.18) 

When the dynamical equation (2.24) is expressed in the 
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plane polar coordinates r, 1/>, we obtain 

r - r¢ z ~ (iI IU)r - (1IU)f-LoIr, 

r¢ + 2r¢ ~ O. 

(4.19) 

(4.20) 

By means of (4.13), (4.14), (4.16), and (4.17) the dynamical 
equation (4.19) is transformed to 

u"+u~ -(1IuZM)(iI-f-Lau3). (4.21) 

It is immediate that (4.20) integrates to (4.7) and hence to 
(4.14). 

We shall now show how (4.17) and (4.18) can be used to 
derive the orbit equations. 

In terms of the definition 

w ulM 

we express (4.17) in the form 

U(t) ~ 1/1 ~w. 

(4.22) 

(4.23) 

We assume (4.23) can be solved for t in terms ofw in the 
form 

t ~ a(w). 

Hence U (t ) can be expressed in the form 

U(t) ~p(w) 

for some function p(w). 

(4.24) 

(4.2S) 

We divide (4.18) by M z and make useof(4.22) and (4.2S) 
to obtain 

w' ~ - (lolMZ)p(w). (4.26) 

Equation (4.26) can be rewritten in the form 

G (w) ~ 7(1/> ), 

where 

G(w) f dw , 
p(w) 

7(1/> )- - 10 f ::z + ka, 

and ka is an arbitrary constant. 17 

From (4.27) we may write 

W=Q(7) 

for some function Q (7). 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

By use of(4.13) and (4.22), we obtain from (4.30) the 
orbit equation in the r = r(1/> ) form 

u = 1Ir = M (I/> )Q [7(1/> I]. (4.31) 

It is not difficult to show that the orbit equation (4.31) 
satisfies the dynamical equation (4.21). 

5. SEPARABLE FORCES 

Preliminary to illustrating the procedure of Sec. 4 for 
obtaining orbits, we determine the functions U (t ) for which 
the time-dependent central force F (r, t ) (~O) [given in (1.7) 
and (2.24)] has the separable form 

F(r, t)_(iI IU)r - (1IU)f-Loir 
=T(t)R(r). (S.l) 

Note first that if f-La = 0, then condition (S.I) is immediately 
satisfied. Hence in the analysis to follow we assume f-La # o. 
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Multiplication of(5.1) by U(t) followed by differenti
ation of the result with respect to t leads to 

Ur = R (r)(UT + UTI. (5.2) 

r=i,[ ~r- ~~], U= U(t), 

be expressible in the separable form 

r=irT(t)R(r) 

(2.24') 

(5.20) In (5.2) consider the two cases 

(i) U=O, (5.3) is either 

(ii) U #0. (5.4) (i) the function U (t) has the form 

For case (i) 

U(t) = at z + bt + c, a, b, c = canst. (5.5) 

It follows from (5.5) and (5.2) [sinceR (r)#O] that T(t )maybe 
expressed in the form 

T (t) = AoIU = AoI(at 2 + bt + c), Ao = canst #0. (5.6) 

Hence from (5.6) and (5.1) we find 

R (r) = (11 Ao)(2ar -flolr). 

It follows from (5.6), (5.7), and (5.1) that for case (i) 

F(r, t) = [lI(a! 2 + bt + c)](ar -flolr). 

(5.7) 

(5.8) 

For case (ii) (which assumes U #0) we find from (5.2) 
that [note from (5.2) and (5.4) that UT + UT #0] 

U /(UT + UTI = R (r)lr = ao, a o = canst #0. (5.9) 

From (5.9) it is seen that 

R (r) = aor. (5.10) 

Use of(5.1O) in (5.1) leads to 

Ur -flolr = aoUTr, (5.11) 

which may be rewritten in the separable form 

U - aoUT = flol~. (5.12) 

It follows from (5.12) that 

r = ro = canst. 

Hence from (5.1O) 

R (r) = aoro. 

From (5.13) and (4.7) it follows that 

~ = lolro = canst. 

Hence form (4.19), (5.1) (5.13), and (5.15) we find 

U 1 flo I ~ 
-ro- -- = - -. 
U Uro r6 

From (5.16) we obtain 

U + W ~ U = flol?o, W ~ I ~/r6. 

Equation (5.17) gives 

U (t ) = A I cos wot + Az sin wot 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

+roflo/l~, AI,Az=consts. (5.18) 

Comparison of(5.12), and (5.17) with useof(5.13) shows 

T= -/~/aor6. (5.19) 

It is easily verified that (5.14), (5.16), and (5.19) are consistent 
with (5.1) [with r = roJ. 

We may now state the theorem to follow. 
Theorem 5.1: A necessary and sufficient condition that 

the dynamical equation 
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U(t) = at 2 + bt + c, a, b, c-consts, (5.5') 

in which case the dynamical equation (2.24') takes the form 

r = ir[lI(at Z + bt + c)](ar -flolr); (5.21) 

or 

and 

(ii) the function U (t ) has the form 

U (t) = AI cos wot + A2 sin wot + ro floll ~, 

W ~-I ~/r6, AI' A2=const, 

r = ro = canst, 

(5.18') 

(5.13') 

in which case the dynamical equation (2.24') takes the form 

r= -iJ~/r6. D (5.22) 

Remark: The necessity was proved above, and the suffi
ciency easily follows. 

6. ILLUSTRATIVE ORBIT EXAMPLES 
Example 1: U(t)-at~ a> 0 

As our first example we choose 

U(t )=at 2, a> O. (6.1) 

This choice for U(t) is a special case of(5.5) which leads to a 
separable force F(r, t) [obtained from (5.8) with b = c = 0]. 
Use of(6.1) in (2.24) gives the dynamical equation 

r = i,(lIat 2)(2ar -flolr). (6.2) 

We now obtain the orbit equation for the dynamical 
system (6.2). Following the discussion of Sec. 4, we have 
from (4.22), (4.23), and (6.1) that 

at2=1I/~w. 

Equation (4.24) now takes the form 

t = lI(al ~w)1/2-a(w). 

From (6.1) and (6.4) we find (4.25) becomes 

U(t) = 2a/(al ~W)1/2 p(w). 

Equation (4.26) now takes the form 

(6.3) 

(6.4) 

(6.5) 

, 0 10 2a ( ,_ dw ) (66) 
w = - M2 (a/~w)1/2' w= dtjJ . . 

[Refer to (4.10) for the definition of M = M (tjJ ).] By integra
tion of (6.6) we have 

J (a/~w)1/2 - - J dtjJ 
-,---...c..-._ dw - 10 2 + ko. 

2a M 
(6.7) 

Hence, by inspection of (6.7), Eqs. (4.28) and (4.29) take the 
respective forms 

J (a/~w)I/Z G(w)= dw, 
2a 

(6.8) 
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(6.9) 

By carrying out the integration of the left-hand side of (6.7) 
we obtain 

(6.10) 
_ 3koal/2 

Co=---· 
10 

[Equation (6.10) should be compared with (4.30).] By use of 
(4.10), (4.13), and (4.22) in (6.10) we obtain the explicit orbit 
equation (4.31) in the form 

..l = (110 - kx cos ifJ - ky sin ifJ) 
r 

Example 2: U{t)=afl'(, a> 0 

As a second example we choose 

(6.11) 

U(t)=aebt
, a>O. (6.12) 

In this case the dynamical equation (2.24) becomes 

r = lr [b 2r - (e - bt la)l101r]. (6.13) 

The orbit analysis proceeds as follows. We find from 
(4.22), (4.23), and (6.12) that [corresponding to (4.24)] 

t= -(l/b)ln(awI6) oiw). (6.14) 

From (6.12) and (6.14) we obtain 

i.J = b 116w p(w). (6.15) 

Hence (4.26) takes the form 

dw b 
difJ = - lowM2' 

(6.16) 

from which we find 

[ 
2b f difJ )1/2 W = - - --2 + 10 , 
10 M 

ko = const. (6.17) 

From (4.22) and u = lIr we find from (6.17) and (4.10) the 
orbit equation 

..l = (110 - kx cos ifJ - ky sin ifJ) 
r 

(6.18) 

7. LEWIS-LEACH TECHNIQUE APPLIED TO THE ONE· 
DIMENSIONAL EFFECTIVE SYSTEM ASSOCIATED 
WITH r = ~{((j/U)r - (1/U)f.Lo/r~J 

When expressed in plane polar coordinates the two-di
mensional central force dynamical equation (2.24) leads to 
(4.19) and the ever-present angular momentum integral (4.7). 
By use of (4.7) ;p may be eliminated from (4.19) to obtain 
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12 .. 
.. 0 U 1 f-Lo 
r- - = -r- --. r U Ur (7.1) 

Equation (7.1) may be regarded as a one-dimensional 
dynamical system with effective potential! 

16 1 U r 110 
VE(r, t )_. 2r - "2 U - Ur' (7.2) 

wherein we assume 10 1=0. 
From (7.2) it follows that the effective dynamical sys

tem (7.1) is obtainable from the Lagrangian .!t' E (i', r, t) 

.!t' 1 r 1 6 1 UrI 110 
E- "2 + 2r + "2 U + U -;: . (7.3) 

From (7.3) we immediately find the HamiltonianHE(q,p, t) 
of the effective dynamical system (7.1) to be 

HE = ..l p2 + !.l _ ..l iJ r _ ~ 110 
2 2r 2 U U r ' 

(7.4) 

wherein q=r and p = ;. 
Any constant of motion of the one-dimensional effec

tive dynamical system characterized by the Lagrangian (7.3) 
or the Hamiltonian (7.4) must be a constant of motion of the 
two-dimensional system (2.24). 

Over the past several years a series of papers (see Refs. 7, 
18-21, and references contained therein) have appeared 
which deal with techniques of formulating constants of mo
tion for certain types of one-dimensional dynamical systems 
with explicit time dependence. Of particular interest here is a 
constant of motion formula, recently published by Lewis 
and Leach,7 for a class of one-dimensional dynamical sys
tems which could possibly include the effective dynamical 
system characterized by the Hamiltonian (7.4). It is of inter
est therefore to determine if the Lewis-Leach formula is ap
plicable to the effective one-dimensional dynamical system 
(7.4) and, if so, to compare the constants of motion so ob
tained with those obtained in the preceding sections for the 
associated two-dimensional system (2.24). 

The Lewis and Leach formalism deals with one-dimen
sional dynamical systems characterized by Hamiltonians of 
the form 

H = !p2 + f[a(t), t]a(t)(!clq2 - C~) + a 2(t)W(u), (7.5) 

where 

u=a(t)q + (J (t), 

a(t )=[cz - cla(t)]-I, 

(J (t) - co[c! + cza(t )]a(t); 

the function a(t ) satisfies the differential equation 

a(t) = f[a(t ), t] 

and CO' C l ' Cz are constants such that 

c~+c~=1. 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

They have shown that such dynamical systems will admit a 
constant of motion P given by 

P=Hpla(t)+a(t)(clq-co)f+ W(u). (7.11) 

To apply the Lewis-Leach theory to our effective one
dimensional system (7.1), we must first determine if the effec-
tive Hamiltonian HE (7.4) is a member of the class of Hamil-
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tonians (7.5). Identifying 

q=r, 

we find 

p=r. 

(7.12) 

(7.13) 

Comparison of (7.4) with (7.5) leads to the requirement that 

.!.l _ rU(t) _ ~ 
2r 2U(t) rU(t) 

= (!clr - cor)a(t)f[a(t), t] + aZ(t)W(u). (7.14) 

The solution to (7.14) may be divided into two cases: 
Case I, fLo"/= 0, and Case II, flo = O. 

Case I, flo=?O 

As shown in the Appendix for the case flo "/=0 (7.14) 
leads to the necessary and sufficient conditions 

a(t)=cz!cl- U(t)lcl,1,o, c~ +c~ = 1, 

c l , ,1,0 = nonzero consts, 

/[a(t), t] = - U(t )!cI,1,o, 

a(t) =,1,oIU(t), 

co=O, 

W(u) = I ~/2uz - fLoI,1,ou, 

u = ,1,or/U(t). 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

By means of(7.13), (7.15), and (7.17)-(7.20) we evaluate 
the Lewis-Leach constant of motion P [(7.11)] for the effec
tive one-dimensional dynamical system (7.1) to obtain for the 
case flo "/= 0 

P E(r, r, t; 10) = (11 A ~ m(Ur - Ur)Z 

(7.21) 

Next we establish a relationship between the above-ob
tained PE(r, r, t; 10 ) [(7.21)] and the Noether constant ofmo
tion IN (bz) [(3.50)] of the associated two-dimensional dyna
mical system (7.24). It is easily shown that in plane-polar 
coordinates the constant of motion IN (bz) (3.50) is express
ible in the form 

IN(bz)=IN(r, r,;P, t) 

= - BlUr - Ur)z + !r;P zu z - fLoU /r]. (7.22) 

By use of the angular momentum integral (4.7) we find 
from (7.22) that 

I N(;, r,;P, t) = IN(r, r, L Ir, t) 

_I !(r, r, t, L ) ~ I !(r, r, t, 10 ) 

= - ,1,oP E (r, r, t; 10)' (7.23) 

Hence the Noether constant of motion IN (bz) (3.50) for the 
two-dimensional system (2.24) reduces on a dynamical path 
to the one-dimensional constant of motion PE (7.21) (ob
tained by the Lewis-Leach procedure7

) for the effective one
dimensional dynamical system (7.1). Conversely the Lewis
Leach one-dimensional constant of motion PE can be con
verted by use of the angular momentum integral into the 
two-dimensional N oether constant of motion IN (bz). 

It is clear for this flo #- 0 case that the Lewis-Leach pro-
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cedure when applied to the effective one-dimensional system 
(7.1) did not lead to the components Ix (4.2) andly (4.3) of the 
vector constant of motion I [(2.25)]. By means of (7.23) it 
follows however that the Lewis-Leach constant of motion 
PE (7.21) can be related to the sum of the squares of the 
components of the vector constant of motion I through the 
functional dependency relation (3.52) . 

Case II, flo = 0 

With flo = 0, the dynamical system (2.24) reduces to the 
time-dependent harmonic oscillator (2.26). For this flo = 0 
case (as shown in the Appendix) we find that, in order to 
satisfy (7.14), it is necessary and sufficient that 

a(t) = CZ/CI - (1Icdp(t), 

C~ + c~ = 1, C I = nonzero const, 

/[a(t), t] = - (1Ic l)ii(t), 

a(t) =p-I(t), 

Co = 0, 

W(u) = I ~/2uz + !'ToUz, 'To = const, 

u=rp-I(t), 

where pIt ) must satisfyzz 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

p - (U /U)P - !'ToIp3 = O. (7.30) 

By use of(7.12), (7.13), (7.24), and (7.26)-(7.30), we 
evaluate the Lewis-Leach constant of motion P [(7.11)] for 
the effective one-dimensional system associated with the 
two-dimensional time-dependent oscillator (2.26) and obtain 

P E (r, r, t; 10, 'To) = !( pr - pr)Z + (/ ~ /2r)pz 

+!'Tor/pz, fLo=O. (7.31) 

Since the functionp(t) appearing in (7.31) is determined by 
the second-order differential equation (7.30), it follows that 
there will be two pIt ) solutions and hence two concomitant 
constants of motion given by (7.31). 

Note that for the case 'To = 0 (7.30) has the two solutions 

PI = U, pz = US, (7.32) 

where S is defined by (2.30). 
We next show how the Lewis-Leach constant of mo

tion PE (7.31) of the effective one-dimensional dynamical 
system associated with the two-dimensional time-dependent 
oscillator is related to a N oether constant of motion of the 
two-dimensional system. 

The Noether constant of motion Cz(B) [Ref. 9, Eq. 
(6.24)] referred to in Remark 4 of Sec. 3 may by a change of 
variable be expressed in an alternative form given by Ref. 9, 
Eq. (7.5). If this alternative form for the constant of motion 
Cz(B ) is then expressed in plane-polar coordinates and the 
angular variable;P eliminated by use of the angular momen
tum integral (4.7), the resulting/orm o/the constant o/motion 
Cz(B) is identical to PE (7.31). 

It is of interest to note that the condition [Ref. 9, Eq. 
(7.3)] for the existence of the Noether integral of the two
dimensional time-dependent oscillator is identical to (7.30), 
which was obtained as one of the conditions of compatibility 
of the effective Hamiltonian (7.4), for the case flo = 0, with 
the one-dimensional Lewis-Leach Hamiltonian (7.5). 
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APPENDIX: SOLUTION OF (7.14) 

We form the third derivative of (7.14) with respect to r 
[w here we take into account the r dependence of u by means 
of(7.6) and (7.12)] and obtain 

- 12/4 (d ) ,.s 0 + :~; = a
5
W"'(u) W'= d~ . (AI) 

Consistent with (7.6) we make the change in variables 
from (r, t) to (u, t) given by 

r=[u-p(t)]la(t), t=t, (A2) 

and express (AI) in the form 

- 12/6 + 6110(U - P )/aU = (u - P)5 W"'(u). (A3) 

By forming the second derivative of(A3) with respect to 
u, we obtain 

(u _P)2W(5)(U) + lO(u _P)W(4)(U) + 20W"'(u) = O. (A4) 

We differentiate (A4) with respect to t (=t) to obtain 

[(u - P) W(5)(U) + S W(4)(U)JP (t) = O. (AS) 

First assumep #0 in (AS). This implies 

[u - P (t)] W(5)(U) + S W(4)(U) = O. (A6) 

Differentiation of (A6) with respect to t implies W(5)(U) = 0, 
which with (A6) implies W(4)(U) = O. Hence, by (A4), 
W"'(u) = O. It then follows from differentiation of(A3) with 
respecttou thatl10 = O. Withl10 = o and W"'(u) = Owe find 
from (A I) that 10 = 0, an excluded case. Hence p = 0 and 
P = Po = const. 

By means of (7.8) the condition p = 0 implies 

coiJ(t) = O. (A 7) 

Ifweassumea = 0, then, by(7.7),a(t) = ao = const; by(7.9), 
f[a(t), t] = 0; and by (7.6), (7.12) and the constancy of p, 
u = aor + Po. With this form of u(r) and a = ao, P = Po we 
find that differentiation of (A3) with respect to t gives 
110U = O. We exclude the choice U(t) = 0 in order to retain 
the explicit time dependence of the dynamical system. Hence 
the above assumption of a = 0 implies that we must have 
110 = O. It therefore follows, if a = 0, that (7.14) reduces to 

16/2r - rU 12U = a6 W(u). (A8) 

From (A8) it follows that U I U = const, which with the 
above requirement thatl10 = 0, would imply from (2.24) that 
the dynamical system is reduced to a time-independent har
monic oscillator. Hence we must exclude the case a = O. 
Therefore, from (A 7) we must have Co = O. 

With Co = 0 we obtain form (7.8) that P = 0 and hence 
(7.6) reduces to [with use of (7.12)] 

u =a(t)r. (A9) 

With P = 0 it follows that (A3) can be written in the 
form 

6l101a(t )U(t) = u4 W"'(u) + 12/61u, (A 10) 

(where we still consider u as an independent variable). 
At this point we consider the two possibilities: Case I, 

110 # 0, and Case II; 110 = O. 
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Case I, f.1o ~ 0 

It follows from (A 10) that 

a(t)U(t)=Ao, ,10 const#O. 

From (7.7) and (All) we have 

c2-cla(t)= U(t)/Ao· 

(All) 

(AI2) 

We must therefore exclude the case C I = 0, since otherwise 
by (AI2) we obtain U = const. 

From (All) and (7.9) it follows that 

(AI3) 

Keeping in mind that Co = 0 we use (AI3) to reduce (7.14) to 
the form 

(AI4) 

By means of (A9) and (All) we find u = AorlU, which 
allows (AI4) to be written in the form 

W(u) = 16/2u2 -l101Aou. (AlS) 

It may be easily verified that (A 10) is satisfied by (A II) 
and (AIS). 

Hence for the case 110 # 0 to tailor the Hamiltonian H 
[(7.S)], employed in the Lewis-Leach formalism, to the form 
of the Hamiltonian HE [(7.4)], which characterizes the effec
tive one-dimensional time-dependent system (7.1), it is nec
essary and sufficient that (7 .IS)-(7 .20) hold. 

Case II, f.1o = 0 

With 110 = 0 and (A9) we may rewrite (AI) in the form 

W"'(u) = - 12/61u5. (AI6) 

From (AI6) we obtain 

W(u) = 16/2u2 + AToU
2 + TIU + T2, To, T I, T2=const. 

(AI7) 

From the work prior to Case I, it was shown that Co = O. 
Hence, ifin (7.14) we use Co = 0,110 = 0, (7.9), (AI7), and 
(A9), we obtain 

It follows from (AI8) [a(t )#0; refer to (7.7)] that 

TI = 0, T2 = 0, (AI9) 

and 

!U IU + !claa + ATp4 = O. 

By means of (7.7) and the definition 

pIt )-l/a(t) = C2 - cla(t), 

we find (A20) can be transformed into the form 

p - !ToIp 3 - (U IU)p = o. 

(A20) 

(A21) 

(A22) 

The function W(u) [(AI7)] may be simplified by the use 
of(AI9). From (A21) we may solvefora(t )intermsofp(t land 
thereby ca1culatef[a(t), t] by (7.9). By (A21) the function u 
(A9) may also be expressed in terms of pIt ). 

The analysis of the Po = 0 case may be summarized by 
(7.24)-(7.30). 
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'H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, 
MA.1980). 

'The coordinates x' denote rectangular coordinates in Euclidean space. 
Unless indicated otherwise, the Einstein summation notation is employed. 
A dot over a symbol indicates total differentiation with respect to the time 
t. A comma indicates partial differentiation. [If Z = Z (x' •...• x"), then Z.i 
= az lax' ;ifZ = Z(r. t ),thenZ.,,,,,,,aZ lar,Z, """az IJt.]Unlessindicat

ed otherwise, a primed symbol denotes differentiation with respect to the 
angular variable 1/>. The symbol ( ~ ) indicates equality on a dynamical 
path. i.e., for those x' = x' (t) which are solutions of the dynamical equa
tions (\.7). 

"For simplicity we have assumed a unit mass. 
4G. H. Katzin and J. Levine, J. Math. Phys. 23. 552 (1982). 
'While the paper of Ref. 4 was in press a paper [L. M. Berkovic. Cel. Mech. 
24.407 (1981)1 appeared on an analysis of the time-dependent Kepler 
system based upon transformations of the dynamical equations. This pa
per contains a good bibliography on the time-dependent Kepler problem. 

'In addition to the vector constant of motion (1.6). and the angular mo-
menta constants of motion. the system (1.4). (1.5) was shown to admit a 
"generalized energy integral" with explicit time dependence. 

"H. R. Lewis and P. G. L. Leach. J. Math. Phys. 23, 165 (1982). 
MH. R. Lewis. Ir. [(a) Phys. Rev. Lett. 18, 510 (1967); (b) 1. Math Phys. 9, 
1976(1968); (c) Phys. Rev. 172. 1313 (1968)] showed thata one-dimension
al time-dependent oscillator admits an exact time-dependent constant of 
motion. 

"G. H. Katzin and J. Levine [1. Math. Phys. 18. 1267 (1977)] extended this 
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result by a method based upon the existence of dynamical symmetries 
admitted by the n-dimensional time-dependent oscillator and obtained a 
set of time-dependent constants of motion admitted by such a dynamical 
system. 

'''The case.uo = 0 reduces (3.1) to a time-dependent oscillator. The symme
tries for this case were previously obtained. See Ref. 9. 

"G. H. Katzin and 1. Levine, (a) J. Math. Phys. 17, 1345 (1976); (b) 18, 424 
(1977), and the paper in Ref. 9. 

'2See Ref. 9. Eqs. (3.17) and (3.18). 
13See Ref. ll(a). 
'4It should be noted that these Noether symmetry mappings are velocity

independent. However. it is known that any (scalar) constant of motion of 
a Lagrangian dynamical system can be expressed in the Noether form 
(3.49) for some velocity-dependent Noether mapping which satisfies (3.29). 
For a discussion of Noether theory based upon velocity dependent map
pings see W. Sarlet and F. Cantrijn, SIAM Rev. 23, 467 (1981). 

ISM. Lutzky, Phys. Lett. A 68,3 (1978). 
,op. G. L. Leach, J. Math. Phys. 21, 300 (1980). 
'" An integral similar to (4.29) also appears in the orbit analysis of a time-

dependent Kepler problem. See Ref. 4. 
,sH. R. Lewis and P. G. L. Leach, 1. Math. Phys. 23, 2371 (1982). 
19W. Sarlet and 1. R. Ray, J. Math. Phys. 22, 2504 (1981). 
,op. G. L. Leach, Phys. Lett. A 84,161 (1981). 
"1. R. Ray and 1. L. Reid, 1. Math. Phys. 21, 2054 (1979). 
22See Refs. 8 in which To = 2 was used. See also Ref. 9 in which Co~To is 

arbitrary. 
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A necessary condition for the existence of arcs of vector fields with constants of motion is found. 
The result is applied to arcs obtained by deformation of Hamiltonian dynamics and illustrated in 
the Van der Pol and Lorenz models. 

PACS numbers: 03.20. + i 

I. PRELIMINARIES 

For the vast majority of nonlinear dynamical systems it 
is usually extremely difficult to extract analytical informa
tion from the defining equations. A possile exception arises 
when the system can be shown to belong to some family and 
one of the members of the family is either exactly solvable or 
has nice properties. Then, in some cases, one can use the 
simpler system to obtain information on the properties of the 
family. This is the situation in the perturbation theory 
around the linear approximation, where the validity of extra
polation from the linear to the perturbed system hinges on 
the smallness of some physical parameter. 

Another example arises when in x = X (x) the vector 
field can be decomposed into components, each having well
studied properties; for example, X = X (S) + X IV I, X (S) being 
a gradient and X (V) a volume-conserving or even a Hamil
tonian field. In this case one could, for example, define a 
family (arc of vector fields) X, = 2cX(S) + 2(1 - c)XIV) 

which for c = ! coincides with the original system and for 
c = 0 and c = 1 is purely (V) on purely (S). Properties of the 
original system can therefore be obtained from the deforma
tion of its components. In this case, one cannot rely on the 
smallness of the deformation parameter c and the validity of 
extrapolations must depend on the differentiability proper
ties (in c) of the arc. 

The main purpose in the research that led to this paper 
was to identify families of dynamics which would supply 
nonperturbative information about its members once the an
alytical behavior of one of them is known. In this sense one 
might say that the main result is the notion of "arc of vector 
fields with constants of motion" (Definition 2). Once one 
realizes that the ingredients in the definition are what one 
needs to carry nonperturbative information along the fam
ily, the remaining results are a matter of computation using 
the differentiability properties of composite maps. 

In Sec. 2 a necessary condition is obtained for the exis
tence of the arcs (Theorem 1), which is then particularized 
for arcs obtained by deformation of Hamiltonian dynamics 
(Theorem 2). 

As far as applications are concerned, we suggest that 
our results might be useful to help understand the transition 
between conservative and dissipative regimes. 

When dissipation is added to a conservative system, 
there is typically a reduction of the phase space with the 
system tending at t~ 00 to an attracting subset of lower di-

mension. Looking at dissipative systems as belonging to 
some family obtained by deformation of a conservative dy
namics, one might hope to find which subsets in the conser
vative phase space do not change qualitatively when dissipa
tion is turned on. In other words, although conservative 
dynamics is structurally unstable, it may happen that when 
restricted to some subsets of the phase space it remains stable 
for dissipative deformations. Finding the deformation stable 
subsets would supply analytical information on the nature 
and approximate location of the attractors. 

Although the purpose of this paper is not to make a full 
exploration of the mathematical results of Sec. II, we have 
included as an illustration in Sec. III a study of the van der 
Pol and Lorenz models which were chosen for their simpli
city and availability of numerical studies. 

To conclude this section a quick review is made of some 
mathematical results needed in the sequel. All the material 
can be found with proofs in Ref. 1. 

Let E and F be Banach spaces and U an open set in E. 
We denote by C ~ (U,F) the set of C k maps f U-.... F with the 
first k derivatives D kf: U~L;(E,F) bounded in U, that is, 3 
k (f)EIR+ such that sUPxEuIIDj(x)11 <k (f) for all O<J<k 

For F = E one also uses the notation JiI"~ (U) instead of 
C ~(U,E). In this case one thinks offE,q'~(U) as a Ck-vector 
field. 

ForfEC~(U;F) define the norm Ilfllk = L7~o SUPXEU 

IID/(x)ll. We will use the following: 
Theorem: (1) C~(U,F) is a Banach space. (2) (i) LetMbe 

a compact interval in Rand U an open set in F; then 
Ck(M,U) = ! fECk(M,F)lf(M)C U 1 is open in Ck(M,F). 

(ii) The map comp: C ~ + S( U,E) X C rIM; U )~C r(M;E) 

is a CS map, its derivative being given by 

D comp(J,g)(y,h )(x) = Df(g(x))(h (x)) + y(g(x)), 

fEC~+ S(U,E), 

gECr(M;U), 

YEC~+\(U'E)'} ~." 
, Xe1"~. 

hEcr(M;U) 

II. ARCS OF VECTOR FIELDS AND CONSTANTS OF 
MOTION 

Definition 1: Let (M,x) be a differentiable dynamical 
system. A constant of motion of (M,x) is any differentiable 
function cP:M-R such that for some solution y of X we have 
<poy = const. 

This notion is a generalization of the concept of first 
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integral. Many systems which have no nontrivial first inte
grals have constants of motion. Below we will define a class 
of dynamical systems which is of special interest to us. 

Definition 2: Let M be a differentiable manifold. A fam
ily 6--+X., defined by associating with each EEl = [ - a,a] a 
vector field over M, is called an arc a/vector fields with con
stants a/motion if the following conditions are satisfied: 

(i) Each X. has a constant of motion r/J. over a periodic 
solution y •. 

(ii) The constant of motion r/Jo of Xo is a first integral in a 
neighborhood of Yo. 

(iii) The maps, 6--+X., 6--+Y., and ~., resp. 
I-+f?!(U), I-+C !(R;U), and I-+C !(U;R), areC I-dif
ferentiable, U being an open set in M. 

Then we prove the following: 
Theorem 1: Let 6--+X. be an arc of vector fields with 

constants of motion defined on an open set U of a Banach 
space E. Then there is an (Xo-dependent) nontriviaI2-form(3 
on U such that 

( i(~ X.
I 

) (3 = o. jyo de f_O 

(2.1) 

Remark: Eq. (2.1) can also be written as 

(' .(d ) Jo I dE X'I,o [) (#o)Yo(t) dt = O. (2.2) 

Proof The steps used in the proof are: 
(1) Take the E derivative at E = O. 
(2) Take the t derivative. 
(3) Introduce the assumption that r/Jo is a first integral. 
Let T(E) be the period of the periodic solutions Y., 

T = SUP.EI T(E) and denote M = [O,T]. 
First step: Consider the diagram 

A comp 

I-+C~(U,R)XCI(M,U) -+ CI(M,R) 

defined by 

E-+(r/J. ,Y. )-+rP. 0y •. 

Therefore 

d d 
- (r/J. °Y.)I = - (compoA )(E)I . dE ,~o dE .~o 

Applying the chain rule and the theorem quoted in Sec. 
I, we conclude that (d IdE) (r/J. °Y. )1,-0 isa C I(M,R ) map that 
associates with each tEM the real ~umber 

Dr/Jo(Yo(t ))(:E y'l. ~ 0 (t)) + ~ r/J'I, ~ o(Yo(t)) 

or, denoting by primes the E derivatives, 

where the last equality follows from the definition of con
stant of motion (r/J. 0y.)(t) = K •. 

Second step: As KECV XM), it follows that (d Idt) 
K ;1, ~ 0 is identically zero. 

Taking the t derivative of Eq. (2.3), 

Dt/J ~ (Yo(t)) [Xo(Yo(t))] + Dt/Jo(Yo(t ))(y~ (t)) 
+ D 2r/JO(Yo(t ))(Yo(t ),yb (t)) = 0 
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where the dot denotes the t derivative. 
From Yo = XoOyo, as Yo is a solution to Xo, we compute 

yb(t ): 

Yb(t) = DXo(yo(t ))(Yb(t)) + X b(Yo(t)) 

and obtain 

Dr/J b (Yo(t ))(Xo(Yo(t I)) + Dr/Jo(Yo(t ))(DXo(yo(t ))(yb (t I)) 

+ Dr/Jo(Yo(t ))(X b(Yo(t))) + D 2r/JO(YO(t ))(Yo(t ),yb (t)) = O. 
(2.4) 

Third step: Because t/Jo is a first integral of Xo in an open 
nbd V of Yo, we have 'tJ XE V Dr/Jo(x) (Xo(x)) = 0; hence, deriv
ing the map x-+Dr/Jo(x)(Xo(x)), we obtain for XE V and yEE: 

Dr/Jo(x)(DXo(x)(y)) + D 2r/JO(X)(Xo(x),y) = O. 

In particular, for x = yo(t) andy = yb(t), 

Dr/Jo(Yo(t ))(DXo(yo(t ))(yb (t))) 

+ D 2r/JO(YO(t ))(Xo(Yo(t )),yb(t)) = 0 'tJ tEM. (2.S) 

Equation (2.4) reduces then to 

Dr/J b(yo(t ))(Xo(Yo(t)) + Dr/Jo(Yo(t ))(X b(Yo(t))) = 0 'tJ tEM. 
(2.6) 

Denoting by i the interior multiplication of a differential 
form by a vector field: 

i(Xo)(dr/J b )(Yo(t)) + i(X b )(#o)(Yo(t)) = O. (2.7) 

Let To be the period of Yo' As [O,To] c [O,T], we restrict our
selves to the interval [0, To] and integrate 

iT;, i(Xo)(dr/J b )(yo(t)) dt + iT;, i(X b)(dr/Jo)(Yo(t)) dt = 0; 

Yo being a solution of Xo, this becomes 

( dr/J b + (0 i(X b )(dr/Jo)(Yo(t)) dt = 0, 
)Yo Jo 

and by Stokes' theorem 

iTo i(X b )(dr/Jo)(Yo(t)) dt = O. 

Because r/Jo is a first integral of Xo, 

i(Xo)(dr/Jo) = 0, 

(2.2) 

in a neighborhood V of Yo, we can find a differential2-form (3 
such that 

dr/Jo = i(Xo)/3 on V, 

and from Eq. (2.2) one obtains 

iTo [i(X b )i(Xo)/3 ] (Yo(t)) dt = 0, 

i.e., 

1 i(X b)/3 = o. 
Yo 

(2.1) 

In the theorem we have just proved X~ may be any vec
tor field with a first integral. Of special interest for the appli
cations is the case where Xo is an Hamiltonian field. 

From Ref. 2 we recall the main result in that paper: 
"If M is a diff manifold XEf?(M) and xEM, then it is 

possible to find, on an nbd n of x, a Riemannian metric g and 
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N - 1 sympletic forms Wi such that in n, X = Xs + Lf=-11 
XH" where Xs is gradient w.r.t. g and theXH, Hamiltonian 
w.r.t.w i · 

We can then obtain the following: 
Theorem 2: LetXbe a vector field on UCRN and [Xs, 

XH , , ... ,xH
N

_ 1 J its gradient and Hamiltonian components. If 
the family e---..XE defined by Xc = XH, + €(Xs + Lk #iXH.) 
is an arc of vector fields with constants of motion, then there 
is a solution Yo of XH , such that 

(0 [(VHi.VS) + I WdVHi,vHd] yo(t)) dt = o. Jo k #i 

Proof 

d 
-Xci =Xs + IXH ; 
d€ €~O k #i k 

hence 

lTO i(X b )(dHi Hyo(t)) dt = O. 

Let us make explicit the integrand function 

i(Xb)(dHi) = i(Xs + I X Hk ) (dHi) 
k #i 

= i(Xs)(dHi) + Ii{XHJ(dHi ) 
k #i 

= (dHi )(Xs) + I i(X H.)(dHi ), 
k #i 

and the result follows from the equalities 

i(XH.)(dHi ) = wk(VHi,vHd, dHi(Xs) = VHi·VS. 

III. APPLICATIONS 

(2.8) 

Combining the decomposition results2 and the theo
rems in the previous section, we define the following strategy 
for searching for constants of motion (and attractors) in dyn
amical systems: 

(a) Decompose the system into gradient and Hamilton
ian components [X =Xs + Lf=-11 XH,I. 

(b) Identify the constants of motion of each one of the 
Hamiltonian components X H,' These will be the Hamilton
ian Hi itself plus a certain set [1> k I· 

. as aH 
x=y=-+-, 

ax ay 

(c) Look for the closed orbits of the Hamiltonian com
ponents that satisfy the conditions of the theorem, Eq. (2.2), 
i.e., in coordinatewise notation 

(2.2') 

In general, for an N-dimensional system, the set of orbits that 
satisfy (2.2') for each 1>k might span an (N - I)-dimensional 
subspace n k' The nonempty intersections of subsets of the 
nk , i.e., the set of orbits that satisfy (2.2') simultaneously for 
certain subsets of [ 1> k I, would then supply information 
about the topological dimension and approximate location 
of the attractors for the arcs of vector fields associated to X H, • 

(d) At this point, and before one gets the impression that 
a sure recipe has been obtained to find analytical approxima
tions to the constants of motion of any dynamical system, 
one should remember that Eq. (2.2') is only a necessary not a 
sufficient condition for the existence of an arc (in the sense of 
the Definition 2). By applying (2.2'), all one obtains are ana
lytical approximations to the constants of motion of the arcs 
of vector fields associated to the components X H, of the sys
tem. Left open is the question of whether the system actually 
belongs to an arc of vector fields of its components, i.e., 
whether it satisfies the necesssary differentiability condi
tions in the deformation parameter. 

Therefore, one should complement this study by other 
methods, for example, using this analysis to complemen t and 
interpret numerical studies. 

(e) If the closed orbits of the Hamiltonian components 
do not cover the whole phase space, one might try other 
Hamiltonians to explore the remaining regions. A natural 
choice is to use blown-up versions of the X H, for 
H=A 2H i (x!A). 

Whereas in (c) the arc of vector fields to be used is Xc 
= X H, + €(Xs + Lk #iXU.)' in the case of an HamiltonianH 

that is not a component, the arc is 

Xc = (1 - €)Xu + €( Xs + ~XH') = (1 - €)XII + EX. 

The result has the same form as Eq. (2.2'). 
These techniques will now be illustrated in the Van der 

Pol and Lorenz models. 
For the Van der Pol oscillator 

a'S aH X 2 +y2 ( x
3

) 
y=a(I-x2lY -x=-ay---aX-' H=--2:.....::....-- a x- 3 y. 

For values of the Hamiltonian H greater than 

H> H - ja2(2 + ~ 1 + 3!a2 )(1 - ~l + 3!a2
)2 

+ 2 + ~ 1 + 3!a2 
], 

the Hamiltonian orbits are not closed. In anticipation of the 
fact that one may need to explore wider regions of phase 
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space than those covered by the closed orbits of H, we use a 
blown-up function 

x2 + y2 ( x3 ) 
H). =A 2H(x!A,y!A) = 2 -a x- 3,,1,2 y. 

In this two dimensional case, for the orbit 2H). = K, Eq. (2.8) 
reduces to 
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FIG.1 

FIG. I. Constant K for the Hamiltonian approximation to the limit cycle 
and blow-up parameter A for the Van der Pol oscillator. 

o = L .as = a L f dxdy (1 - x
2
) 

= 4a f' dx (1 - x2)~a2x2(1 - x2/3A 2)2 - x 2 + K, 

(3.1) 

where the first equality follows from Stokes' theorem and Xr 

is the value for which the square root in the integrand vanish
es. 

The values of KandA that satisfy Eq. (3.1) are plotted in 
the Fig. 1. One sees that for a > 0.75 a certain amount of 
blowup is needed. Whenever A> 1 is required, we have used 
the criterium of minimum blowup, i.e., we have chosen the 
smaller A for which there is a closed orbit of 2H;. satisfying 
Eq. (3.1). This means that for A > 1 we use the separatrix 
between open and closed Hamiltonian orbits as an approxi
mation to the limit cycle. 

In the Figs. 2(a-c) we compare the exact limit cycle 
(dotted curve) obtained by numerical integration with our 
analytical Hamiltonian approximation 

2H;. = x 2 + y2 _ a(x _ x 3/3A 2)y = K. 

One sees that even for fairly large degrees of nonlinearity the 
overall shape and location of the limit cycle is reasonably 
approximated. 

Our second example is the Lorenz model. 3 Extensive 
work on analytical approximations to the exact solutions of 
this model, in the limit of high Rayleigh number, has been 
done by Shimizu.4 We will use the same change of variables 
as this author 

x Z 2 
x=---;::~===;=-m=---x , 

~2a(r-l) r-l 
7= t, 

and write the Lorenz model [X = - <7X + <7 Y, 
y= - Y+Xr-XZ,Z= -bZ+XY]as 

x=p, 
p= -(<7+ l)p-a(r-l)x(x2-1 +m), 

m = - bm + (2<7 - b )x2. 

Using these coordinates, our decomposition bear some for-
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FIG. 2. Comparison of the limit cycle and the Hamiltonian orbit for three 
values of the nonlinearity parameter a in the Van der Pol. 

mal resemblance to Shimizu's perturbation theory around 
the high Rayleigh number limit. This allowed some control 
and check on our results, which, however, are not restricted 
to any particular Rayleigh number range. 

Although odd-dimensional, the Lorenz model can be 
considered as imbedded in a space with one extra dimension 
and the same decomposition techniques applied. We will use 
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FIGS. 3(a)-3(d). Numerical solution and the Hamiltonian orbit for several Rayleigh values in the Lorenz model (a = 16, b = 4). 
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FIG. 3(e}. Numerical solution and the Hamiltonian orbit for several Ray
leigh values in the Lorentz model (IT = 16, b = 4). 

the following decomposition: 

with 

. as aH I aH 2 
x=-+--+--, 

ax ap am 

. as aH I 
p=----, 

ap ax 

. as aH 2 
m=----, 

am ax 

S = - !(O' + l)p2 - !bm2, 

HI =!jJ2 + air - 1)(!x4 + !X2(m - 1)), 

H2 = - j(20' - b )x3. 

(3.2) 

The symplectic forms associated to the decomposition (3.2) 
are UJ I = dx A dp + dm A dw and UJ2 = dx Adm + dw A 
dp, w being the extra coordinate in the four-dimensional im
bedding. 

The Hamiltonian H I has closed orbits. Choosing H I to 
define the zero point in the arc, it follows from (3.2) that at 
€ = ° there are two constants of motion, namely 

¢I=H I, ¢2=m. 

Application of the theorem leads to 

° = f tVS·VH I + UJ 2(VH I,VH2)) dt 

= ft -(0'+ l)p2+!air -l)x2[(20'-b)x2-bmll dt. 

(3.3a) 
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° = f [VS·Vm + UJ 1(Vm,VH I) + UJ2(Vm,VH 2)] dt 

= f [ -bm + (20' - b )x2] dt. (3.3b) 

On the H I Hamiltonian orbits 

p2 + air - 1)[!X4 + x 2(m - 1)] = h, 

where h is a constant. Making the replacement 

dt = dx/2~ h - air - 1 )[x4/2 + x 2(m - 1)] 

and the appropriate change of variables in Eqs. (3.3), they 
become 

- (0' + l)hII + air - 1)[(0' + 1)(m - 1) - ~bm]I2 

+ !O'(r - 1)(30' - b + 1)14 = 0, 

- bmII + (20' - b )12 = 0, 

where 

II = 2 K( a
2 

), 

~a2 +/3 2 
a

2 +/3 2 

12 = -/3 2
11 + 2~a2 +/3 2 

Ee2 :2/32)' 

14 = 2h II + ~(1 - m)I2' 
30'(r - 1) 

a 2 = (1 - m) + ~(1 - m)2 + 2h /O'(r - 1) 

/3 2= -(I-m)+~(I-mf+2h/air-l). 

(3.4a) 

(3.4b) 

(3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

(3.Se) 

K and E are the complete elliptic integrals of first and second 
kind.5 

Using Eqs. (3.5), Eqs. (3.4a)-(3.4b) are converted into 
the following equivalent set of equations: 

2h bm[(60'-2-b)(l-m)-3b] 

air-I) (20'-b)(b+2) 
(3.6a) 

bm + (20' - b ){32 K ( a
2 

) = (20' _ b )E ( a
2 

). 
a 2 + /3 2 a 2 + /3 2 a 2 + /3 2 

(3.6b) 

Replacing (3.6a) into (3.Sd) and (3.Se), one concludes that Eq. 
(3.6b) determines a solution for m independently of the Ray
leigh number r. Once a solution for m is obtained numerical
ly from Eq. (3.6b) for a given pair (O',b), a solution for his 
always obtained from (3.6a) for any r. 

The existence of a one-dimensional Hamiltonian ap
proximation to the constant of motion does not depend on 
the Rayleigh number. Referring back to our comments 
about topological dimension of attractors in (c) this sheds 
some doubt on the full turbulent nature of the r regions 
found in between the ranges of parameters for which limit 
cycles were found. It suggests that a (perhaps dense) set of 
periodic orbits might also exist in the turbulent regions. 
These remarks however, are only speculative, because of the 
limitations mentioned in (d). 

For the popular valuesu = 16andb = 4, the numerical 
solution of Eq. (3.6b) leads to 

m = 0.8586, 

h = 0. 11896(r - 1). (3.7) 

In Figs. 3(a)-3(e) the Hamiltonian orbit 
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p2 + [X4 +x2(m _ 1)] = h 
air- 1) 2 air-I) 

m = con st. 

for the values given in (3.7) is compared with the exact solu
tion obtained by numerical integration for several Rayleigh 
number values. For the numerical integration, an integra
tion step..:1t = 0.001 is used in a Runge-Kutta algorithm, the 
solution being followed after 104 steps to remove the tran
sient behavior. Plotted are points at 0.002 intervals and the 
initial conditions are chosen near the Hamiltonian orbit, 

namely m(O) = 0.859, x(O) = O,p(O) = fi/. In the figures 

p* = p/~CT(r - 1). 
From the inspection of the results, one notices that the 

Hamiltonian orbit gives a good estimate of the size and aver
age position of the limit cycles. The perspective view and the 
projection in the p*-x plane (where the H 1 dynamics takes 
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place) allow an interpretation of these cycles as a distortion 
in the m direction of the Hamiltonian orbit obtained from 
the theorem. 

Also in the "turbulent" regions (r = 100,2(0) the exact 
solution winds around the Hamiltonian orbit, the projection 
in thep*-x plane revealing the analytical orbit as an organiz
ing center for the dynamics. 

I J. Franks, "Manifolds of C '-mappings and applications to dynamical sys
tems," in Studies in Analysis, Advances in Mathematics, Supplementary 
Studies Vol. 4 (Academic, New York, 1979), pp. 271-90. 

'R. V. Mendes and J. T. Duarte, J. Math. Phys. 22, 1420 (198q. 
'E. N. Lorenz, J. Atmos. Sci. 20,130 (1963). 
4T. Shimizu, Phys. Lett. A 69,379 (1979); 71, 319 (1979); Physica A 97,383 
(1979). 

'M. Abramowitz and I. Stegun, Handbook 0/ Mathematical Functions (Do
ver, New York, 1965). 
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Irreversible quantum dynamics and the Hilbert space structure of 
quantum kinematics 
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General dynamics compatible with the Hilbert space structure of quantum kinematics are 
considered. The general form of dynamics which preserve the set of closed linear submanifolds 
(i.e., properties) is deduced. Since the orthogonality relation is not necessarily preserved, the result 
generalizes Wigner's theorem and provides a model of some irreversible phenomena like spin 
relaxation, damped oscillator, etc. Connections with quantum logic and with statistical 
mechanics are presented. 

PACS numbers: 03.65. - w 

I. INTRODUCTION 

The reversible dynamics for isolated quantum systems 
is given by the Schrodinger equation. Wigner's theorem 1,2 

asserts that, starting from the Hilbert space structure of 
quantum kinematics, the unitary Schrodinger evolution can 
be deduced from the assumption that orthogonal states re
main orthogonal throughout the evolution. In terms of 
quantum "logic," this means that the Schrodinger evolution 
is characterized by the fact that it induces symmetries of the 
property lattice .Sf', i.e., bijections of .Sf' into .Sf' which pre
serve the orthocomplements. A possible weakening of these 
assumptions is to suppose that the evolution induces only 
bijections of .Sf' into .Sf'. That is to say, the evolution pre
serves the set of properties, but not all the relations between 
them. The interest for such generalization is obvious in the 
contexts of open quantum systems, relaxation phenomena, 
the measurement problem, etc. Such a generalization has 
been recently proposed by Daniee (see also Ref. 4). The pur
pose of the present paper is to deduce the general form of 
such dynamics in the case of quantum mechanics on a Hil
bert space (possibly with superselection variable; see the Ap
pendix). It turns out that the corresponding evolution equa
tions are not invariant under time reversal. Therefore, they 
describe irreversible phenomena, like a damped oscillator or 
spin relaxation, for example. In the latter, the angles between 
the spins are clearly not preserved; hence the evolution is not 
unitary. 

Although our results concern quantum mechanics on a 
Hilbert space, our approach fits naturally into the frame
work of quantum "logic." Therefore, the paper is organized 
as follows. In the next section we justify our assumptions 
within an axiomatic approach to quantum physics. In Sec. 
III we return to quantum mechanics on a Hilbert space and 
present our mathematical results. In the last section we com
ment on them and establish the connection with the master 
equations of quantum statistical mechanics. 

II. DETERMINISTIC EVOLUTIONS AND ELEMENTS OF 
REALITY 

The aim of this section is to justify the assumptions of 
the theorems of the next section. For that purpose let us 

-) Partially supported by the Swiss National Science Foundation. 

briefly sketch our-realistic-viewpoint about quantum 
physics. 

Let us assume that the system exists by its own and 
always has some "elements of reality" (in Einstein's term in-
010gy5). Recall that an element of realitY--<lr equivalently an 
"actual property" in Piron's terminology6-is a property of 
the physical system that can be tested and that is such that if 
we would actually perform a test, the positive result would 
always come out. Consequently, the elements of reality only 
depend on the system (and not on the measuring apparatus): 
They are in some way engraved in the system. The notion of 
state of a system can now be made precise: The state is the 
collection of all elements of reality. It is worth noting that in 
quantum mechanics the states, as defined above, uniquely 
determine the system's propensities 7 to actualize a property 
during an ideal measurement of the first kind (Gleason's 
theorem6.8 ). 

To each evolution corresponds a semigroup of mapping 
of the state space into itself. Accordingly, during the evolu
tion some elements of reality disappear and some other ap
pear. Let us denote ~ the state space and Il, the evolution, 
one has: 

Il,: ~ -~, Il, 0 Ils = Ilt + s' V t, s>O. 

Moreover, a property b of the system is naturally repre
sented by the set of states which make b actual. (For a discus
sion of the notion of property we refer to Refs. 6 and 9.) 
Accordingly, b C ~ and the set .Sf' of all properties is a 
subset of the power set of ~:.Sf'c P(~). The order relation 
given by the set theoretical inclusion provides .Sf' with the 
structure of a complete lattice (the lattice of quantum logic). 
Let us denote by < this order relation, and by 1\ the greatest 
lower bound and by V the lowest upper bound. Henceforth, 
we shall identify any state p E ~ with the corresponding 
minimal actual property 1\ P E bb E .Sf'. As usual, we assume 
that these properties are atoms of .Sf'. Hence for p E ~ we 
shall write p E .Sf' instead of [ pIE 2'. 

At this point it may be useful to recall that in quantum 
mechanics the state space ~ is represented by the set of rays 
of a (complex separable) Hilbert space JY and the properties 
are represented by the closed linear submanifolds of JY. 

For any fixed t,ll, inducesamapYt from.Sf' intoP( ~): 

Yt:.Sf'_P( ~) 
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b~! f..l,(p)lp<b J. 
Our aim now is to characterize y,. The idea is that during the 
evolution the system remains the same, although the state 
changes. Hence we suppose that the evolution does not 
change the set oftests a physicist can carry out on the system. 
Now, recall that a property is determined by a test (more 
precisely by an equivalence class of tests). Consequently, fol
lowing Daniel,3 we shall say that an evolution f..l, is determin
istic if the set of properties is preserved by the evolution: 

y,( 2') = 2' and y, is one-to-one. (I) 

The terminology comes from the fact that to ~ch ele
ment of reality at time to there is a one-to-one correspon
dence with an element of reality at any time t 1 < to or t 1 > to' 

The following lemma displays some properties of deter-
ministic evolutions. 

Lemma 1: If f..l, is a deterministic evolution, then 
(i) f..l, is bijective 
(ii) V p,q,r E si', 

p<qVrqf..l(p) <f..l(q) V f..l(r). 

Proof Per construction y, and y,- 1 are order-preserv
ing. Consequently, y, maps atoms onto atoms; hence f..l, is 
bijective, and y, and Yt- 1 preserve the upper and lower 
bounds. The conclusion follows. 

The unitary Schrodinger evolution is a well-known ex
ample of deterministic evolution. It is characterized by the 
fact that it preserves orthogonal states. It is interesting to 
note that a deterministic evolution in a Hilbert space pre
serves biorthogonallinear submanifolds. Indeed a linear 
submanifold Mis biorthogonal M 11 = M (where M 1 

= [t/J E"o/'I (t/Jlip) = 0 Vip EM J ) if and only if Mis closed. 10 

Clearly an evolution preserving orthogonal states afortiori 
preserves biorthogonallinear submanifolds. But the con
verse is false. Hence the unitary evolution is not the only 
possible deterministic evolution.3 

III. GENERAL FORM OF DETERMINISTIC EVOLUTIONS 
IN HILBERT SPACES 

In this section we determine the general form of the 
deterministic evolutions defined in the preceeding section. 
Let us make the following definition: 

Definition: A map f..l: ,,0/'-,,0/' preserves the superposi
tions if Va, /3 E C*, ip,t/J E"o/', 3 8, S E C* such that 
f..l(aip + /3t/J) = 8f..l(ip) + Sf..l(t/J), where C* = C - [OJ. 

The next two theorems are the main results of this sec
tion. We have already quoted them in Ref. 11. 

Theorem 2: Let ,,0/' be a complex Hilbert space, 
dim ,,0/';> 3. Let P ( cW'j denote the set of closed linear mani
folds of"o/', and letf..lt:"o/' -,,0/' (t fixed). Iff..l, is determinis
tic [see (1 )], i.e., iff..l, induces a bijection f..l , : P ( cW'j - P ( cW'j, 
then: 

(i) f..l, preserves the superpositions; 
(ii) 3 a semilinear operator V, acting on ,,0/' (unique up 

to a multiplicative constant) and 3 a map g,: ,,0/' - C* such 
that 

f..l,(t/J) = g,(t/J)·V,t/J, Vt/J E"o/'; 

(iii) if f..l, is continuous, then the operator V, is linear or 
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antilinear. 
Theorem 3: Let ,,0/' be a complex separable Hilbert 

space, dim ,,0/';>3. Letf..l,: ,,0/' _ "o/'bea semigroupsuch that 
the maps (t,t/J)-f..l,(t/J) are CO Vt;>O, t/JE JY', and 3 a dense 
domain g C ,,0/' such that the maps t_ f..l,(t/J) are 
C 1 Vt/J E g. Ifthef..l, are deterministic, then 3 a CO contrac
tion semigroup of linear operators W, and 3 a family of 
maps h,: ,,0/' - C* such that 

(2) 

Proof 2: (i) Corollary of Lemma I, (ii). 
(ii) f..l, induces a bijection between the raies of"o/'; hence 

f..ll induces a bijec!!on a Q:om the projective space JY (::::: ,,0/'1 
q into itself: a: ,oW' -,,0/'. Moreover, since f..l, preserves the 
superpositions, a has th~ following property: If ¢,qy,; are 
three aligned points of"o/' (i.e., if the vectors t/J,ip,X belong to 
a c~mmon plane of cW'j, then a(¢), a(qy ), ott) are still aligned 
in dY' [i.e., f..l(t/J), f..l(ip), f..l(x ) still belong to a common plane of 
dY']. Consequently, a satisfies the assumptions of the funda
mental theorem of projective geometry 12.13 (it is here that the 
assumption dim dY';>3 is important). Accordingly, a is in
duced by a semilinear transformation of dY'. 

(iii) Let t/J,ip E dY'be such that f..l , (t/J)1 f..l,(ip). Consider the 
following mapf C - R: 

f(a) = I (f..l,(t/J)I f..l,(t/J + aip) 12/11 f..l,(t/J)11 2·11 f..l,(t/J + aipJll 2
• 

The assumption implies thatfis continuous. Let us note A 
the automorphism of C corresponding to the semilinear op
erator V,: VI(at/J) = A (a)· V, t/J. One has 

f(a) = II VI t/JII 21 [ IJV,t/J11 2 + I A (aW'11 V,ip 112] . 

The automorphism A is thus continuous, accordingly the 
operator V, is linear or antilinear. 

Proof 3: We divide this proof in three steps. 
(a) Vip, t/J E g the maps t- gl(ip) V, t/J and 

t_gl(ip )-I·gl(t/J) are C I, whereg, and V, are given by 
Theorem 2. 

(b) 3 a CO semigroup WI of linear operators satisfying 
(2). 

(c) The operators W, are linear contractions. 
(a) Let ip E g be fixed, and put V, t/J g, (ip ). VI t/J and 

g,(t/J) g,(ip )-1. g,(t/J). Hence f..l,(t/J) = g,(t/J)' V,(t/J). Let 
t/J E g be linearly independent of ip. One has 

f..ll(ip + t/J)= g,(ip+t/J)f..l,(ip) 

+ g,(ip + t/J) gt(t/J)-I f..l,(t/J). 

But f..l, (ip) and f..l, (t/J) are linearly independent; the differentia
bility properties of t-f..l,(t/J) thus go over to the maps 

t~g,(ip + t/J) and ~g,(t/J)-I 

Consequently, the maps t-g,(t/J) and t-V,(t/J) are C 1 for all 
t/J E g linearly independent of ip. Finally, since V, (ip ) 
= f..l, (ip ), this property is satisfied for all t/J E g. 

(b) The semigroup law of f..ll implies 

VI Vs t/J = 1iJ",(t, s) V, + s t/J 

where 

1iJ",(t, s) = g,+s(t/J)lg,(gs(t/J) Vst/J)·gs(t/J) 

Similar relations occur in the theory of projective unitary 
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representations. 14 The only difference is that here the w'" (t, s) 
are not necessarily of norm one (but they are i= 0); conse
quently, one can generalize the usual arguments in order to 
take the w's off. Let tf; = l: a,tf;;, a; E C, tf;; E cW'. One has 

w",(t,s)Ia; V,+stf;; 

Hence, the w's are independent of tf;. Put W, ¢ 
= exp [S~ fit ') dt'] V, ¢, wheref(s) = a,w(t, s)I, ~ o' One 

has W,·Ws = t'(t, s) W,+s' where 

t'(t, s) = wit, s) 

xexp[Lf(f')dt'+ ff(S')dS'- L+sf(U)dU]. 

From the associativity law ofthe,u,'s one deduces that 
a,t'(t,s) = a.t'(t,s) = 0. But t'(o,s) = t'(t,O) = 1; hence 
t'(t,s) = 1, '<Jt,s>O and W,'Ws = W,+s. Finally the opera
tors W, are linear because W, = (W; /2 f 

(c) We first prove that the W,'s are closed (for all fixed t ); 
the boundness of the W,'s follows from the closed graph 
theorem. IS 

Let! g:;; I E cW' be such that 

lim g:;; = g:; and lim W,g:;i = X. 
1---00 1-00 

Since,u,(¢) is continuous in ¢, one has lim;_oo ,u,(g:;;) 
= ,u,(g:;). On the other hand, 

Hence 

lim h,(g:;i) = (xl ,u,(g:; )/11 x 112 
i--- oc 

and 

W,g:; = ,u,(g:;) = lim ,u,(g:;;) 
h,(g:;) ;-00 h,(g:;) 

= lim h,(g:;i) .Wg:; = (xl,u,(g:;) 'X 
<-00 h,(g:;) " Ilxll 2. h,(g:;) . 

W,g:; is thus proportional to X. Finally, let tf; E cW'be linearly 
independent of g:;. The same arguments show that W, (g:; + tf;) 
is proportional toX + W,(tf;). Consequently, W,g:; = X. Fin
ally one has 16 

II W,II <.M·eu
, 

for some constants M and a. By redefining h, and W, one can 
thus include the bound M·ea

' in the complex factor h, and 
have II W,II<.l. • 

By looking carefully at the above proofs it may be seen 
that the assumption of a deterministic evolution,u, is some
what stronger than needed. Clearly, it is sufficient to assume 
that the evolution is injective on the rays and preserves the 
superpositions. In terms of lattices this amounts to assume 
that the evolution maps the lattice .!£ into a not necessarily 
complete sublattice of .!£. 
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IV. DISCUSSIONS 

The results of the preceding section deserve some com
ments. First let us note that the complex number h,(tf;) in (2) 
does not affect the state (ray) defined by the vector ,u,(tf;). 
Consequently, '<J tf;oE cW' the normalized vectors,u, 
= W,tf;oIli W,tf;oll are representatives of the evolution,u,. 
Moreover, they satisfy the following evolution equation: 

(3) 

where we have supposed that the generator Z of W, is of the 
form Z = - IE - B with H + = Hand B + = B. Let us no
tice that the evolution equation for the projectors is the fol
lowing: 

P, = - i [H,P,] + [ [P"B ], P, ] , P, = P; = P ,+ . 

It is worthwhile to briefly consider the simple case B = kH 
(k >0)17: 

;p, = - iH¢, + k(H)"" -H) tf;,. (4) 

Hence (dldt)(H), = -2k(H2), - (H);) 
= - 2k (,dH f<.o. Accordingly, the system dissipates ener

gy, unless it is in an eigenstate of H. Furthermore, the sta
tionary solutions (i.e., the solutions which correspond to 
states at rest) of(4) are exactly the same as those ofthe Schro
dinger equation, and any solution of(4) tends asymptotically 
towards a stationary state. This asymptotical eigenstate cor
responds to the lowest energy level on which the initial state 
has a nonvanishing component. Equation (4) has been suc
cessfully applied to spin relaxation II, 18 and to the damped 
oscillator. 17 In the latter the expected behavior was found for 
the coherent states. Notice that the non local character of 
quantum physics 19,20 does not raise any problem. 

Since Eq. (3) is nonconversative, one may expect some 
connections with the theory of open quantum systems,21 and 
indeed one can deduce Eq. (3) in the framework of the master 
equations of quantum statistical mechanics. For that pur
pose, one applies precisely the same techniques as those 
which lead to the Pauli master equation, but instead of the 
partial trace projection one uses a pure state preserving pro
jection.22 Conversely, since W, is a contraction semigroup, it 
can be dilated to a unitary evolution on a larger Hilbert 
space,zI 

Now let us stress the generality of our assumptions: The 
only nontechnical assumption is that the evolution preserves 
the set of properties, i.e., that the evolution is compatible 
with the Hilbert space structure and the usual interpretation 
of states and observables. We feel that this is a minimal as
sumption. Thus we answer the question of the connections 
between irreversible quantum dynamics and quantum "log
ic." 4 There is, however, an important implicit assumption: 
the Hilbert space. But this assumption is of a different na
ture, it concerns the kinematics and not the dynamics. Note 
that the Hilbert space is the only assumption about linearity. 
This leads us to our next remark. 

It is well known that, in order to derive the linearity of 
the Schrodinger equation from the linearity of the Hilbert 
space, one has to assume that the evolution preserves ortho
gonal states (Wigner's theorem 1,2). The latter assumption 
amounts to assuming that the evolution induces a symmetry 
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of the lattice of properties, i.e., that not only the set of prop
erties is preserved, but also all the relations between the pro
peties. Physically this means that nothing in the system 
changes, and indeed any Schrodinger evolution may be in
terpreted from the passive point of view, as is shown by the 
Heisenberg representation. On the other hand, in phenom
ena like spin relaxation, orthogonal states clearly do not re
main orthogonal. 

APPENDIX: QUANTUM DYNAMICS WITH 
SUPERSELECTION VARIABLES 

The property lattice Y of a quantum system with su
perselection (i.e., classical) variables is isomorphic to the di
rect union over a set r of Hilbert space lattices: 
Y::::: Vy E rP (eW' y). 5 Let us denote the atoms of Y by 
Pa,qp,ry"'" wherep,q,r,. .. are atoms of 
P( eW'a)' P( eW'{3)' P( eW'y),. .. , respectively, and 
a, /3, y,. .. E r. Let .# y be the set of atoms of P ( eW' y) and .# 
the set of atoms of Y. We state without proof the following 
theorem which completes our study of deterministic evolu
tions. 

Theorem 4: If fl: .# ---+ .# is deterministic, then 3 a: 

r ---+ r and Va: .# a ---+ .# aja) such that a is bijective and Va 

is deterministic 'tJ a E r, and fl( Pa) = Va (P)aja) 'tJ Pa E .#. 
Consequently, a deterministic evolution for a classical 

system is nothing but a dynamical system. 

1782 J. Math. Phys .. Vol. 24, No.7, July 1983 

IE. P. Wigner, Group Theory (Academic, New York, 1959). 
2G. Emch and C. Piron, J. Math. Phys. 4, 469 (1963). 
'w. Daniel, Helv. Phys. Acta 55, 330 (1982). 
4V. Gorini and A. Zecca, J. Math. Phys. 16, 667 (1975); see also A. Zecca, 
Int. J. Theor. Phys. 20,191 (1981). 

SA. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 77711935). 
"c. Piron, Foundations o/Quantum Physics (Benjamin, New York, 1976). 
7K. R. Popper, Br. J. Phil. Sci. 10, 25 (1959). 
"A. M. Gleason, J. Math. Mech. 6, 885 (1957). 
"D. Aerts "The classical and the nonclassical part of the description of an 
entity," Found. Phys. (to be published). 

lOT. Kato, Perturbation Theory/or Linear Operators (Springer-Verlag, Ber
lin, 1976), Sec. V.l. 

lIN. Gisin, "A model of dissipative quantum dynamics," Ph.D. thesis, De
partment of Theoretical Physics, University of Geneva, 1982. 

12R. Baer, Linear Algebra and Projective Geometry (Academic, New York, 
1952). 

HE. Artin, Geometric Algebra (Wiley-Interscience, New York, 1957). 
14A. O. Barut and R. Ra,<zka, Theory o/Group Representations and Applica

tions (Polish Scientific Publishers, Warsaw. 1977). 
"M. Reed and B. Simon, Methods 0/ Modern Mathematical Physics (Aca

demic, New York, 1972), Vol. 1. 
I"E. B. Davies, One Parameter Semigroups (Academic, London, 1980), 

Theorem 1.18. 
17N. Gisin, J. Phys. A 14, 2259 (1981). 
"N. Gisin, He1v. Phys. Acta 54. 457 (1981). 
I"H. Rauch et aI., Phys. Lett. A 54, 425 (1975). 
20 A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982). 
21E. B. Davies, Quantum Theory o/Open Systems (Academic, Oxford, 

1976). 
"N. Gisin, Physica A 111, 364 11982). 

N. Gisin 1782 



                                                                                                                                    

The Fierz identities-A passage between spinors and tensors 
Yasushi Takahashi 
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JJ, 
Canada 

(Received 12 October 1982; accepted for publication 26 November 1982) 

All possible Fierz identities among 16 elements in the Dirac algebra have been obtained. These 
relations impose various constraint conditions on Hermitian and non-Hermitian bilinear 
currents. Independent relations are sought out from the highly redundant system of constraint 
conditions. Relations between derivatives of a spinor and tensor currents are also obtained. 
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I. INTRODUCTION 

The purpose of this paper is to derive explicitly all the 
Fierz identities between various matrix elements of the 
Dirac gammas, and to apply them to obtain relations among 
16 Hermitian currents J (scalar), J5 (pseudoscalar), J" (vec
tor), J SI' (axial vector), J

I
"" (skew tensor), and 20 non-Hermi

tian currents R" (complex vector) and R"v (complex skew 
tensor), in order to establish the passage from tensors to spin
ors and vice versa. These relations, which will be referred to 
as the Fierz constraint conditions, are not all independent. 
We have singled out 28 basic constraint relations from which 
all the other constraint relations can be derived, though the 
choice of the primary set is by no means unique. 

The analysis of the Fierz constraint conditions provides 
us with the foundation for the spinor reconstruction 
theorem, 1.2 i.e., the spinor can be reconstructed uniquely 
from eight components of the currents, for example, J5 , J i , 

JSi ' and the phase of Ro. 

The Fierz identities can also be applied to obtaining the 
relations between the space-time derivative of a spinor and 
that of tensors. Hence, the physical quantities associated 
with the spinor field can be expressed in terms of the currents 
and their derivatives, without the knowledge of dynamics. 
We have illustrated such relations in Sec. V. 

This investigation was motivated by a number of phys
ical problems, such as the boson-fermion equivalence theory 
in (1 + I)-dimensional space,3 the supersymmetry theory,4 
the grand unification theory,S the proof of the positive defi
niteness of the gravitational energy with the spin or field, 6 

and the gauge principle in particle physics. 
From our viewpoint, there is no reason why the spinor 

is more fundamental than the tensors. A certain system of 
constrained tensors is equivalent to a spinor, although the 
introduction of a spin or may simplify the matter consider
ably in practice. For example, a tetrad in Minkowski space 
implies the existence of a spinor, and the orthogonality and 
completeness conditions are automatically satisfied, when 
the tetrad is expressed in terms of the spinor. Thus, the 
spin or monism is not the only possibility for unifying the 
constituents of the matter. 

Throughout this paper, we adopt the notation used in 
the Appendix in Ref. 7. 

II. THE FIERZ IDENTITIES 

The basic Fierz identity8 is written as 
16 

DabDcd = 1 L (YC)ad(YC)cb' 
C~I 

(2.1) 

where Yc (C = 1,2, ... ,16) are elements of the y-algebra nor
malized as 

Tr[YA YB] = 4OAB , A,B = 1,2, ... ,16. (2.2) 

To derive further identities, multiply (2.1) by Y A and Y B to 
obtain 

16 

(YA)ab(YB)cd =! L (YAYC)ad(YBYC)cb (2.3a) 
C~I 

= (!j2 L Tr[YcYA YDYB ] (YC)ad(YD)cb' 
C.D 

(2.3b) 

Calculating the trace containing four gamms in (2.3b), we 
obtain all possible Fierz identities. However, the calculation 
of all the traces is extremely tedious if not impossible. We 
have used the form (2.3a) instead which can be calculated by 
hand much more directly than using the form (2.3b). 

The lower case Latin letters, indicating spinor indices 
rearrangement, can be omitted without sacrificing clarity if 
we introduce the square bracket and write (2.3a) as 

16 

(YA)[YB] =! L (YAYC][YBYC)' (2.4) 
C~I 

Denoting as 

(I) (), (iys)=(5), 

(iy,,) (}L), (iysY" )-(5}L), 

(u"v)-(}Lv), (iysu"v) = -! iE"vaP(Uap ) (·}Lv) (2.5) 

and similarly for [ ], ( ], and [ ), we obtain, after straightfor
ward but lengthy calculations, 15 relations in the Appendix 
(I), listed as (F-l)···(F-15). 

put 
To obtain relations between 16 Hermitian currents, we 

()=[ ]=( ]=[ )=¢r/J==.l, 

(5) = [5] = (5] = [5) = i¢Ysr/J==.ls, 

(}L)=[}L]=(}L]=[}L)=i¢y"r/J==.l", 

(5}L) = [5}L] = (5}L] = [5}L) = i¢ysY" r/J==.ls", 

(}Lv) = [}Lv] = (}Lv] = [}Lv) = ¢u"v r/J==.l"v' 

(2.6) 

Then, it follows immediately from (F-l)···(F-15) the relations 
in the Appendix (II), listed as (JJ-1) ... (JJ-1S).9 There are alto
gether 187 relations among 16 quantities in (2.6). As we shall 
see later, only nine relations are independent, and the rest of 
the relations can be derived from them. Hence, seven quanti
ties in (2.6) can be assigned arbitrarily. As has been shown, 
the spinor ¢ can be reconstructed, except for the overall 
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phase, from seven quantities, for example, Is, Ii' and lSi' and 
the identities (JJ-l ) ... (JJ-15). 

The overall phase can also be recovered, if we know, 
beside the Hermitian currents, the gauge variant quantity 

Rfl-=i~lYfl-if;, (2.7) 

where ifl is the Pauli conjugate of the charge conjugation if;c 
of the spinor if;. The quantity (2.7) satisfies the identities com
ing from (F-l)···(F-15) together with the quantity 

Rfl-l' -~lafl-l'if;. (2.8) 

They are listed in the Appendix (III), (IV), (V), and (VI). In 
calculating (RI-l) ... (RI-15), (IR-l)···(IR-15), (RR-l) ... (RR-
15), and (RR -1 ) ... (RR-15), we assumed that if; is the commut
ing quantity and, hence, 

ifl if; = i¢cYsif; = iiflYsYfl- if; = 0, 

¢cif;" = -¢if;= -I, 

i¢c Ysif;C = - /1i'1'sif; = - Is, 

iiflYfl- if;c = i¢rfl- if; = Ifl-' 

i"!ifYsYfl- if;" = - i¢rsYfl- if; = - ISfl-' 

"!ilafl-l'if;C = ¢afl-l'if; = Ifl- l" 

(2.9) 

(2.10) 

which can be proved by the definition of the charge conjuga
tion. 

The relations (RI-l) ... (RR-15) are again highly redun
dant and only 19 of them are independent, having only one 
component (namely the phase of Ro, say) arbitrary among 20 
components of Rfl- and Rfl-l" 

III. INDEPENDENT RELATIONS AMONG BILINEAR 
QUANTITIES 

As was seen in the preceding section, there are large 
numbers of relations among I, Is, Ifl- ' ISfl-' Ifl- l" Rfl- ' and Rfl-l' 
coming from the Fierz identities (F-l) ... (F-15). Under the 
condition 

(3.1) 

all the relations are summarized by the following 28 rela
tions lO

: 

Ifl-ala = - Is/sfl-' 

*Ifl-ala =llsfl-' 

lala = - Isalsa = - (/2 + I;), 
lfl-aRa = iIRfl-' 

Rfl-ala = - ilRfl-

*Rfl-ala = - ilsRfl-' 

RaRa =2(12+1;). 

(3.2a) 

(3.2b) 

(3.2c) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

[It appears that there are 35 relations in (3.2) and (3.3), but 
they are not all independent. For example, Eqs. (3.2a) and 
(3.2b) contain only seven independent relations.] 

In order to show that all the Fierz constraint conditions 
(JJ-l) •.. (JJ-15) can be derived from (3.2), we note the identi
ties, holding between two arbitrary skew-symmetric tensors 
Ffl-l' and Gfl- l" 

Ffl-aGal'-*Fl'a*Gafl- = -!Dfl-l'FapGap 
=! Dfl-l' *Fap*Gap , (3.4a) 
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Ffl-a*Gal' +*Fl'aGafl- = -!Dfl-l'*FapGap 

= -! Dfl-l'Fap*Ga/3' 

where *Ffl-v is the dual of Ffl-v defined by 

*Ffl-Y = -! i Efl-ya/3Fa/3' 

and similarly for *Gfl-v, 
The identities 

(3.4b) 

(3.5) 

Efl-l'AaFa/3 A/3 = - itA :Fl'A + A ~FAfl- + A '1Ffl-l')' (3.6a) 

Efl-VAa *Fa/3 A{3 = i(Afl-FvA + Al'FAfl- +AAFfl-V) (3.6b) 

and also useful for an arbitrary skew-symmetric tensor Ffl-v 
and an arbitrary vector Afl-' The relations such as 

ISala = 0, (3.7a) 

Ifl-I"A + 1"IAfl- + IAlfl-v + iEfl-l'Aallsa = 0, (3.7b) 

Ifl-v = !Js(/fl- 15v - IJsl') - iIEl'l'a{3la I S/3l/l al a' 
(3.7c) 

Il'alsa = -1511" (3.7d) 

*/l'alsa =111" 

Il'alWI =Dl'vI2 + /l'/y -151' / SY' 

(3.7e) 

(3.7t) 

*/l'a *Iva = Dl'l'l; + Il'/l' - ISl'/sl" (3.7g) 

Il'a *Iva = 1 DI'Ja/3 *la/3 = DI'JIs (3.7h) 

follow from the relations (3.2), (3.4), and (3.6). 
We now turn our attention to the relations (3.3). First, 

we note that having known all theJ's from (3.2), Eq. (3.3a) 
determinesR i in terms of Ro and all theJ's. Then, Eqs. (3.3b) 
and (3.3c) determineRl'l' uniquely in terms of RI' and aliI's. 
The normalization of RI' is fixed by (3.3d). 

Obviously, we have 

RaRa = ° (3.8) 

from (3.3a), and 

Rala = ° (3.9) 

from (3.3b). Using (3.3a), (3.7d), and (3.9), we obtain 

Ralsa = 0. (3.10) 

Other relations, 

Rl'a ISa = - IsRI' ' 

*Rl'a/Sa =IRI" 

Rl'alva = *Rl'a */l'a = ilRl'v + Rl'/l' , 

Rl'a *Iva = - *Rl'all'a = il*Rl'l' + il5l'R l' , 

(3.11a) 

(3.llb) 

(3.11c) 

(3.11d) 

Rl'aRa = ·Rl'aRa = Rl'a *Rva = 0, (3.11e) 

RI'Y = IRI' (iJJy - IsIs,,) - Ry(iJJI' - IsIsI' )}/(/2 + 1;) 

= IiI (RI' Iv - RJI' ) - ISEl'va{3Ral/3l /(/
2 + 1;), 

(3.11t) 

Il'l' = I/s(/sl'/v - IsJI') 

-! i/(RI'Rl' - Rl'RI' )}/(/2 + 1;), 

Rl'aRva = *Rl'a *Rva = RI'Rv , 

Rl'a Ra = 2(/5151' - iJJI' ), 

*Rl'aRa = - 2(JJ51' + iI511')' 

Yasushi Takahashi 

(3.11g) 

(3.11h) 

(3.11i) 

(3.11j) 
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(3.111) 

iEfwapRaRp = 2i(J,Jsv -JJs/J, (3.11m) 

can be derived from (3.2) and (3.3) with the help of (3.4) and 
(3.6). 

IV. ORTHOGONAL TETRAD AND PARAMETER 
REPRESENTATIONS 

The relations (3.2c), (3.7a), (3.8), (3.9), and (3.10) imply 
that the four 4-vectors 

I (R -R )/(J 2 +J2)1/2=h(l) 
2 f.L f.L 5 - f.L' 

-!i(Rf.L +Rf.L)I(J2+n)1/2=h~1, (4.1) 

J I(J 2 + J2 )1/2=h (3) 
Sf.L 5 - f.L' 

Jf.L I(P + J; )1/2 _h~) 

form an orthonormal tetrad. Hence, any vector orthogonal 
to h ~), ... ,h ~)vanishes identically. If we use this property, the 
relations such as (3.111) and (3.11g) can be proved without 
difficulty. The completeness of the tetrad (4.1) 

- - 2 2 
!(Rf.LRv +RvRf.L)-Jf.LJv + JSf.LJsv =(J +Js)Df.Lv 

(4.2) 

is again the consequence of the Fierz identities (3.2) and (3.3) 
or (3.11k). 

To the orthogonal tetrad formed by three spacelike 
h (I) h (2) h (3) and one timelike h (0) we may introduce the pa-

11-' Jl' 1" Jl' 

rameter representation in terms of the Euler angles and the 
pseudo-Euler angles. 2 Then, constructing the spinor-deter
mining equation, we can go back to the original spinor, as 
was done in our previous papers. 1.2 We may also introduce 
the representation adopted by Takabayasi,l1 which shows 
that the Dirac field consists of rotators and their transla
tional motion (and another parameter). 

The alternative parameter representation 

JSf.L = 4IcoI2(SIC2a\l) + S2a\2),iCI C2), 

Jf.L = 4IcoI2(SIC2a\l) + S2a\2),iCIC2), 

Rf.L = - 4c~(SIS2a\l) + C2a\2) + ia\3),iCIS2), 

R- A_*2(S S (I) + C (2) • (3) 'C S ) f.L = - ~o I 2ai 2ai - Wi ,I I 2' 

~EijkJjk = J (C2a\l) - SIS2a\2)) + JSCIS2a\3), 

iJi4 = - Js(Cza\l) - SIS2a\2)) + JCIS2a\3), 

!EijkRjk = - 4c~ I - J(S2a\l) - SIC2a\2) - iSla\3)) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(4.3e) 

(4.31) 

+ iJS(Cla\2J + iClC2a\3 J)j/(J2 + n)1/2, 
(4.3g) 

iRi4 = - 4c~ I JS(S2a\l) - SIC2a\2) - iSla\3)) 

+ iJ(Cla\2) + iCI C2a\3))j/(P +n)1/2 (4.3h) 

has been adopted previously to show that from the Fierz 

8(¢iyf.L (ap - Jp )t/J)RvRv 

identities (3.2) and (3.3),2 the spinor can be recovered, where 
aIr) (r = 1,2,3) are an orthogonal triad, represented by the 
three Euler angles, and also 

ICol2 = A(J 2 + J; )1/2 (4.4) 

and 

Ci = cosh5i 
(i= 1,2) 

Si = sinh5i' 
(4.5) 

The parameter representation (4.3) contains eight param
eters J, Js, 51' 52' three Euler angles and the phase of Co. It is 
straightforward to verify that quantities (4.3) satisfy all the 
Fierz constraint conditions. 

V. DERIVATIVES OF SPINORS AND TENSORS 

Physical quantities associated with a spinor field, such 
as the energy-momentum tensor, contain derivatives of the 
spinor field. A certain combination of derivatives of the 
spinor field can be written as a combination of derivatives of 
tensor quantities with the help of the Fierz identities (F-
1) .. ·(F-15). 

First, it is not difficult to prove the relation, from Eq. 
(2.4), 

(YA(ap -Jp))[YB]-(YA)[YB(ap -Jp)) 

= A.L (YAYC](ap -Jp)[YBYcl. 
c 

Ifwe choose 

YA =Yf.L' YB =Yv' 

( = ¢(x), ) = ¢(x), 

[ = ¢/ (x), ] = t/J(x), 

we can read off from (F-1O) the relation 

4Rv(¢iyf.L Vp t/J) 

(5.1) 

(5.2) 

- Df.LvJa VpRa +Jf.L VpRv + Jv VpRf.L + iJVpRf.Lv 

+ iJsVp *Rf.Lv + Jf.La VpRva + *Jf.La Vp *Rva 

(5.3) 

and, from (F-1O) with ( = [ = t/J, ) = t/J, ] = t/f, we ob
tain 

4(¢iyf.L Vpt/J)Rv 

- Df.LvRa VpJa + Rf.L VpJv + Rv VpJf.L - iRf.Lv VpJ 

- i *Rf.LV VpJs + Rf.La VpJva + *Rf.La Vp *Jva 

(5.4) 

where 

vp=ap -Jp. (5.5) 

Hence, we have 

= -Rf.L(Ja VpRa) - (Ra VpJa)Rf.L + Rv(Jf.L VpRv) + (Rp VpJv)Rv 

+ Rv(Jv VpRp) + (Rv VpJp)Rv + iRv(JVpRpv) - i(Rf.Lv VpJ)Rv 

+ iRv(JsVp *Rpv) - i(*Rpv VpJs)Rv + Rv(Jf.La VpRva) + (Rpa VpJpa)Rv 

+ Rv(*Jpa Vp *Rva) + (*Rpa Vp *Jva)Rv - EpvaplRv(Jsp VpRa) - (Ra VpJsp)Rv J. (5.6) 

The right-hand side of this equation can be simplified, with the help of the Fierz identities in Sec. III, as 
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(¢ir/' (ap - Jp )¢) 

= Ai! - apRv(JR/1v + Js *R/1Y) - (JR/1" + Js *R/1v)JpRv + 2ilPJy(JJ'lV + Js *J/1v) + 4JS/1 (Js(Jp - Jp )JJl/(P + n) 
(S.7a) 

= HJ/1 (Rv VpRv) - (Rv VpJv)R/, - R/1 (Jv VpRv) + 4iJ5/1(JSVpJ)j/(P + n), (S.7b) 

where, from (S.7a) to (S.7b), we have used the relations (3.lle) and (3.11f). We emphasize that the relations (S.7) involves only 
the Fierz identities and no dynamics has been considered at all. This expression agrees, when J.L and p are contracted, with the 
Lagrangian obtained by Zhelnorovich (apart from the mass term). 12 

Ifwe take 

rA = irsr/1' rB = rv' (S.8) 

we arrive, after a similar calculation, at 

(¢irsr/1(Jp -Jp)¢)=!!apRv(J*R/1v -JsR/'v)-(J*R/,v -JsR/1v )JpR v 

+ 2i(JJ/1v + Js *J/,v)JpJs,. + 4i(JVpJs)J/1)/(J 2 + n) (S.9a) 

(S.9b) = - !!JS/1 (Rv VpRv) - (Rv VpJsv )R/1 - R/1(Jsv VpRv) + 4i(JVpJs)J/1 )/(J 2 + n)· 

This is the quantity used by Israel and Nester to prove the 
positive definiteness of the gravitational energy.6 

VI. DISCUSSION 

By now it becomes quite obvious that the investigation 
of the Fierz identities and constraint conditions opens up the 
passage between spinors and tensors, namely the tensor sys
tem satisfying the Fierz constraint conditions implies the 
existence of a spinor. Thus, the existence of the Fierz con
straint conditions can be regarded as the evidence ofthe exis
tence of the spinor. Moreover, when we start from the Her
mitian current J, Js, J/1 ' JS/1 ' and J/1V to recover the spinor, 
the gauge freedom of the first kind emerges. I This fact sug
gests that the Fierz constraint conditions among the Hermi
tian currents to establish the existence of the spinor play the 
same role as the Bianchi identity to the gauge variant poten
tial in gauge field theory. We have assumed throughout this 
paper that the spinor is a commuting c-number and the prob
lem of quantization has been untouched. Suppose that four 
4-vectors form a tetrad, namely the four 4-vectors satisfy 

APPENDIX: ALL FIERZ IDENTITIES 
(I) 

I 
orthonormality and completeness. To quantize such a sys-
tem, we may apply the well-known Dirac method. 13 Due to 
the complications of orthonormality and completeness, the 
Dirac method is expected to be rather cumbersome. But, as 
we have learned, the tetrad implies the existence of a spinor, 
and it can be expressed in terms of the spinor as in Eq. (4.1). 
Once the tetrad is written by the spin or, the orthogonality 
and the completeness conditions are automatically satisfied 
as a result of the Fierz identities. Hence, we may ignore 
them. Thus, the introduction of spinor may simplify the 
quantization of the original system. In fact, this is the meth
od employed by Hara and Goto to deal with the particle with 
internal structure. 14 

The problem of quantization of a tensor system will, 
however, be deferred for future occasion. 
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(rA )ab(rB )ed =! I (rA re )ad(rBre )eb = W2 I Tr[ rerA rDrB] (re)ad(rD)eb' (AI) 

(A2) 

(A3) 

e CD 

(rA =1, rs, r,l' irsr/1' (7,ll' = (1I2i)[r
'
l,rv]' 

Tr[rA rB] = 40A B' 

(rA )[rB] =! I (rA re HrBre) = (!)2 I Tr[ rerA rDrB] (re] [rD)' 
e CD 

*(7/1v - ~ it/1v).p(7).p = irs(7/1v, 

*(7 a/3 *(7 a/3 = - (7 a/3 (7 a/3' 

()-(1), (S)=(irs)' (1l)-(ir/1)' (SIl)==(ir5r/1)' (J.Lv)=(7/1v), (*J.LV)=(ir5(7/1v) = (*(7/1v)' etc., 

4( )[ ] = ( ][ ) - (S][S) - (aHa) + (Sa][Sa) + ~(a/3 ][a/3), 

4( )[S] = ( ][S) + (S][ ) - i! (a][Sa) - (Sa][a)j + ~(a/3][*a/3), 
4( )[A] = ( ][A) + (A][ ) + i! (S][SA ) - (SA ][S)) + i! (a][Aa) - (Aa][a)) + ! (Sa][*Aa) + (*Aa][Sa)) , 
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(A4) 

(AS) 

(A6) 

(A7) 

(F-l) 

(F-2) 

(F-3) 
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4( )[5A]=( ][5A) + (5A][ )+i{(5][A)-(A][5)j + {{a] [*Aa) + (*Aa][a)] +i{(5a][Aa)-(Aa][5a)}, (F-4) 

4( )[Ap)=( ][Ap) + (Ap][ )- !(5][*Ap) + (*Ap][5)j -i{(A][p)-(p][A)] +i{(5A][5p)-(5p][5A)] 

+ i{(Aa][pa) - (pa][Aa)j + iEApaP {(a][5p) + (5p][a)] , (F-5) 

4(5)[5] = - ( ][ ) + (5][5) - (a][a) + (5a][5a) - ~(aP][ap), (F-6) 

4(5)[A] = -ill ][5A)-(5A][)} + {(5][A) + (A][5)} +i{(aJ[*Aa)-(*Aa][a)] - {(5a][Aa) + (Aa][5a)) , (F-7) 

4(5)[5A] = - i{ ( ][11.) - (11.][ )) + {(5][5A ) + (511. ][5) 1 - {(a][Aa) + (Aa][a) 1 + i{ (5a][*Aa) - (*AaJ[5a) 1, (F-8) 

4(5)[Ap] = (5J[Ap) + (Ap][5) + ( ][*Ap) + (*Ap][ ) - {(A ][5p) + (5p][A ) 1 
+ {(5A ][p) + (p][5A)1 + iWAa][pa) - (*pa][Aa)) + EAPafJ {(aJ[p) - (5a][5p)] , (F-9) 

4( Jl)[A] = - oJM {( ][ ) + (5][5) + (a][a) + (5a][5a)] + (Jl][A ) + (A ][Jl) + (5Jl][5A ) 

+ (5A][5Jl)+i{( ][JlA)-(JlA][)1 +i{(5][*JlA)-(*JlA][5)J + (Jla][Aa) 

+ (*Jla][*Aa) + Ej.tAafJ {(a][5p) - (5p][a)J, (F-lO) 

4( Jl)[5A ) = 0j.tA {i( ][5) - i(5][ ) - (a][5a) - (5a][a) I + {( Jl][5A ) + (511. ][Jl) + (A ][5Jl) + (5Jl][A )j + {( ][*JlA) 

+ (*JlA][ ) - (5][ JlA ) - (JlA ][5)) + i{ (*Aa][Jla) - (Jla][*Aa)] + Ej.tAaP {(a][ P) + (5a][5p)] , (F-ll) 

4(Jl)[Ap) = iOj.tA!( ][p) - (p][ ) - i(5][5p) - i(5p][5) - i(a][pa) - i(pa][a) + (5a][*pa) - (*pa][5a)] 

- iOj.tp I ( ][11.) - (11.][ ) - i(5][5A ) - i(5A ][5) - i(a][Aa) - i(Aa][a) + (5a][*Aa) - (*Aa][5a) I 
+ I (Jl][Ap) + (Ap][Jl) + (A ][Jlp) + (Jlp][A) - (p][JlA) - (JlA ][p)) + i{{5Jl][*Ap) - (*Ap][5Jl) 

+ (511. J[*Jlp) - (*Jlp][5A) - (5p][*JlA) + (*JlA ][5p)j - iEJMpa ({ ][5a) + (5a][ ) - i(5][a) + i(a][5)J, (F-I2) 

4(5Jl)[5A] = oj.tAI( ][ ) + (5][5) - (a][a) - (5a][5a)j + (Jl][A) + (A ][Jl) + (5Jl][5A) + (511. ][5Jl) - il( ][JlA) - (JlA][ ) 

+ (5][*JlA ) - (*JlA ][5)] - (Jla][Aa) - (*Jla][*Aa) + Ej.tAaP {(5a][P) - (p][5a)j, 

4(5p)[Ap) = oj.tAI(5][p) + (p][5) + i( ](5p) - i(5p][ ) + (5a][pa) + (pa][5a) + i(a][*pa) - i(*pa][a)) 

- oj.tp {(5][A) + (A ](5) + i( ](511.) - i(5A][ ) + (5a][Aa) + (Aa][5a) + i(a][*Aa) - i(*Aa][a)j 

+ I (5Jl][Ap) + (Ap][5Jl) + (511. ][pp) + (Jlp][5A) - (5p][JlA) - (JlA ][5p)] 

+ il (Jl][*Ap) - (*Ap][Jl) + (A ][*Jlp) - (*Jlp][A) - (p][*JlA) + (*JlA ][p) I 

(F-13) 

- iEj.tApa I ( ][a) + (a][ ) - i(5][5a) + i(5a][5) J, (F-14) 

4( Jlv)[Ap] = (OJ.tA o"P - OJ.tpOVA){ ( ][ ) - (5][5) - (a][a) + (5a][5a)] + 8j.tAI (v][p) + (p][v) - (5v][5p) - (5p][5v) 

- i( ][vp) + i(vpJ[ ) + i(5][*vp) - i(*vp][5) - (va][pa)] - OJ.tP {(v][A ) + (A ][v) - (5v][5A ) - (511. ][5v) 

- i( ][vA) + i(vA][ ) + i(5][*vA ) - i(*vA ][5) - (va](Aa)j + ovp I (JlJ[A ) + (A ](Jl) - (5Jl][5A ) - (511. ][5Jl) 

- i( ][JlA) + i(JlA][ ) + i(5][*JlA) - i(*JlA ][5) - (Jla][Aa)) - oVAl (Jl][p) + (p][Jl) - (5Jl][5p) - (5p][5Jl) 

- i( ][ /Lp) + i( /LpJ[ ) + i(5][*/LP) - i(*/LP][5) - (/La][pa)] + EavAp I (5/L][a) - (/L](5a) I 
+ Ej.taAp I (5v][a) - (v][5a)] + Ej.tvap I (a][5A ) - (5a](A ) I + Ej.tvAa I (a][5p) - (5a][p)] + Ej.tVAp {( ][5) 

+ (5][ )1 + (/LV][Ap) - (*/LV][*Ap) + (AV][/Lp) + (/Lp][AV) + (/LA](Vp) + (vp][JlA). (F-15) 

(II) 

( ) = ¢f/!==J, (5) = ¢iY5f/!==J5, (/L) = ¢iyj.t f/!==Jj.t' (5/L) = ¢iY5Yj.t f/!==.I5j.t' (/LV) = ¢Uj.tv f/!==.Ij.tv, 

Putting ( ... ) = [ ... ] = ( ... ] = [ ... )==./ ... , we have 

3J 2 + J; + JaJa - J5a J5a - ! JapJap = 0, 

2JJ5 - ~ Ja(3 *Ja(3 = 0, 

JJj.t - J5a *Jj.ta = 0, 

JJ5j.t - Ja *Jj.ta = 0, 

JJAp + J5 *JAp - iEApapJaJ5(3 = 0, 

J2 + 3J; + JaJa - J5a J5a + ~ Ja(3Jap = 0, 

J5JA + J5a JAa = 0, 
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(JJ-I) 

(JJ-2) 

(JJ-3) 

(JJ-4) 

(JJ-5) 

(JJ-6) 

(JJ-7) 
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JsJsJo. + JaJJo.a = 0, 

JsJJo.p - J *JAp + JAJSp - J SJo. Jp = 0, 

2II-'JA + DI-'A [J 2 + J ~ + JaJa + JSa JSa 1 - 2IsI-' JSJo. - Jl-'aJJo.a - *JI-'a *JAa = 0, 

JI-'JS Jo. +DI-'A JaJSa - JSI-' JA - J*JI-'A + JSJI-'Jo. = 0, 

JI-'JAp +JAJpl-' + JpJJ1-lo. +iEI-'Jo.pa JJsa -DI-'A(JaJpa +JSJSp)+Dl-'p(JaJAa + JSJSA) = 0, 

2ISI-' JSA - 2II-' JA - DI-'A [J 2 + J ; - JaJa - JSa JSa 1 + Jl-'aJAa + *JI-'a *JAa = 0, 

JSI-' JAp + JSA Jpl-' + JSp JI-' A + iEI-'Apa JJa - DI-'A (JSa Jpa + JSJp) + DI-'p (JSaJJo.a + JsJJo. ) = 0, 

3JI-'J Ap +*JI-'V *JAp -2IAJ l-'p - 2II-' AJvp - (DI-'A Dvp -Dl-'p DvJo.)[ J 2 -J; -JaJa + JSa JSa 1 

(JJ-8 ) 

(JJ-9) 

(JJ-1O) 

(JJ-II ) 

(JJ-12) 

(JJ-13) 

(JJ-14) 

- DI-'A [2IJp - JyaJ pa - 2IsJsp 1 + DI-'p [2IJA - J ya JJo.a - 2IsJ sA I - Dyp [211-' JA - Jl-'aJJo.a - 2IsI-' J sA I 

+ DyA I2II-' Jp - Jl-'a Jpa - 2ISI-' JSp 1 - 2EI-'YAp JJS = 0. (JJ- IS) 

(III) 

Putting 

( = ¢c, ) = ]= tP, [=¢, () = ( ] = 0, (5) = (5] = 0, 

(J.t) = (J.t] = ¢c iyl-' tP==RI-' , (SJ.t) = (5J.t] = 0, (J.tv) = (J.tv] = ¢c ul-'V tP=Rl-'v, [ .•. ] = [ ... ) = J ... , 

we have 

R aj a - !R apJap = 0, 

R aJSa + ~ iRap *Jap = 0, 

R AJ + iRaJAa - iRAa Ja + *R Jo.a Jsa = 0, 

RAJS + R Jo.a Jsa + iRa *JJo.a + i *RAa Ja = 0, 

R Jo.p J - *RJo.p Js - iR Jo. Jp + iRpJA + iRJo.aJpa - iRpaJJo.a + iEJo.papRaJsp = 0, 

R aj a + ~ R a(JJap = 0, 

R AJS + iRa *JAa - i *RAa Ja - R Aa JSa = 0, 

iRAJ - R aJAa - R;.a Ja - i *R Jo.a JSa = 0, 

R Ap JS + *R Jo.p J - R Jo. Jsp + RpJ sJo. + i *RJo.a Jpa - i *RpaJJo.a + EJo.pap R aJp = 0, 

3RI-'JJo. - R Jo. JI-' + DI-'Jo. R aJa + iRJ1-lo. J + i *RJ1-lo. Js - Rl-'aJJo.a - *RI-'a *JAa - EJ1-lo.apRaJsp = 0, 

3RI-'JSA - R AJSI-' + DI-'AR aJSa - *R"Jo. J + R"Jo. Js - i *R"aJJo.a + iR"a *JAa - E"Jo.apR aJp = 0, 

3RI-'JAp - RJo.pJ" - R Jo. J"p - Rl-'p JA + RpJ"A + R I-'A Jp - D"AIRaJpa + RpaJa - i *Rpa Jsa - iRpJ 1 
+ D"p I R aJJo.a + RAaJa - i *RAa JSa - iRAJ 1 + il*RJo.pJs" + *R"pJSA + *RA"JSp J - E"ApaR aJS = 0, 

- D"ARaJa + RI-'JA + R AJI-' + iRJ1-lo.J + i *R"AJS - R"a JAa - *R"a *JAa - E"Aa(JR pJsa = 0, 

D"A IR pJs + R pa Jsa + iRa *Jpa - i *Rpa Jal -D"pI R AJs +RAa Jsa + iRa *JJo.a -i*RAa Jal 

+ R Jo.pJs" + R"pJSA + RJo." Jsp + ilRI-' *JJo.p + R Jo. *J"p + R p *JA" 

(RJ-I ) 

(RJ-2) 

(RJ-3 ) 

(RJ-4) 

(RJ-5) 

(RJ-6) 

(RJ-7) 

(RJ-8) 

(RJ-9 ) 

(RJ-1O) 

(RJ-II ) 

(RJ-12) 

(RJ-13 ) 

- *R Ap JI-' - *R"pJA - *RJo." Jp 1 - iE"Apa R aJ = 0, (RJ-14) 

- 3RI-'vJJo.p - *R"v *JAp + R Jo.J"p + Rl-'pJAv + R J1-lo. Jvp + R vpJ"Jo. - (DJ1-lo. Dvp - D"pDvJo. )RaJa 

+ D"A IRJp + RpJv + iR vp J - i *R vpJs - R va Jpa 1 - DI-'p IRJJo. + RJv + iR vJo. J - i *R vA JS - R va JJo.a 1 

+ Dvp IR"JJo. + R Jo. JI-' + iR"AJ - i *RI-'Jo.Js - Rl-'a JJo.a 1 - DVJo. IR" Jp + RpJ" + i*R"p Js - R"aJpa 1 
- I EavJo.pRI-' + El-'aA.pR v IJsa + I E"vapJSA + El-'vAa JSp IR a = 0. 

(IV) 

Put 

( = ¢, ) = tP, [ = ¢c, ] = tP, 
[J.t) = ¢c iyl-' tP = RI-' = [J.t], [J.tv) = ¢c u"v tP = RI-'v = [J.tv] , ( ... ) = ( ... ] = J ... . 

JaR a - ! JapRap = 0, 

JsaRa -!iJap *Rap = 0, 

3JRA. - iJaR Aa + iJAaRa - JSa *RJo.a = 0, 
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(JR-l) 

(JR-2) 

(JR-3 ) 
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JsR;. - wa *R;'a - i *J;.aRa + JsaR;.a = 0, 

3JR;.p + Js *R;.p + w;.Rp - wpR;. - w;.aRpa + wpaR;.a + iE;.papJsaRp = 0, 

JaRa + ! JapRap = 0, 

(JR-4) 

(JR-5) 

(JR-6) 

(JR-7) 

(JR-8) 

(JR-9) 

3JsR;. - iJa *R;.a + i *J;.aRa + JsaR;.a = 0, 

JR;. - waR;.a - w;.aRa - JSa *R;.a = 0, 

3JsR;.p - J *R;.p + JspR;. - Js;.Rp - i *J;.aRpa + i *JpaR;.a - E;.papJaRp = 0, 

3JpR;. - J;.Rp + Dp;.JaRa - iJRp;. - W5 *Rp;. - JpaR;.a - *Jpa *R;.a - Ep;.apJ5a Rp = 0, 

Dp;.J5aRa - J5;.Rp - J5p R;. - J *Rp;' + J5Rp;' - i *JpaR;.a + iJpa *R;.a - Ep;.apJaRp = 0, 

(JR-lO) 

(JR-ll) 

3JpR;.p - J;.pRp - JppR;. - J;.pRp - J;.Rpp - JpR;.p - iDp;. [JRp - iJaRpa - iJpaRa + J5a *Rpa) 

+ iDpp PR;. - waR;.a - w;.aRa + J5a *R;.a) - i[J5p *R;.p + J5;. *Rpp - J5p *Rp;.) + Ep;.paJ5Ra = 0, 

Dp;.JaRa - JpR;. - J;.Rp + iJRp;. + W5 *Rp;. + JpaR;.a + *Jpa *R;.a - Ep;.apJ5a Rp = 0, 

(JR-12) 

(JR-13) 

3J5p R;.p - J5;.Rpp + J5p Rp;. - Dp;. [J5Rp + J5a Rpa + Wa *Rpa - i *JpaRa) 

+ Dpp [J5R;. + J5a R;.a + Wa *R;'a - i *J;.aRa) 

- i[Jp *R;.p + J;. *Rpp + Jp *R;.p - *J;.pRp - *JppR;. - *J;.pRp) -I- iEp;.paJRa = 0. 

(JR-15) is the same as (RJ-15). 

(JR-14) 

(V) 

= [ =ifr, ) = J=tP· 
Then 

RaRa - ! RaP RaP = 0, 

RaP * RaP = 0, 

0=0, 

0=0, 

RaRa + ! RapRap = 0, 

0=0, 

(RR-l) 

(RR-2) 

(RR-3) 

(RR-4) 

(RR-5) 

(RR-6) 

(RR-7) 

(RR-8) 

(RR-9) 

2RpR;. + Dp;.RaRa - RpaR;.a - *Rpa *R;.a = 0, 
(RR-lO) 

0=0, (RR-ll) 

RpR;.p + R;.Rpp + RpRp;. 

- Dp;.RaRpa + DppRaR;.a = 0, (RR-12) 

Dp;.RaRa - 2RpR;. + RpaR;.a + *Rpa *R;'a = 0, 
(RR-13) 

0=0, (RR-14) 

- 3RpvR;.p - *Rpv *R;.p + 2R;.vRpp 

(VI) 
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+ 2Rp;.Rvp - (Dp;.Dvp - DppDv;.)RaRa 

+ Dp;. [2RvRp - RvaRpa) - Dpp [2RvR;. - RvaR;.a) 

+ Dvp [2Rp R;. - RpaR;.a ) - Dv;. [2Rp Rp - RpaRpa ) 

= 0. (RR-15) 

Putting 

( =ifr, (=¢, ) = ¢c, )-tP, 
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[=¢, [=ifr , J-tP, J=ifr , 
¢ctPc = - # = - J, ¢c iY5tPc = - ¢iY5tP = - J5, 

ifr iyp tPc = ¢iyp tP = Jp' 

ifr iY5Yp tPc 
= - ¢iY5Yp tP = - J5p ' 

¢c (Tpv tPc = ¢(Tpv tP = Jpv , 

¢iyp ~=Rp = (R r,iR ~), 

¢(TpvtPc=Rpv = (R t,iR~) 

we have 

4J2 = RaRa -! RapRap, 

4JJ5 = -! RaP *Rap , 

4JJ;. = - iRaR;.a + iR;'aRa' 

(RR-l) 

(RR-2) 

(RR-3) 

4JJ5;. = - Ra *R;.a - *R;.aRa, (RR-4) 

4JJ;.p = iR;.Rp - iRpR;. - iR;.aRpa + iRpaR;.a, 
(RR-5) 

4J; = RaRa +! RapRaP, 

4J5J;. = - iRa *R;.a + i *R;.aRa, 

4J5J5;. = RaR;.a + R;.aRa, 

(RR-6) 

(RR-7) 

(RR-8) 

4J5J;.p = - i *R;.aRpa + i *RpaR;.a - E;.papRaRIl.' 
(RR-9) 

4JpJ;. = - Dp;.RaRa + RpR;. 

+R;.Rp + RpaR;.a + *Rpa *R;'a' (RR-lO) 

4JpJ5;. = i *RpaR;.a - iRpa *R;.a + Ep;.apRaRp, 
(RR-ll) 

4JpJ;.p = Dp;. [RaRpa + RpaRa) 

- D,..p (RaR;.a + R;.aRa J + RpR;.p 
+ R;.Rpp + RpR;.p 
+ R;.pRp + RppR;. + R;.,..Rp, (RR-12) 

4J5p J5;. = Dp;.RaRa - RpR;. - R;.Rp 
(RR-13) 

Yasushi Takahashi 1789 



                                                                                                                                    

4JSI'J;.p = i81';'{*RpaRa -Ra *Rpul 

- iol'P {*R;.aRa - Ra *R;.u I 
- i{RI' *R;[p + R;. *RI'P + Rp *R;.I' 
- *R;.pRI' - *Rl'pR;. - *R;.pRp j, 

(RR-14) 

4JpJ;.p = (0l'pOy;, - op;.8vp )Ra Ra 

+ op;. {RvRp + RpRv - RvaRpa J 

- 0I'P {Rv R ;. + R;.Ry - RpaRya J 

+ OyP {RpR;. + RJ?p - RpaR;.a I 
- Oy;. {RI'Rp + RpRp - RpaRpa I 
+ Rl'yR;.p - *Rpy *R;[p + R;.yRpp 

+ RppR;.y + Rp;.Ryp + RypRp;.. (RR-15) 
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Superoperator perturbation theory for propagators 
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A well-defined superoperator perturbation theory for propagators is developed, based on 
equivalence classes of operators, which avoids the ambiguity of approaches based on a degenerate 
inner product. The Van Vleck formalism provides a natural tool for such a theory when self
consistent propagator approximations are chosen as zeroth-order approximations. 

PACS numbers: 03.65.Bz 

I. INTRODUCTION 

Superoperators, as their name suggests, are glorified 
operators that map operators to operators. Intrinsically, 
however, they are not essentially different from operators as 
both are mappings from one linear space to another. The best 
known example of a superoperator is the Liouville operator 
.5t' which is the infinitesimal generator of the time evolution 
of a quantum system, and thus acts on the algebra of obser
vables of such a system. The action of .5t' is defined in terms 
of the Hamiltonian H according to 

.5t'(A ) = [H, A ] (1.1) 

and the super time evolution operator U (t ) is given in terms 
of.5t' by 

U(t)(A) = eift(A ) = eiHt A e - iHt, (1.2) 

where A is an observable. The Heisenberg equation of mo
tion is thus expressed as 

- i!!..-A (t) = .5t'(A (t)) at 
(1.3) 

and the Liouville-Von Neumann equation for the density 
operators D (t ) as 

i !!..- D (t) = .5t'(D (t)). at 
(1.4) 

The superoperator formalism has been used extensively 
in the field of nonequilibrium quantum statistics since the 
late 1950's I and the fairly recent review by Penrose2 traces its 
development there. The tools of partitioning and inner pro
jection, utilized to great effect by L6wdin in perturbation 
theory,3 have played an essential role in the above topic. A 
comprehensive examination of perturbation theory for su
peroperators within this approach has just been completed4 

and is a good guide to the subject. 
Superoperators were also introduced into a degenerate 

perturbation theory using the Van Vleck formalism5 by Pri
mas6 (see references therein for earlier accounts of super
operator theory). The Van Vleck approach, as expounded by 
Redmon and Bartlett,7 is an essential ingredient of the mate
rial presented in this paper. 

It was not until 1970 that the superoperator formalism 
appeared in molecular quantum mechanics; then Goscinski 
and Lukman8 applied it to propagator approximations. In 
the following years, many applications and extensions9 

further refined and improved this form of propagator pertur
bation theory. 

The jump from operators to superoperators is, how
ever, not completely free from mathematical snags, as nor
mally operators are defined in a Hilbert space while supero
perators are defined in the set oflinear operators .5t'(Jf'), 
acting in JY. 

The space .5t'( Jf') is not a Hilbert space unless JY is 
finite dimensional, though the bounded elements of .5t'( Jf') 
form a Banach space g{f( Jf') with respect to the operator 
norm 

II A II = supllAVll jy , Ilvl!.w = 1, (1.5) 

where II II w is the norm in JY. Hence care must be exercised 
in the carrying over of Hilbert space operator properties to 
superoperators. In order to avoid such difficulties the sub
space g{f 2( Jf') of Hilbert-Schmidt operators is often used as 
a core in which superoperators are defined; the space 
g{f 2( Jf') is a Hilbert space with inner product given by 

(A I B )HS = Tr A tB (1.6) 

[if dim ( Jf') = 00, then g{f 2( Jf') is properly contained in 
.5t'( Jf')]. The superoperators so defined may then be ex
tended to larger domains. to A further practical difficulty as
sociated with .5t'( Jf') not being a Hilbert space is the lack of 
an inner product by which to construct matrix representa
tions. 

The propagator superoperator approach is based on an 
inner product space of operators; the Hermitian inner pro
duct involves the state density operator D, viz., 

(A I B) ± = Tr [ [A t, B ] ± D 1, 
where 

[A t, B ] ± = A tB ± BA t 

(1.7) 

and the sign used depends upon the type of operators A and 
B. A major drawback with this definition of inner product is 
that it is degenerate, i.e., 

(1.8) 

consequently, the superoperator adjoint operation and reso
lutions of the identity derived from this inner product are not 
well defined. These deficiencies are rather important as su
peroperator propagator perturbation theory is based on first 
forming an inner projection of a superoperator resolvent and 
then applying the partitioning technique (which both depend 
on a resolution of the identity) in conjunction with using the 
superoperator adjoint operation. A common way to sur
mount this problem in mathematical texts is to introduce 
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equivalence classes so that this degeneracy is removed when 
the inner product is defined on the space of equivalence 
classes. However, in the case of ( I ) _ all operators are 
members of the zero equivalence class, clearly an unsatisfac
tory situation. In order to obtain a unified theory for both 
boson- and fermion-like operators it is possible to define the 
Hermitian inner product II 

(A I B) = Tr !A tBD j, (1.9) 

which in general is again degenerate. However, if one defines 
the equivalence classes 

(1.10) 

and considers ( I ) to act in the space of such classes, it is 
then nondegenerate. The Hilbert of space :Jr'D of equiv
alence classes so constructed is the one utilized in the Gel
'fand-Naimark-Segal (GNS) construction to obtain repre
sentations of C *-algebras. 12 

Hilbert spaces of equivalence classes induced by the in
ner product (1.9) have been used to develop a theory of self
consistent propagator approximation, 13 which will be briefly 
described in Sec. II of this article. In Sec. IV, it will be shown 
that such approximations form a natural starting point for a 
superoperator perturbation theory for propagators based on 
a Van Vleck approach (the salient features of which are 
quickly reviewed in Sec. III). 

Every propagator can be canonically associated with a 
zeroth-order operator space-the space of operators that de
fine it, i.e., the one-electron propagator with the space fl' the 
particle-hole/polarization type with bl , the two-electron one 
with f2' etc., where 

fl = linear span [a;, a;; I.;;;io;;;rj, 

b l = linear span la; a); lo;;;i,j<rj, 

f2 = linear span laia), aJa;; lo;;;io;;;jo;;;rj 

(the operators, ai' a; are discrete field operators, based on a 
given basis of one-particle space :Jr'1). Each one of these 
spaces defines a self-consistent approximation to the asso
ciated propagator that corresponds to a model Hamiltonian 
and an approximate ground state !p that satisfies the vacuum 
condition for that manifold, viz., 

IQ! !p, !p,k = l, ... ,vj is an orthonormal set of vectors 

( 1.11) 

and 

Qk!P = 0, k = I, ... ,v, (1.12) 

where lQk' Qt. k = I, ... ,vj are linear combinations ofoper
ators from the appropriate space. 

As higher order propagators determine lower order 
ones, higher order manifolds can either be considered as de
fining zeroth-order approximations (which we will take to be 
of the self-consistent type) to higher order propagators 
which implicitly define improved approximations to lower 
order propagators, or as manifolds that explicitly determine 
corrections to the lower order propagators, e.g., the mani
fold f2 determines as a self-consistent approximation to the 
two-electron propagators such that 

IQk,QL Io;;;ko;;;(;)j Ef2 (1.13) 
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and satisfy (1.11) and (1.12) for some approximate state !p, 
which in turn determines an approximation to the one-elec
tron propagator. Alternatively, one could correct the one
electron propagator perturbatively by the explicit inclusion 
of terms that involve elements of f 2• 

The type of perturbative corrections that result from 
the theory described in this manuscript ensure that at each 
order of correction one has a self-adjoint model Hamiltonian 
as well as ground and excited states. We can thus always 
construct representable propagators, i.e., propagators asso
ciated with a given ground state, that provide real excitation 
energies, in contrast, to polarization propagators calculated 
within the random phase approximation (RPA) that may 
predict complex energies. 

II. SELF-CONSISTENT PROPAGATOR THEORY 

If IJI is the exact ground state of the Hamiltonian H, 
then we can construct a representation !t' 'I' of the Liouville 
operator !t' acting in the Hilbert space of equivalence classes 
:Jr' '1', where these classes are defined by (1.10). When 
D = IIJI) (IJII the inner product in this space is given by 

(<1> (A ) I <1> (B )) = Tr I A t B IIJI) (IJII j = (IJII A t BIJI). 
(2.1) 

The action of !t' 'I' is defined by 

!t' '1'.<1> (A ) = <1> ( !t'(A )) = <1> ([H, A ]). (2.2) 

It can be shown that (2.2) gives Ii well-defined symmetric 
operator if and only if 

(2.3) 

and H is symmetric. 13 

The operator !t' 'I' is in fact GNS representation of H
(IJII HIJI)·P '1" i.e., 

(2.4) 

where E is the ground state energy, Pop is the projector onto 
IJI, and the GNS representation for the state IJI is defined by 

"(A ).<1> (B ) = <1> (AB) 'tJ A,B. (2.5) 

The resolvent (zI'I' - !t' '1') - I is a well-defined Hilbert space 
operator and can thus be handled in standard ways. 

The above resolvent is particularly useful in the con
struction of the Laplace transformations of various propaga
tors. The causal propagator based on the operator manifold 
M can be expressed as 

GC(z) = (<1> (t)l(zI'I' -!t' 'I')-I<1>(t)) 

± ~(<1>(t)l(:zI'I' +!t' '1')-1<1> (t)f ~T, 

where 

(i) <1>(t) = [<1>(tk ); lo;;;ko;;;vj, 

(ii) <1> (tt) = <1> (tt) ~\ 

(2.6) 

(iii) ~kk' = (<1>(tk)1 <1> (tk ,)) = (1JIItktk,IJI), lo;;;k,k'o;;;v, 

(iv) the image of the operator manifold M under <1>, i.e., 
<1> (M), is spanned by the vectors 1<1> (t k); 1 o;;;ko;;; v J ' and 

(v) ~T denotes the transpose of~, while ~ denotes the com
plex conjugate matrix. The retarded propagator is similarly 
given as 
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GR(Z) = (rJ>(t)l(zI", - 5e ",)-IrJ>(t)) 

± A(rJ>(t)l(zI", + 5e ",)-1 rJ>(t)) T 4,T. (2.7) 

The matrices of the resolvent operators appearing in 
(2.6) and (2.7) can be expressed in terms of the resolvents of 
the matrix 5e '" of 5e, by using the partitioning technique. 
Let 

oW" '" = rJ> (M) + rJ> (M)l 

so that 

rJ> (M)l = rJ> (MC), 

where as a Banach space 

Then, 

(rJ> (t) I (zI", - 5e "') - I rJ> (t)) 

= [(rJ>(t)l(zI", - 5e "') rJ>(t)) 

- (rJ>(t)l5e ",rJ>(u))(rJ> (u)l(zI", 

- 5e "') rJ>(u))-I(rJ>(u)l5e ",rJ>(t))] ~ I, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where! rJ> (Uk)' 1 ~h:;v' I is a complete orthonormal basis for 
rJ> (M)l. Defining the "self-energy" term ~(z) by 

~(z) = (rJ>(t)l5e ",rJ> (u))(rJ> (u)l(zI", 

- 5e "') rJ>(u))-I(rJ>(u)l5e ",rJ>(t)), (2.12) 

one can write (2.11) in the succinct form 

(rJ> (t) I (zI", - 5e "') - I rJ> (t)) 

= [(rJ>(t)l(zI", - 5e "') rJ>(t)) - ~(z)] ~ I. (2.l3) 

Expressions for the causal and retarded propagator can be 
obtained from (2.l3). 

The condition (2.3) for the existence of 5e '" will not be 
satisfied unless 'P is an exact stationary state of H, a situation 
that in practice is hardly ever realized. As the manifold M is 
of prime concern, the weaker condition 

(2.14) 

suggests itself as characterizing approximations to 'P. If it is 
satisfied, it leads to the following definition for an approxi
mation Kip to 5e '" 

Kip iP (A ) = Pip (M)iP ( 5e(A)) 'V AEM, 

KipiP(A) = Pip (M)liP ( 5e(A)) 'VEMc, (2.15) 

where Pip(M) is the orthogonal projector onto iP (M), Pip(M)l 
the projector onto the orthogonal compliment and iP is the 
linear map to the Hilbert space of equivalence classes on W. 
One obtains directly from (2.15) that 

Kip = Pip(M) KipPip(M) + Pip(M)lKipPip(M)\ (2.16) 

i.e., !hat the spaces iP (M) and iP (M)l are not coupled by Kip. 
As 'Pis a vector state (see, for example, Ref. 14), the GNS 
representation nip is a C *-algebra isomorphism from 
~(£')~ ~(cW"ip) and the image of Kip under 1Ti I is given 
by 

K = n i I(Kip) = QHQ + plHp l _ (W I HW) P"" 
(2.17) 

where the orthogonal projectors P and Q are given by 
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I' _ _ 

P= I qll'P) ('Plqk' P+Q=I-P", 
k=l 

and! iPq(!); 1 ~k~f11 is a complete orthonormal basis (conb) 
for iP(M). 

If 'P is a vacuum for the manifold M, 15 there must exist 
a basis! q1. qk; 1 ~k~f1' I ofM such that for f1~f1' 

(i) ! W, q! W; 1 ~k~f11 is an orthonormal set of vectors 
and 

(ii) qk W = 0, 1 ~k~f1', 

ql W = 0, f1 + 1 ~k~f1'. 

Hence to obtain an approximate ground state W with the 
desired properties, we must solve the following problem: 

( WI HW) = min ('P I H'P), 
"'E'C 

(2.18) 

where 

'if = Vac(M)n Sop(M) 

and 

Vac(M) denotes the set of states that are vacuums for M, 
while Sop(M), the set that satisfies (2.14) [actually one can 
replace Vac(M) by any set W~Vac(M)]. If such a state is 
found one can then construct, according to the preceding 
discussion, a model Hamiltonian K, a model Liouville opera
tor K defined as [K, ], and a model superoperator Kip from 
which approximate resolvents and propagators can be built 
that decouple the spaces rJ> (M) and rJ> (M)l. However, it must 
be pointed out that the condition expressed in Eq. (2.14) can
not always be fulfilled for a given Hamiltonian H and mani
fold M. A weakened form of this condition 

I(WI[H,AtB] WW~E 'V A,BEM (2.19) 

for some small real positive number E, leads to the set 
SOPE(M) such that 

SOPE (M) ~ Sop(M). (2.20) 

The model superoperator Kip based on W satisfying (2.19) 
has the property 

KipiP(A) = Pip(M) iP(K(A)) 'V AEM, 

KipiP (A) = Pip (M)liP (K (A)) 'VAEMc, (2.21) 

with K being replaced in (2.21) by iI only when WE Sop(M). 
Using the weakened condition of(2.14) is not a serious draw
back for we have that as M~~ ( £,), we still go towards the 
exact case, i.e., W~'P. 

The term self-consistent approximation to a given pro
pagator is thus to be interpreted as an approximate propaga
tor such that: 
(1) it is built on a model Hamiltonian whose eigenvalues (or 
eigenvalue differences) correspond to the poles of the propa
gator, 
(2) the approximation represents a decoupling of the defining 
operator manifold of the propagator from all other opera
tors, 
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(3) the state on which the propagator is defined is the ground 
state of the model Hamiltonian, and 
(4) this state is also a vacuum for the defining manifold. 

III. VAN VLECK PERTURBATION THEORY 

There are two routes open to improve a self-consistent 
approximation to a given propagator. One can either 
(a) go to a higher order propagator, i.e., enlarge the manifold 
M, and determine a self-consistent approximation and then 
use partitioning to obtain an improved approximation to the 
lower order propagator, or 
(b) directly improve the lower order one by some form of 
perturbation theory. 

We shall concentrate here on the second alternative and 
base a perturbation theory on the Van Vleck aproach,5.7 
which we modify to produce a self-adjoint operator at every 
level of approximation. Further, the form of the zeroth-or
der unperturbed Hamiltonians in this approach corresponds 
naturally to the form of the effective operators K produced 
by the self-consistent approximation procedure described in 
Sec. II. 

Following Ref. 7, one considers a transformed Hamil
tonian iJ given by 

iJ = UtHU, (3.1) 

an unperturbed reference state ip, 

ip = UtlJl, 

and a reference orthogonal projector P such that 

pip = ip 

and 

iJ = YJp + pliJp l. 

It follows from (3.1) and (3.2) that 

iJip = Eip, 

where 

HIJI = EIJI. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The diagonal part A D of an operator A with respect to P is 
defined to be 

AD =PAP+P1Ap l 

and the off-diagonal part by 

Ax = PAp l + plAP; 

therefore 

iJ = iSD and iJx = o. 

(3.7) 

(3.8) 

(3.9) 

The transformed Hamiltonian iJ can be developed in terms 
of an expansion of the infinitesimal generator G of U: 

(3.10) 

such that 

Gk = - G!, k = 0,1, .. ·, (3.11) 

where approximations to is are defined by 

1794 

iSk = exp( - Ito G1) H expcto GI) = u1 HUk· 
(3.12) 
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In general (iJk)X #0, (Gk)D #0, although ( iJlx = 0 and 
(G)D = O. The zeroth-order approximation iJo to iJ is ob
tained by setting 

iJo = Ho and Uo = I, (3.13) 

where 

H=Ho+ V. 

(But note that higher order approximation iJ k of iJ are given 
by iJk = u1 HUk.) In our case, the unperturbed part of the 
Hamiltonian will always be given by 

Ho = K = QHQ + plHp l + (ip I Hip) Pop, (3.14) 

so that 

V=Hx = QHp l +P1HQ 

+POpH(P+Q)+(P+Q)HPOp' (3.15) 

The equations for iJk and Gk in terms of [ G1, .. ·,Gk _ I J, V, 
and Ry are given in Eqs. (33) and (34) of Ref. 7, whereR y is a 
resolvent acting in the space pi JY', viz., 

R = '" Ii) (il 
y ~ , 

j Ey -Ej 

(3.16) 

where [Ii) J is aconb for pi JY'([Ey J and [E j J are the eigen
values of PHPandplHP\ respectively.) For further details, 
the reader is referred to that paper. In practice, the whole 
space JY' cannot be used so a subspace is selected in which to 
apply the preceding perturbational construction, i.e., pi is 
replaced by the orthogonal projector P', where 

PP' = P'P= 0 (3.17) 

and 

(3.18) 

IV. SUPEROPERATOR PERTURBATION THEORY 

Consider the representation of the Liouville operator 
on the space of equivalence classes of operators based on the 
exact ground state IJI of H and let lJIo be a reference state so 
that as in Sec. III IJI = UlJlo and iJ = UtHU. Then 

(l/J(UA)I !f '" l/J(UB)) 

= (IJII [A tUtHUB -A tUtUBH J IJI) 

= (IJII UUt[A tUHUB - A tBUUtH J UUtlJl) 

= (lJIol[(AU)tmUB)-(AU)t(BU)iJJ lJIo) 

= (l/Jo(A U)I iJ",o l/Jo(BU)) 'tJ A,B, (4.1) 

where l/Jo is the equivalence class mapping and §'" = nor §) 
A 0 

the GNS representation of iJ induced by lJIo, i.e., 

&1/( l/Jo(A) = l/Jo( §(A)) = l/Jo(m,A]) 'tJ A. (4.2) 
o 

Defining the isometric isomorphism 

U: JY' "'- JY' "'0 
by 

one then has that 

(4.3) 

(4.4) 

(l/J(UA)I !f",l/J(UB))=(l/J(A)1 ut§"'oUl/J(B)) (4.5) 

and finally that 
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((/> (A )1 l' op(/> (B)) = ((/>o(UtA U)I §OPo (/>o(UtBU)). (4.6) 

[Note that (/>o(A )-(/>o( U tA U) does not define a linear map: 

JY' OPo - JY' opo!] 
We shall now specialize 1/10 to be such that with 

Ho = QHQ + p 1Hp 1 + PoHPo, it produces a self-consistent 
propagator for the manifold M. Thus letting ~o = Ho we 
have that 

((/>o(t) I (zIopo - §o) - I(/>O(t)) = (zI - ~o) - I, (4.7) 

where the matrix ~o is given by 

(4.8) 

and §o is the GNS representation of Ho - PoHPo, which is 
identical to that of[ ~o, ]. Equation (4.7) can be re-expressed 
as 

((/>0(Ui; tUo)l(zIopo - §o) - 1(/>0(Ui; tUo)) = (zI - ~o) - I, 

(4.9) 

where Uo = I, so that it serves to define a zeroth-order ap
proximation to RM (z) = ((/> (t)l(zIop - l' op )-I(/> (t)). In this 
case, the zeroth-order self-energy 

~o(z) = ((/>o(t)I §0(/>0(u))((/>0(u)l(z1opo - §o) 

x (/>o(u)) - I( (/>o(u) I §o(/>o(t)) 

is evidently zero as 

§o = Q §oQ + pl §o pl, 
where 

v 

Q = I I (/>o(t;))( (/>o(td) I 
i= 1 

and 

Q + P = J - 1(/>0(1))((/>0(1)1. 

(4.10) 

(4.11) 

(One might note that the exact operator §op also has the 
o A 

property expressed by (4.11), i.e., it decouples QJY' op from 
A 0 

pi JY' opo)' The k th order approximation to RM (z) can be pro-
vided by 

R~J(z) = [((/>o(U!tUk)l(zIopo 

-§d(/>o(U!tUk))- ~k (z)] -I, (4.12) 

where 

t '" t ~dk) = ((/>0(U ktUk)1 ~k(/>O(U k U Uk)) 

x ((/>o(UkU Uk)l(zIopo - §k) (/>o(U!u Uk))-I 

x ((/>o(U!u Uk)1 §k (/>o(U!t Uk)) 

which is now nonzero as Uk 1=1. The operator §k is defined 
to be the GNS representation of a modified k th order effec
tive operator §k given by 

§k = Q~kQ + p l ~kP\ 
so that 

rrk =llot§d 

(4.13) 

(4.14) 

and also of the derivation operator defined by §,,' where 

§" = §k + Po ~k Po, (4.15) 
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i.e., 

(4.16) 

As both the zeroth-order effective operator ~o and the final 
effective operator ~ = UtHU have the properties expressed 
by Eqs. (4.13) and (4.15), this modification of the Van Vleck 
procedure is well justified. Furthermore, our choice of Ho 
ensures that the approximate infinitesimal generators Gk sa
tisfy the Kemble condition for all k [i.e., (Gk)x = 0]. The 
corrections to RM (z) arise from two sources: 
(a) The superoperator matrix term 

((/>0(UttUk )l(z1opo - Jd (/>o(U!tUk )) 

and 
(b) the self-energy ~k (z). 

The zeroth-order approximation to RM (z) provides a 
self-consistent propagator approximation; thus the manifold 
M is generated by IqL qk; l<h;Il') where 11/10' q! 1/10; 
1 <k<1l1 is an orthonormal set while 1 qk 1/10 = 0; 1 <k<Il' I 
and I q! 1/10 = 0; Il + l<k<Il'j so that 

It) = Iqt,qj, (4.17) 

and we have zero blocks in the zeroth-order approximation, 
which of course can be excluded. The vacuum property of 1/10 

wrt M is not inherited by I/Ik or expressed equivalently, 1/10 is 
not a vacuum for U!MUk • Hence blocks that were zero in 
the initial approximation to RM (z) become nonzero in higher 
order ones. 

As pointed out in Sec. III, it is not feasible to involve the 
whole Hilbert space JY' in practical calculations, and there
fore only a given subspace is utilized. In the same way, only a 
subspace Vof f!lJ ( Jf') is considered in the superoperator ap
proach. This necessitates an initial approximation ofR..t( *'1 

(z) by the inner projection technique, viz., 

((/> ( f!lJ ( Jf')) I (zIop - l' op) - I(/> ( f!lJ ( Jf')) 

~((/>(v)I(zIop -1' op) (/>(V))-t, (4.18) 

where the use of f!lJ ( Jf') and V above is to be interpreted as 
bases for these spaces. This leads to 

((/> (t)l(zIop - l' op )-I(/> (t)) 

~((/> (t)1 (/> (V))((/> (V) l(zI op 

l' op) (/>(V))-l((/>(V)I (/>(t)). (4.19) 

The rhs of(4.19) can be further developed by the use of part i
tioning to give 

RM (z)~ 1 ((/> (t) I (z - l' op) (/> (t)) 

- ((/>(tll l' op(/> (u))((/> (u)l(zIop 

- l' op) (/> (un- I ((/> (u) I (/> (t))) - I, (4.20) 

where now 

(/> (V) = linear span 1 (/> (t),(/> (u)). (4.21) 

The approximation for RM (z) expressed in (4.20) has exactly 
the same form as (2.12), the exact expression for RM(z), ex
cept that u is replaced by u; thus the perturbative approxima
tion scheme outlined in this section can be directly applied. 

v. DISCUSSION 

The superoperator perturbation theory presented in 
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this article has the following important properties: 
(i) It is based on equivalence classes of operators that 

form a Hilbert space. This gives rigorous meaning to inner 
projections and the superoperator adjoint operation. It 
further allows us to use the machinery of Hilbert space oper
ator theory in a valid fashion. 

(ii) Superoperators acting in the space of equivalence 
classes based on the exact ground state of the Hamiltonian H 
can all be expressed in terms of superoperators acting in the 
space of equivalence classes based on a given reference state. 
Thus at every level of approximation we have a well-defined 
superoperator in a Hilbert space. 

(iii) The approximate Liouville operators are all Hermi
tian. 

(iv) The zeroth order of approximation provides an ap
proximate propagator that is decoupled in a self-consistent 
manner. 

(v) It inherits the advantages of the Van Vleck approach 
to multidimensional many-body theory as discussed in Ref. 
7, and extends it to generate a perturbation theory for propa
gators. 

Other forms of superoperator perturbation theory such 
as found in Ref. 9, although giving encouraging numerical 
results, use mathematical relationships that are not well-de
fined, i.e., resolutions of the identity, adjoint operations 
based on a degenerate inner product. Further, they do not 
relate explicitly to self-consistent propagator approxima
tions nor do they provide model Liouville operators and sta
tionary states. The desirability and importance of consistent 
approximations has been pointed out and discussed in parti
cular for the particle-hole propagator within the random 
phase approximation. 16 A coupled-cluster inspired treat
ment of superoperator perturbation theory l? also suffers 
from the defects just mentioned and, in particular, the ex
plicit loss of Hermiticity in the propagator matrices. 

In future publications we shall examine the relationship 
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of the approach advocated in this article with other forms of 
propagator perturbation theory, and apply it to the electron 
and particle-hole propagators. 
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A theory of scattering based on the dilation group is developed for quantum mechanical one
particle systems. A scattering operator is defined that agrees with the usual scattering operator, 
whenever the usual wave operators exist and are asymptotically complete. 

PACS numbers: 03.65.Nk 

INTRODUCTION 

The aim of this article is to lay the foundations for a 
scattering theory based on the dilation group along the lines 
of the Lax-Phillips scattering theory' that is based on the 
translation group. 

The reason for choosing to base a scattering theory on 
the dilation group is that the time evolution of states in non
relativistic quantum mechanics does not obey Huyghens' 
principle and thus does not easily fit into a theory based on 
the translation group. In fact the solutions of the Schro
dinger equation, that are not bound states, asymptotically 
evolve as though they were being dilated. This can be most 
easily seen from the free Schrodinger equation. Let/(x,t ) be a 
solution of 

_~ a/ = -~/(x,t). 
I at 2m 

It is well known, and frequently called the evanescence of the 
wave packet that, for large positive times t,f(x,t ) looks like 
(imlt )+3/2j(mxlt), wherej denotes the Fourier transform of 
f Let ~(a) be a unitary representation ofR:, the multipli
cative group of positive real numbers, on L2(R3

) given by 
(~Ja)/)(x) = a- 3/2/(a-'x). Then/(x,t) looks like i3/2( cz, (t I 
mlf)(x) for large t. We now argue that for scattering processes 
it is the large time behavior of the wave functions that is most 
important, and hence if we develop a theory based on the 
dilation group we should be able to capture the large time 
behavior of the wave functions by dilating them to large spa
tial separations. 

An outline of our results will be given now. As a theory 
of scattering processes we are still a long way from the com
pleteness of the Lax-Phillips model, especially with regard 
to the analyticity properties of the scattering operator. To 
get such results seems to require that the Mellin transform be 
used in place of the Fourier transform of the Lax-Phillips 
theory, but we have not pursued this development. 

We begin by defining dilating subspace representations 
of the group R: . These are subspaces of the Hilbert space, 
the elements of which are dilated out to infinity with respect 
to the spatial variables. These are shown to be equivalent to 
certain canonical representations ofR*+ on the Hilbert space 
L2(R: ' dA I A;K), where K is an auxiliary Hilbert space. 
These dilating representations ~(a) are then related to time 
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displacements V(t)bytheformula ~(a)V(t)~(a)-1 

= V (at ), for all tER, aER: ' and a canonical representation 
of these systems is obtained. They are essentially direct inte
grals of the irreducible representations of the affine group. 

The quantum mechanical scattering systems are char
acterized by the fact that to the given representation V(t) of 
time evolution we must associate two representations ofR: . 
For each of these, called ~ ± (a), we obtain a map W ± to the 
canonical model, and the dilation scattering operator Sd is 
defined S d = ( W - 1) - 1 W + . It follows from the structure of 
representation theorem that the generator of V(t) must be 
positive and have an absolutely continuous spectrum. 

In the next section we compare Sd with the usual scat
tering operator S. This is done by introducing a free particle 
and defining dilation operators {J 1 , first via the unitary 
maps to the canonical representations spaces, {J 1 
= (W =F) - I Wo, and secondly, in the special case when both 
V(t) and Vo(t) act on the same Hilbert space JY', as strong 
limits 

These two definitions are then shown to agree under certain 
addition conditions. Finally, under these same conditions, 
we show that the usual wave operators {J ± (H,Ho) exist if 
and only if the dilation wave operators exist, and give a con
dition under which they are equal. This condition depends 
upon some additional structure. In the Appendix we discuss 
projective representations of SL(2,R ) and show how such 
representations exist on the space of scattering states when 
the usual wave operators {J ± (H,Ho) exist and are asymp
totically complete. In fact we demonstrate how the presence 
of appropriate projective representations of SL(2,R ) forces 
the time evolution V(t) to have a dilation type behavior for 
large positive and negative times. Finally, in this section we 
show that ifthe dilation wave operators exist and if the dilat
ing subspaces for ~ o(a), ~ + (a), and ~ - (a) can be taken to 
be the same subsets of JY' then the {J ± (H,Ho) are equal to 
the {J 1. 

In the third section we briefly discuss the example of 
potential scattering. We outline a method of constructing 
the cz, ± (a), aER: ' that should work for systems whose time 
delay may be infinite but increases more slowly than linearly. 
The idea is to construct the generators A ± of the representa
tions cz, ± (a) of R: . 

1797 J. Math. Phys. 24 (7). July 1983 0022-2488/83/071797 -09$02.50 © 1983 American Institute of Physics 1797 



                                                                                                                                    

1. SCATTERING THEORY FOR THE DILATION GROUP 

Let ~ (a), aE(O, 00), be a continuous unitary representa
tion of the multiplicative group R: on the separable Hilbert 
space ,W'. 

Definition 1: The continuous unitary representation 
~ (a) ofR: is said to be dilating on JY if there exists a closed 
subset D of JY such that 

(I) ~(a)DCD for all a, I<;a< 00, 

(2) (I ~(a)D = [Ol, 
a>1 

(3)u ~(a)D 
a 

is dense in JY, where (I, u are the set theoretical intersection 
and union. D is called the dilating subspace. 

Example: Let JY = L 2(R: ' dA / A; JY') be the space of 
functions on (0, 00 ) with values in the auxiliary Hilbert space 
JY' that are square integrable with respect to the Haar mea
sure dA / A of R : on R : . Henceforth we will denote this 
space by L2(R:; JY'). Let ~ ((a), aE(O, 00), be the left regular 
representationofR: ,(~ ((a)f)(A) =f(a-1A). Then ~ {(a)is 
dilating on JY with D given by 

D = L2((1, 00 );JY'). 

There is another realization of the dilating subspace that we 
shall need. Let ~ rIa), aE(O, 00), be the representation ofR: ' 
(Ur(a)f)(A ) = f(Aa). Then ~ ,(a) is dilating on JY with D 
given by 

These examples are not really different, as the two re
presentations are equivalent under the unitary map from 
L 2(R: ;JY') to L 2(R: ;JY') that corresponds to the change of 
variable A_A - I. 

The reason for calling this representation dilating as 
opposed to contracting comes from the usual representation 
of dilations for the free Schrodinger particle. Take 
JYo = L2(R3), let V(e) be the one-parameter group of dila
tions, whose generator is Ao = (x·p + p·x)l2 and whose ac
tion onf(x)EL(R3

) is (V(e )f)(x) = (e - iAO~Hx) 
= e - 3(}/Y(e -- (}x). JYo carries, of course, the configuration 

space representation of the canonical commutation rela
tions. JYo is unitarily equivalent to the Hilbert space L2(R: ' 
dp/ p;K), wherep = x 2, the square of the position coordinate, 
andK = L2(S2,dfl ),S2beingtheunitsphereinR3 anddfl its 
standard surface measure. The map from L2(R3) to L2(R:, 
dp/p;K) is given by 

f(P;w) = (1f)(P;w) = (v2)-lp 3/:t(P1/2W), 

wherepl/2w = xER3. Under this transformation vIe ) goes to 
VIe) = 1V(e)1- 1

, where(V(elf)(P;w) =j(e- 2(}p;w). When 
we put s = e2

(}, - 00 < e < 00, we get a unitary representa
tion ofR:, denoted by ~(s), such that 

(~(s)f)(P;w) =f(S-lp;W). 

This representation is dilating because if fEL 2(R: ;K ) has 
support that does not contain the origin then support of 
~ (s) f gets further from the origin as s increases. Dilating 
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thus means spatially dilating. This same spatially dilating 
representation can be realized in momentum space. Again 
map L2(R3

) onto L2(R; ;K), where k = L2(S2,dfl), as above 
but the unitary map Wo is given by 

(WofHA;W) = (v'L)-I A ,/4/(A lOW), 

where /(A I 12w) is the Fourier transform offEL 2(R') ev~uat
edatthemomentump = A 1/

2w. Under Wo' VIe )goesto v(e), 
where(V"(B )WofHA;W) = (WofHe 2IlA;w). Ifwesets = e20

, we 
again get a representation of the multiplicative group R; , 

(~(S)g)(A;W) = g(SA;W). 

This is the free energy realization of the spatially dilating 
representation of R: . 

It should be remarked here that there is considerable 
freedom in the choice of the dilating subspace D. For exam
ple, for the free particle, with uk (s) = exp( - iAn/21ns), 
SE(O, 00), we may take D to be the set of elements in L2(R3) 
whose support lies outside the ball Ixl = R < 00, where R 
may be chosen as large as we please, or we may take D to be 
the elements of L 2(R3

), whose Fourier transforms have sup
port inside the ball of radius Ro, no matter how small R o > ° 
IS. 

This example is canonical in the sense of the following 
representation theorem. 

Theorem 1: Let '-2; (s) be a dilating continuous represen
tation ofR: on the separable Hilbert space ,W' and let D be a 
dilating subspace for .)/1 (s). Then there exists a Hilbert space 
K and a unitary map W from ,)y' onto L2(R: ,dx/x;K) such 
that 

(i) W[D] = L2([I, 00), dx/x;K), and 

(ii) Wu2' (s) W - I is the representation of R: on 
L2(R: ,K )givenby(W~(s)W-lfHx;w) =f(S-IX;W). There
presentation is unique up to an isomorphism of K. 

Proof For allsE(O, 00 ) defineD (s) = ~ (s)[D]. The condi
tions (2) and (3) of Definition I imply that 

D ( 00 ) = lim D (s) = [0 l 
s .() 

and 

D (0) = lim D (s) = JY. 
s--+oc 

For any real numbers a, b with ° < a<;b < 00, define a closed 
subspace 1(a,b ), 

j/(a,b) = D (a)eD (b ). 

Thatis,1(a,b ) is the orthogonal complement ofD (b )inD (a). 
LetP (a,b )betheorthogonal projectionont01(a,b ). Then an 
easy calculation shows that ~ (s) P (a,b) ~ (s) - I = P (as,bs). 
On the other hand, the family [P(a,b)j, where (a,b ) runs over 
all open intervals in (0,00 ), generates a projection-valued 
measure [P (fl ) l on the Borel subsets fl of (0, 00). Further
more, for any SE(O, 00 ) and any Borel subset fl of (0, 00 ) 

u2'(s)P(fl )~(S)-l = P(sfl). (I) 

Equation (I) defines a system of imprimitivity for the 
multiplicative group R: on itself. By a version of Mackey's 
imprimitivity theorem (Ref. 2), Theorem 9.17) such a system 
is unitarily equivalent to a direct sum of irreducible systems 
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ofimprimitivity. The unique irreducible system of imp rim i
tivity for R: acting on itself by left translation is 
dY' = L2(R:, dxlx), with projection-valued measured XE' 
the characteristic function of the Borel subset E and repre
sentation given by the left regular representation (we (slf)(x) 
= f(xs- I). Therefore, there is a separable Hilbert space K 

such that the system ofimprimitivity (P (n ), w (s)) on L 2(R: ' 
dxl x; K ) given by (x(E ), we (s)), where X (E) is the characteris
tic function on the Borel subset E and for any F(X)EL2(R:, 
dxlx;K), (V(s)F)(x) = F(xs- ' ). To see this, letF(x) = };;"~ I 

fj(x)e j , where ej is an orthonormal basis in K and 
(f'(x),p(x), ... )isasequenceoffunctions,eachinL2(R: ,dxl 
x), in the direct sum of irreducible systems of imprimitivity 
that is given by the theorem. 

Let Wbe the unitary map that realizes this equivalence; 
then by construction of the ! p(n) J on dY', D = P([I, 00))dY' 
and hence W[D] = L2([1, 00), dxlx;K). • 

The equivalence of the examples that follow Definition 
1 implies the following corollary. 

Corollary 1: Let W (s) be a dilating continuous unitary 
representation of R: on the separable Hilbert space dY' and 
let D be a dilating subspace for W (s). Then there exists a 
Hilbert space K and a unitary map W from dY' on L 2(R: ' 
dJ. I J.;K) such that 

(i) W[D] = L 2((0,I], dJ. IJ.;K) 

and 

(ii) (W!J/ (s) W -'f)(J.;w) = f(sJ.;w) 
for allfEL2(R: ' dJ. I J.;K). 

We underline the fact that for different choices of dilat
ing subspace D we will have different unitary maps W from 
dY'to L 2(R: ' J. I J.;K). 

We must now make a connection between these dila
tions and the time displacements of the system that singles 
out those dilations that are associated with scattering states. 
If we return to the example of the free Schr6dinger particle 
then it is clear what the connection should be. If the free 
Hamiltonian Ho is taken to be - L1 12m then the dilations 
V(O) = e - jAoe and time displacements V(t) = e - jHot satisfy 

W (s) V (t ) w (s) - I = V (st), where we have taken s = e2e and 
written W (s) for V Wns); that is, W (s) is the unitary represen
tation ofR: on L2(R3

). 

Definition 2: Let V (t ), tER be the one-parameter unitary 
group of time displacements on the Hilbert space dY', and let 
w(s), sER:, be a dilating representation ofR: on dY', then 
we say that W (s) is a scattering representation of R: for the 
time displacements V(t) if, for all sER: and all tER, 

w(s)V(t)W(S)-1 = V(st). (2) 

We immediately obtain a representation theorem for scatter
ing representations ofR: . The proof of this theorem follows 
the line of argument given in Reed and Simon (Ref. 3, 
Theorem X1.84) in their proof of von Neumann's theorem. 

Theorem 2: Let W (s) be a continuous unitary represen
taiton ofR: and V(t), tER, a continuous unitary representa
tion ofR on the separable Hilbert space dY', such that W (s) is 
dilating and for 
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sER: and all tER, 

w(s)V(t)W(S)-1 = V(st). 

That is, w (s) is a scattering representation of R: . Then 
there exists a Hilbert space K, and a unitary map W from dY' 
to L 2(R: ,dJ. I J.;K) such that (Ww (s) W -'f)(J. ) = f(sJ. ) for all 
fEL 2(R: ; K) and WV (t ) W - I is multiplication by e - j).t. 

Proof LetH, andA be the self-adjoint generators of V (t ) 
and W (s), V (t ) = e - jHt, W (s) = e - jA In s. Let fiJ denote the 
Garding domain of V(t )w(s). fiJ is the set of vectors in dY' of 
the form 

foo roo d 
<jJF = _ 00 Jo F(t,s)V(t)w(s)<jJdt sS' 

where <jJEdY' and F(t,S)EC 0' (RXR:). It follows from the 
standard arguments that fiJ has the following properties: 

fiJ is dense in dY', fiJ CD (Hd, fiJ CD (A ), V(t)fiJ C fiJ, 
and w (s)fiJ C fiJ. Let ifEfiJ, differentiating the equation 

w(s)V(t)W(S)-I¢= V(st)¢ 

with respect to t, and setting t = 0, we get 

W(S)H,W(S)-'¢=sH,¢, (3) 

Since fiJ is a core for both HI and sH
" 

Eq. (3) can be ex
tended to hold for all ¢ED (Hd and hence HI and sH, are 
unitarily equivalent. Let! E,(n ) J be the spectral family for 
HI' then! w(s)E,(fl )W(S)-I J is the spectral family for 
sH, = w(s)H,W(S)-I. Therefore, for any reaU, 

w(s)EI( - oo,J.)w(s)-' =E,( - oo,s-'J.) 

for all sER: . Let D = Ran E I ( - 00,1]. D is a dilating sub
space for w(s) on dY', because w(s)D = Ran E,( - 00 ,s-'] 

for all sER: and therefore by the properties of spectral pro
jections we have that 

(i) w(s)DCD, s> 1, 

(ii) nw(s)D = {OJ, 

(iii) uw (s)D = dY'. 

Now by Corollary I, there exists an auxiliary Hilbert space K 
and a unitary map W of dY' onto L 2(R: ' dJ. I J.;K ) such that 
WD = L2((0,1], dJ.. IJ.;K) and WW(s)W-' is dilation by s. 
Furthermore, as WEd - 00,1] W -, = X(O.I 1 we have that 
WE,( - 00,J. )W- I = X(o.). ]forallJ.ER,andhenceWH,W- ' 
is multiplication by J. and WV (t ) W - I = e - j).t. • 

It may be recognized that this theorem is just a dis
guised version of the theorem, due to Gel'fand and Nai
mark4 and Aslaksen and Klauder,5 on the irreducible repre
sentations of the affine group. The second irreducible 
representation can be obtained by taking V (t ) = e - jHt. 

The following consequences of this theorem are imme
diate. 

Corollary 2: If V(t) = e - iHlt and w(s), sER:, satisfies 
the conditions of Theorem 2, then 

(I) H I is positive, 

(2) the point spectrum of HI is ! ° J or empty, 

(3) Let u(H,) be the spectrum of HI' u(Hd = [0,00), then 
u(Hd \ ! ° J is absolutely continuous. 

With regard to (3), it is inherent in this approach that we 
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cannot tell whether 0 is an eigenvalue of HI or not. This 
point, that corresponds to the threshold of the absolutely 
continuous spectrum, must be considered separately in each 
case. 

Corollary 3: Ifwe have a continuous unitary representa
tion w(s)ofR: and a continuous unitary representation V(t) 
of R that satisfy 

w(s)V(t )W(S)-I = V(st) 

for all sER: and all tER, then w (s) is a dilating representa
tion ofR:. 

Proof Just takeD = EH\ ( - 00 ,1)£'as the dilating sub
space for w (s), where [E HI (A ) J is the spectral family for the 
self-adjoint generator HI of V(t). This choice of dilating sub
space for w (s) will be often used in the following. 

We are now in a position to give a definition of a scatter
ing system. 

Definition 3: Let £' be a separable Hilbert space and 
V(t) = e - iH\t a continuous unitary representation ofR that 
describes the time evolution of the system described by £'. 
Then the pair (£', V (t )) describes a scattering process for the 
system if there exists a pair of scattering representations 
w ± (s) ofR: on £'. 

The triplet (£', V(t), w +(s)) is called the outgoing dila
tion representationofR: and the triplet (£', V(t), w -I(S)) is 
called the incoming dilation representation of R: . 

If(£" V (t )) has both incoming and outgoing representa
tions ofR: then by Theorem 2 there exist unitary operators 
W ± from £' to L2(R: ' dA / A;K ±). The auxiliary Hilbert 
spaces K ± can be chosen to be the same, because in both 
cases we have a spectral representation of the generator HI of 
V(t). 

Definition 4: If the pair (£', V(t)) describes a scattering 
process then the scattering operators Sd and Sd are defined 
as follows. LetjEJY,andputj_ = W-jandj+ = W+f,then 
Sd is the map Sd:L2(R:;K )--+L2(R:;K), 

(4) 

The scattering operator Sd is the map from £' to itself that is 
obtained by pulling Sd back to £'. 

The following properties of the scattering operators fol-
low immediately from the definitions. 

(1) Sd is a unitary map from L 2(R: ; dA / A;K ) to itself. 

(2)Sd = W+(W-)-I. (5) 

(3) Sd commutes with e - iAt for all tER and hence is a 
decomposable operator, so that for allf, gEL(R:;k) 

- (00 _ ~ 

(f,Sdg) = Jo (f(A ),Sd(A )g(A ))K T' 
where each fiber Sd is unitary on K. 

(4) Sd is a unitary map from £' to itself. 

(5)Sd = (W-)-IW+. (6) 

(6) Sd commutes with e - iHlt for all ER. 

The dilation scattering operator Sd' or Sd' has been de
fined without explicit reference to the free dynamics, even 
though condition (3) and the structure of the dilating repre
sentations have been taken from the properties of the free 
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dynamics. 
Therefore, Sd may exist for those interactions, such as 

the long-range potentials, when the usual free dynamics does 
not describe the asymptotic motion of the system. 

2. DILATION WAVE OPERATORS 

We have not shown that the scattering operator Sd 
gives the correct, physically observable, properties of a scat
tering system. One way to do this would be to show that the 
operators W ± are integral operators whose kernels are gen
eralized eigenfunctions of HI' But we do not yet have a way 
to choose the appropriate generalized eigenfunctions. That 
is, we do not have a form of Lippmann-Schwinger equations 
for the eigenfunctions. To get such equations we need to 
define dilation wave operators. 

In order to construct dilation wave operators we need 
the following free particle structure. Let Ho = L2(R3), 
Vo(t) = e - iHot and w o(s) = e - i(II2JA

o In s. The unitary map Wo 

from £'0 toL2 (R: ,dA /A;K) takes Vo(t )toe- iAt, and w o(a) 
to L (a), where (L (alf)(A;lU) =j(aA;lU). 

With this structure it is clear that the dilation wave 
operators should be given by the expression 

fl l = (W =t= )-1 WOo (7) 

These operators are unitary maps from £'0 to £' provided 
that the spectral multiplicities of the Hamiltonians Ho and 
HI are equal. Furthermore, they satisfy the intertwining re
lations 

fllVo(t)= V(t)fll (8) 

and 

fl l w o(s) = W ± (s)fl l , (9) 

respectively, for all real t and for all real positive s. 
If, in analogy with the definition of the usual scattering 

operator we define the dilation scattering operator to be 
fl / (fl d- ) - 1 then we observe that 

fl d+(fl d-)-I = (W-)-IW+ =Sd, (10) 

where Sd is defined by Eq. (6). 
The interchange of the signs in Eq. (7) has been made to 

get agreement with the usual definition of the wave operators 
fl ± (H,HI). Recall that if Hand Ho are the interacting and 
free Hamiltonians as the Hilbert space £'0' then 

fl ± (H,Ho) = s-lim eiHte - iHot. 
(-+ 00 

The dilation wave operators fl f can be defined as 
strong limits offamilies of unitary operators once some con
nection between the Hilbert spaces £'0 and £' has been 
made. We will consider the simplest case in which £'0 = £'. 
Assume that (£'0' V(t)) is a scattering process in the sense of 
Definition 3 and that the free particle time evolution is given 
by Vo(t) on £'0' 

Definition 5: The dilation wave operators fl l exist if 
the strong limits 

fl l = s-lim (w +(s))-Iwo(s) (11) 
5--+00 

exist on £'0' 
It is an immediate consequence of this definition that, 
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for all SE(O, 00 ), 

~ 'f (s)n l = .0 l ~ o(s). (12) 

We must now check if this definition ofn f agrees with the 
formula of Eq. (7). We will show that this is so in the case 
when the dilating subspaces, Do for ~ o(s), D + for ~ + (s), 
and D _ for ~ - (s) are equal. 

Theorem 3: If the dilating subspaces Do, D +, and D_ 
are equal, then 

.0 d± = (W 'f) - I WOo (13) 

Proof LetfED +, the dilating subspace for the represen
tation cz" +(s), and define the representative/+ of/on 
L2(R:;K) as/o, the representative of/as an element of Do, 
the dilating subspace for the representation ~ o(s). Then for 
any sER: and any fED we define the representative of 
cz" +(s)/in L 2(R:;k) as the dilate of/o by s. In this way we 
have defined, for all/EDo, 

f+ = W J= Wof=1o 

and 

W+ ~+(slf= Wo~o(s)f=L(s)f 

for all SE(O, 00 ). 

By the properties of the dilating subspace the dilates of D + 

are dense in.}Yo = .}Y and hence we can define the represen
tativesf+ in L2(R:;K) of all/in .}Yo. 

We first show that for all/EDo, .0 d-/ = (W+)-I Waf. If 
fEDo, then ~ o(s)/EDo for all s;;' I. Thus we get in L 2(R:;K) 
the equality, for s;;' 1, 

fo= W+(~+(S))-I~O(S)/= Waf. 

Pulling this back to .}Yo we have 

(~+(S))-I~O(S)/= (W+)-IWof 

and thus/= .0 d-/ = (W+)-IWJ, for all/EDo. Now let 
gE.:W'o be such that ~ o(s)gEDo for some SE(O, 00). The set of 
such elements is dense in.}Yo by property 3 of Definition 1. It 
follows that ~ + (s)n d- gEDo because 

~ + (s)n d- g = .0 d- ~ o(s)g = ~ o(s)g. 

Therefore, 

W+~+(s)n d-g = Wo~o(s)g. 

On the other hand, W + ~ + (s) = L (s) W + and 
Wo ~ o(s) = L (s) Wo, where L (s) acts on L 2(R: ' dA I A;K ) by 
dilation by s. Thus in L2(R:, dA IA;K) we have 

L (s) W +.0 d- g = L (s) W ~ 

and, using the fact that L (s) is an isometry, 

w+nd-g= W~ 

or, on .}Yo, .0 d-g = (W+)-IW~. 

This result extends to all of .}Yo by continuity and son d

= (W+)-IWO' 
An analogous argument shows that 

.0 d+ = (W -) - I WOo 

• 
We have shown, in the special casewhen.}Y = .}Yo and 

the dilating subs paces Do, D +, and D _ can be chosen to be 
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equal, that the dilation scattering operator Sd' given by Sd 
= (W-I)-I W+, is equal to the operator .0 / (.0 d- )-1, 
where the dilation wave operators are given by 

We will now show, at least in the special case described 
above, that .0 l = .0 ± (H,Ho), where the wave operators 
.0 ± (H,Ho) = s-limt~+ 00 V(t )-1 Vo(t), and that in this case 
the wave operators .0 ± (H,Ho) are asymptotically complete 
and that Sd = S, the usual scattering operator given by 
S=.o +(.0 -)-1. 

To obtain this proof we have to construct some repre
sentations of the group SL(2,R) on the space of scattering 
states. These representations occur quite naturally whenever 
we have a quantum mechanical system whose time evolution 
is governed by a SchrOdinger equation. The form of these 
representations is discussed in the Appendix. If 

u(b) = (~~), sial = (~~_I)' 
and 

W= (_ ~~) 
are the generators of SL(2,R) and 1T(u(b )), etc., the unitary 
representation of them on the Hilbert space .}Y, then we 
interpret 1T(u(b )) as the group of time translations and 1T(s(a)) 
as the dilation group. It is proven in the Appendix, for these 
representations, 

lim 111T(u(b))/ - 1T(s(b ))(1T(w)f /11 = 0. (14) 
b--+ 00 

This is just an abstract Hilbert space expression of the usual 

asymptotic behavior of the free time evolution e - iHob f, 
/EL2(R3

), and thus we are encouraged to conclude that the 
presence of a projective representation ofSL(2,R) of the type 
described is the structure that forces this asymptotic behav
IOr. 

This claim is further enhanced by the fact that if the 
wave operators .0 ± (H,Ho) exist and are asymptotically 
complete with range .}Yac (H), the spectral subspace of abso
lute continuity of H, and if we take HI = HI .}Yac (H), then 
there exists on .}Yac (H ) two unitary representations of 
SL(2,R), 1T ± (g) of the type discussed in the Appendix, where 

1T±(g) =.0 ±1To(g)(n ±)-I. 

1T o(g) is a unitary representation of SL(2,R) on L 2(R3
) 

that is constructed in the Appendix. We thus have 
Theorem 4: If the wave operators .0 ± (H,Ho) exist and 

are asymptotically complete then (.}Yac (H), e - iH,,) is a dilat
ing scattering system with the representations of R: given 
by ~ 'f (a) = .0 ± cz" o(a)(n ±) - I and the dilation wave opera
tors exist and equal the wave operators, 

.0 l = .0 ± (H,Ho)· 

This theorem is a direct consequence of the following, 
which is proved in the Appendix. 

Theorem 5: Let (.}Yo, Vo(t)) represent a free system and 
(.}Yo, V(t)) a scattering system that carries true representa-
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tions 1T±(g) ofSL(2,R) so that 

1T ± (u(b )) = V(b), 

1T ± (s(a)) = ~ ± (a2), 

and 

then 

(1) n l exist on JYo, if and only if n ± (H,Ho) exist on 
JYo and 

(2) n l = n ± (H,Ho) if and only if either n ± (H,Ho)<Po 
= <P ± n ± (H,Ho) or n J <Po = <P ± n l. 

It sould be noted that the existence of the n ± (H,H 0)' 
while sufficient to prove the existence of the n l , does not 
give the equality of the n ± (H,Ho) with the n l. The inter
twining property of(2) of Theorem 5 is in some way equiva
lent to the completeness of the n ± (H,Ho), because by defini
tion the n d± both have range equal to JY.c (H). 

The converse, that the existence of the n l implies the 
existence and completeness of the n ± (H,Ho) and that 
n ± (H,Ho) = n l, follows from Theorem 3, in the special 
case that JY = JYo and Do = D+ = D_. 

Theorem 6: Suppose that V (t ) and Volt ) act on the same 
Hilbert space JYo, and that the dilating wave operators n l 
= s-lima~oo (w =F (a)) -I W o(a) exist as unitary operators on 

JYo. If we can take the dilating subspacl!sDo, D +, andD _ to 
be the same subspace then the wave operators n ± (H,Ho) 
exist, are equal to the n l , and are therefore asymptotically 
complete. 

Proof Under these hypotheses, Theorem 3 implies that 
n d± = (W +) - I Wo and hence that 

n d± Vo(t) = V(t)n l for all tER, 

and that 

n l W o(a) = ~ + (a)n d± for all aER:. 

Therefore if we set 

<P ± =(W±)-IWO<POWO-IW± 

= n :t <po(n:t )-1 

then we have two unitary representations ofSL(2,R ) on JYo, 

which are generated by V (b ), bER, W ± (a2
), aER: ' and <P ±. 

Moreover n l <Po = <P =F n l and so, by Theorem 5, the 
wave operators n ± exist and equal the n l. • 

While it is imperative to have D + = D _, the special 
assumptions needed to obtain the equivalence of the n l 
with the asymptotically complete n ± (H,Ho) are, we believe, 
merely a technical problem and with careful work it should 
be possible to get rid of these restrictions. Nevertheless, we 
have that the dilation scattering operator Sd is equal to the 
usual scattering operator S for simple scattering processes 
where H has no bound states. 

3. POTENTIAL SCATTERING 

In this section, we give an example of how to construct 
the dilating representations W ± (a) of R: without assum
ing, a priori, that the subspace on which these unitaries are 
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defined is JYac (H). The method used constructs the genera
tors A ± of the ~ ± (a). 

The argument runs as follows. We define the subspace 
JY on which the ~ ± (a) will ultimately act. Let 

vii = {fEJYol lim_1 IT II(K-2H)J,lldt=0}. 
T~oo 2T - T 

Here K = i[H ,Ao], where Ao is the generator of the usual 
representation of the dilation group on L 2(R3

). JY is the clo
sure of vii. It follows from the definition of vii that iff EvIl 
there exists a sequence of times [t n J tending to infinity with 
n such that 

lim II(K - 2H)J,J = O. 
n~oo 

This means thati[H,A(tn ) ]f-2Hfas n tends to infinity. A + 

is then defined as the limit as n tends to infinity of A (t.) 
- Fn (H), where Fn (H) is an operator valued function of H 

for each n, and we take the strong resolvent operator limit. 

It should be noted that S~ T II(K - 2H)J, IIdt is related 
to the classical time delay for the statefbetween the times 
- Tand T. 6 Therefore, vii describes states whose time delay 

divergences as T tends to infinity slower than T -I. 
In order that this method should work, we must restrict 

the class ofHamiltoniansH = Ho + Vin the following way. 
V must be such that K = i[H ,Ao] exists and defines a self
adjoint operator with domain D (K ) such that D (K)nD (H) 
is a core for both K and H. 

Definition: Let 

vii = {fEL2(R3
) I lim _1 IT II(K-2H)J,lIdt=0}. (15) 

T~oo 2T - T 

vii is clearly a linear subspace ofL2(R3
) and is invariant 

under e - iHt for all t. 
Furthermore, we have the following property. 

Theorem 7: Iff A is an eigenvector of H with eigenvalue 
A., HfA = A.fA' and A. #0, thenfA does not belong to vii. 

Proof Iff EvIl then 

1 IT lim - (J,K (t )f) dt = 2(J,Hf)· 
T~oo 2T - T 

(16) 

N ow assume that fA EvIl. 
The left-hand side off 16) is 0 by the Virial theorem while the 
right-hand side is UlifA 112#0. HencefA U. • 

If we now assume that V is smooth enough that the 
following formal expansions are valid for t finite, 

p2(t)f= m r(t )f=p2(0)f + tAo! + - K(s)fds t it 
2 2 0 

and 

Ao(t)f=Ao!+ i'K(S)fdS for al1f~, 
then we have 

Theorem 8: If/EvIl, then 

lim I I (p2(!) -H)fll =0 
It 1--00 t 

and 
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Proof We will only prove (17) as t_ 00; the other limits 
can be proven in a similar way. 
Fort>O, 

II (p;(:) - H )f II < /2 IlL?fll + +IIAJII 

1 it + - II(K (s) - 2H )fll ds. 
2t 0 

Now take the limit as t- 00 , using the fact thatfEv#' to prove 
the result. • 

Notice that as a result oft 17), H must be positive on 1, 
for iffEv#' then 

lim (J, p2~) f) = (J,Hf). (19) 
Itl~oo t 

The limit (19) has the obvious physical interpretation that if 
fEv#' then as I t I tends to infinity J, is essentially free as its 
total energy is kinetic. 

It also follows from (19) that if (J,Hf) > 0 then as It I 
tends to infinity II r( t ) f II tends to infinity . We can now observe 
the following hierarchy of possibilities. If 

~~~ i± T (K(s) - 2H)fds (20) 

exists for allfEv#', then the generators A ± exist and are 
given by 

A + = lim (Ao(t) - 2Ht) 
t~oo 

=Ao + i oo 

(K(s) - 2H) ds, 

A - = lim (Ao(t) - 2Ht) 
1 __ ~ 00 

= Ao - [00 (K (s) - 2H) ds. 

(2Ia) 

(2Ib) 

This is related to the property of H-smoothness (Ref. 3, 
XIII. 7). If(K - H) is positive then condition (20) implies that 
(K - H )112 is H-smooth. 

If the limit (20) does not exist, but there exists an opera
tor-valued function Q (t ) that commutes with H such that 

i
±T 

lim (K(s) - 2H - Q'(s))fds< 00, 
T~oo 0 

(22) 

then the generators A ± exist and are given by 

A ± = lim (Ao(t) - 2Ht - Q (t )) 

r± 00 
= Ao + Jo (K (s) - 2H - Q 'Is)) ds. (23) 

This situation arises for long-range potentials. For ex
ample, if Vis a function ofr = Ixl only, say V = elr, then by 
(17) we have that lI(p2(t )lt 2 - H)fll-o as t-oo for allfin 
some dense subset of 1. If this subset is a core for Hand r 
and is invariant under e - iHt, then the limit can be taken in 
the strong resolvent sense. This implies that for any smooth 
function g of a single variable 

II (g( p2(t )It 2) - g(H ))fll-O as t_ 00. 

Take8V = K - 2H, then8V = - (x·VV - 2V) = - elras 
H = Ho + V, and hence ds 8 V is Coo except at the origin, 
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11(8V( p2(t)lt) - 8V(vH))fll-o. 

Now as 8 V is homogeneous, this implies that 

It 111(8V(r(t)) - 8V(~H Imt ))f-o· (24) 

So if we choose Q (s) to be an anti derivative of 8V(~(H Im))s) 
for lsi sufficiently large and zero otherwise, we get that 

~~ i± T (K(s) - 2H - Q'(s))fds< 00 

because if So is large enough 

l.~ II(K (s) - 2H - Q '(s))fllds 

= l.~ II(dV(r(S))-8V(~s))fll ds. 

But 11(8 V (r(s)) - 8V(~H 1m s))fll converges to zero, ass goes 
to infinity, faster than 1/s so the integral is finite. 

APPENDIX: UNITARY REPRESENTATIONS OF SL(2,R) 
AND WAVE OPERATORS 

We are interested in the following continuous unitary 
representation of SL(2,R ) on L 2(R3

). Let 

U(b)=(~~), s(a)=(~~_I) 
and 

belong to SL(2,R ) where bER and aER:. We have the fol
lowing momentum space representation of SL(2,R ). 

(1To(u(b ))f)(p) = e - i(p2/2)b f(p), (AI) 

(1To(s(a))f)(p) = a312f(ap), 

and 

(1To(w)f)(p) = - p12/(p) 
= - p12(y f)( p), 

where 

(Yf)(p) =/(p) = -I-ff(Q)e-iP'Qdq 
.j2ii 

(A2) 

(A3) 

is the Fourier transform of the functionfconsidered as a 
unitary map from L 2(R3

) to itself. 

It follows from the general theory of generators and 
relations for SL(2,R ) (Ref. 7, XI, Sec. 2) that to prove that this 
is a representation of SL(2,R ) we must show that 

and that 

(1) 1To(u(b)) is a representation of the group R, 

(2) 1To(s(a)) is a representation of the group R: ' 

(3) 1TO(W2) = 1To(s( - 1)), 

(4) 1To(s(a))1To(u(b ))1To(s(a-l)) = 1To(u(ba2)) 

all hold. 
We first check that 
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(1TO(w2)f)(p) = - if( - p) = (1TO(S( - I))f(p)· 

Then we show that 1To(s(a)) defined by Eq. (A2) satisfies the 
relation (A4). This calculation is tedious but fortunately it 
has been done by Lang (Ref. 6, XI, Sec. I) with a slightly 
difference choice of coordinates, namely, his variable x is 

related to p by x = plfiii. Once the relation (A4) has been 
checked the test of the relations (A5) follow immediately. 
Except that <P 6 = - I, which reflects the fact that on L 2(R3) 
we really do not have unitary representation ofSL(2,R ), but 
rat~ ~nitary representation of its nontrivial twofold cov
er SL(2fl ), with the nontrivial element of the kernel of the 
covering map acting by minus the identity on~~. This 
unitary representation of the covering group SL{2,R"j of 
SL(2,R ) gives the projective representation ofSL(2,R ), which 
is used in the following. 

The relation (A5.4) is intimately related to the condition 
(2) that was imposed upon the dilating representation ~ (a) 
ofR: and the time evolution V (t ) to describe scattering pro
cesses. Recall that we demanded that 

~(a)V(t)~(a)-1 = VIta). (A6) 

If we take a new representation ~ '(a) of R: given by 
~'(a) = ~(a2),then~'(a)V(t)~'(a)-1 = V(ta2),whichisre
lation (5.4) when we identify V(t ) with 1To(u(t ))and ~'(a)with 
1To(s(a)).(A5.4) 

The relationship between this representation ofSL(2,R ) 
and scattering theory is seen more readily in the configura
tion space realization of this representation. Let us denote by 
iTo(g) the configuration space realization of this representa
tion. The generators ofSL(2,R ) take the following forms for 
I(X)EL2(R3). 

and 

(iTo(u(b ))I)(x) = ei(b12)Vj(x), 

(1To(s(a))l)(x) = a - 312 I(a-Ix), 

(1To(w)l)(x) = - i - 312(Y})(X), 

(A7) 

where again Y is the Fourier transform operator on L2(R3). 
The relation (4) holds for this realization, and it is easy to 
show that 

(A8) 
a~oo 

for allIEL2(R3). To get this result we have used the fact that 
(1To(w))2 commutes with 1T(u(a)) for all a. Using the fact that 
(1To(w))4 = - I we can rewrite (A8) as 

lim lIiTo(uo(a))g - i-3/2iTo(s(a))Ygll = o. (A9) 
a~oo 

Ifwe put a = t 1m and make the iden~fications _ 
Vo(t) = iTo(u(t 1m)) and iTo(s(t 1m)) = ~(t 21m2) = ~'(t 1m), 
we get the result, with Ho = - V 2/2m, 

~~ f I (e-iHo'g(x) - i- 3/2(t Im)-3/2yg(~x) 1 2dX = o. 

(A9') 

A similar argument holds for the limit as t tends to 
minus infinity. Equation (4) holds for negative ao;i:O, but as 
we have only defined ~ (a) and ~ '(a) for positive a we must 
use the fact that s( - a) W 2 = sIal to get for negative a, 
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iTo(s( - a)) 

= iTo(w)iTo(u(a-I))iTo(w)iTo(u(a))iTo(w)iTo(u(a-I))iTo(w2). 

Then taking the limit as a tends to minus infinity and using 
(1TO(W))4 = - I we get, for IEL2(R3), 

lim IliTo(s( - a))1 + iTo(u(a))iTo(w)111 = 0 (AlO) 
a--~ - 00 

or, using the fact that iTo(w) = - i-3/2y, 

Q--+ - IX:: 

Now take a = - t 1m and use the equations 

1To(u( - tim)) = Vol - t) = e
iHo

' and 

1To(s(t 1m)) = ~'(t 1m) 

to get 

lim ( leiHotg(X) - i3/2(t Im)-3/2(Yg)( _ mx) I 2dx = o. 
(-co JR3 t 

(All) 

There are two observations that we wish to make con
cerning Eqs. (AlO) and (All). Firstly, these asymptotic rela
tions between the time evolution and the dilating representa
tions of R: follow from the assumption that there is a 
unitary representation of SL(2,R ) in which the representa-

tive Of(~ ~) is the time evolution group of unit aries. Second

ly, that Eqs. (AlO) and (All) are Hilbert space expressions 
for the asymptotic behavior of exp( - iHot), because if the 
integrands of these expressions are taken to tend to zero 
pointwise we have the usual pointwise asymptotic form for 
the free Hamiltonian H 0 (Ref. 8, Theorem IX. 31). 

In the light of these observations we can say that a quan
tum system (dY, V(t)) describes a simple scattering system if 
there exists a pair of unitary representations 1T ± (g) ofSL(2,R ) 

in each of which the representation of u(b) = (~ ~) is e - iHb, 

that is both 1T ± (u(b )) = e - iHb and the representatives of 

are related to the dilating representations ~ ± (a) of R: ' 

1T± (s(a)) = ~ ± (a2) = ~' ± (a). 

In this approach we have an element in addition to 
those in the dilation group approach, namely the representa
tives of the generator W of SL(2,R ). Suppose that <P ± 

= 1T ± (w). Then it follows from the arguments used above 
that 

(AI2) 
a~oo 

and 

(A13) 

If, as before, we define the dilation wave operators f11 , in 
the case when dYo = dY, as f11 = lima~oo ~ l' (a)-I ~ o(a). 
then we have the following theorem. 
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Theorem AI: Let (JYo, Vo(t)) represent a free system and 
(JYo, V (t )) a scattering system that carries two representa
tions 1r ± (g) of SL(2,R ) so that 

1r±(u(b)) = V(b), 1r± (s(a)) = ~ ± (a2
) 

and 

then 

(I) f1 l exists on JY 0 if and only if f1 ± (H,H 0) exists on 
JYo, and 

(2) f1 l = f1 ± (H,Ho) if and only if either f1 ± (H,Ho)f/Jo 
= <P ± f1 ± (H,Ho) or f1 l f/Jo = f/J ± f1 l. 

Proof: The first conclusion follows from a simple cl3 
argument using the asymptotic relations between the time 
evolution and the dilation representation. 

We will only prove that if f1 -(H,Ho) exists then f1 d

exists, the argument in the opposite direction is essentially 
the same. Supposef1 -(H,Ho) = f1 - exists, thenforall/sW'o 

lim 1/ V(!)f1 -I - Volt )/11 = o. 
t~oo 

Given hsW'o we wish to find when there exists a unique 
gsW'o such that 

lim II ~ 0(a2)h - ~ + (a2)gl/ = 0, 
a~oo 

II u2t 0(a 2 )h - ~ +(a2)gll 
<11~0(a2)h - Vo(a)f/J~h II + 11V0(a)f/J~h - V(a)f1 -f/J~h II 
+ 1/ V(a)f1 -<P~h - ~ +(a2)gll. 

The first two terms converge to zero as a---+ 00 by the asymp
totic relation between ~ 0(a2

) and Vola) and by the assump
tion of the existence of f1 - on all of JY o' The third term 
vanishes in the limit as a tends to infinity if 

g = (<P +)-3f1 -<P~h. (AI4) 
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But for any h, g defined by (AI4) belongs to JYo and so the 
dilation wave operator f1 d- exists and is given by 

f1 d- =(f/J+)-3f1-f/J~. (AIS) 
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Non-Grassmann quantization of the massive Thirring model 
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A direct quantization of the c-number (semi) classical massive Thirring model in the inverse 
scattering formalism leads to the Bose massive Thirring model, which is equivalent to the 
conventional Fermi one, both having identical S-matrices and bound-state spectra. 

PACS numbers: 03.70. + k, 03.65.Sq 

A. There is a wide-spread belief among quantum field 
theorists that (semi) classical c-number spin or fields are un
related to their quantized Fermi partners. A spectacular 
manifestation of this situation is the use of Grassmann alge
bra-valued spinor models as the would-be-the-only-reasona
ble pseudoclassicallevels for Fermi systems. For example, 
the path integration methods if applied to spinor systems, by 
the very assumption do exclude the conventional path no
tion in the c-number function ring. An anticommuting, i.e., 
Grassmann algebra valued ring is then conventionally in 
use. From the practical point of view (perturbative calcula
tions) this idea is quite justified, and it was consequently the 
main motivation for the studies of the Grassmann algebra 
valued massive Thirring model, which has been proved to be 
a completely integrable system. I There appeared, however, a 
problem of the quantization of this system via the quantum 
spectral transform method (which is successful for many 
other 1 + 1 dimensional models). This quantization route 
which we call a Grassmann quantization of the massive Thir
ring model still remains uncompleted. 

Quite the contrary, in the series of papers, Refs. 2-4, we 
have investigated the relationships between the (semi) classi
cal c-number spinor systems and the respective quantum 
Fermi models, following the idea of Ref. 5 that the c-number 
solutions of the classical spin or field equations should have 
some relevance for the construction of the appropriate quan
tum field theory. In Refs. 2 and 3 we have demonstrated that 
the relationship exists provided the Fermi models admit a 
"bosonization" in terms of free Bose fields. In the practical 
application of Ref. 4 it means that the Fermi massive Thir
ring model admits three different types of the asymptotic 
(Haag) expansions, depending on the choice of the state 
space, and provided one takes into account spaces generated 
by soliton coherent states, see, e.g., Ref. 4. 

The underlying expansions appear either in terms of the 
massive vector boson without the Proca constraint, or in 
terms of the neutral massive scalar (then the relationship 
with the sine-Gordon model can be established), and under 
special circumstances only, in terms of the free (asymptotic) 
two-component fermion. The latter case fits into the conven
tional asymptotic completeness condition, otherwise the fer
mion being confined. 

Because in the light of Ref. 4 there exists an indirect 
relationship of the e-number massive Thirring model (MT) 
to the Fermi MT, it is quite natural to state a problem of the 
direct quantization of the e-number massive Thirring model. 
This route we call a non-Grassmann quantization of the MT. 

We accomplish this quantization in the quantum inverse 
transform formalism of Ref. 6, by exploiting both the results 
of Refs. 7 and 8 concerning the complete integrability of the 
e-number MT and those on the quantization of the sine
Gordon model.9 

We demonstrate that in the quantum inverse method, 
the Bose quantized MT has a lattice approximation, which is 
equivalent to that of the quantum sine-Gordon model. By 
repeating the arguments of Ref. 9, one is then capable of 
deriving a continuum limit in which both models have the 
bound-state spectrum (and the S-matrix) identical to this of 
the conventional Fermi MT. 

B. The classical (semiclassical in fact) c-number massive 
Thirring model is known to be a completely integrable sys
tem. 7

•
S The field equation 

can be rewritten as the system 

(2) 

which is known to admit classical (e-number spinors) soliton 
solutions.s An equivalent description ofEq. (2) is known to 
be provided by the commutator [X, TL = 0 of the two ob
jects: 

(3) 

i.e., by the condition that all terms standing in the commuta
tor at different powers of the spectral parameter A do vanish. 
For X = X (A ), we shall adopt the form 
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x' = ! iX = - ax + L (x, A ) , 

A _ .(!m(A -2 - A 2) + g( PI - P2)' (A¢'! - A -1¢'T)(mgI2)112) 
L (x, ) - I 1/2 I 1 2 1 2 ' 

(mgI2) (A¢'2 - A - ¢'d,! m(/l. - /l. - ) - g(PI - P2) 
(4) 

pi=l¢'iI 2, i=I,2 

According to Ref. 6, a straightforward quantized version of the problem( 1) appears if one replaces the classical fields ¢'i (x) by 
the quantum operators ~i (x), satisfying the (equal t = 0 time) canonical commutation relations, not the canonical anticommu
tation ones (CAR) as demanded by convention: 

[~i(X), ~j"(y)] _ = aOijo(x - Y) '[~i(X), ~j(Y)] _ = 0, 

provided we make a change in L (x, A ); L (x, A )-L (x, A ), 

(5) 

'" 1 .(~m( - A 2 - A -2) + g( - SPI + l1P2), (mgI2)1/2(A~! - A -I~T)) 
L (x, /l. ) = I A A A A • 

(mgI2)1/2(A¢'2 - A -I¢,I!, ~m(A 2 - A -2) + g(l1PI - SP2) 
(6) 

Pi(X) = ~r(X)~i(X), i = 1,2, 11 = expylcosh y, 

S = exp( - y)/cosh y, y =!i arcsin a, aER. 

With the operator valued matrix i (x,A ) in hand, let us intro
duce the tensor product matrices 

L'=i®I, L" =I®i 

according to the rule 

Then the matrix equation 

(7) 

(8) 

R (A,A ')L '(x,A)L "(x,A') = L "(x,A ')L '(x,A)R (A,A '), 
(9) 

can besolvedbymeansofthe4x4matrixR = R (A,A '), with 
the c-number matrix elements,4 

R~(f 
0 0 

D 
b 

a = 1, 
c 

b = sinh 2ylsinh(u + 2y), 
c b 

c = sinh u/sinh(u + 2y), 
0 0 

(10) 

where exp u = A lA' = exp(v - v'), exp v = A, exp v' = A'. 
Let us notice that the change of variables in (6), 

v-v - y, v'-v' - y (11) 

does not affect theR-matrix (10) because u = v - v'-u. No
tice that (11) corresponds to the replacement A 
-A exp( - y). We shall adopt a bit more sophisticated ver
sion of (11), namely, 

v-v - (y - i11'/4), v'-v' - (y - i11'/4). (12) 

Recall that the parameter y is purely imaginary: y = i/1/2, 
/1 = arcsin a. Consequently we arrive at 

A ( - !msinh [2v - il,p, - 11'/2)] + g(eil<12p2 - e - il<l2pd,(mgI2)1/2(eV~! - e- V~r) 
L (XIA )_i 12 A A • • /2A • 12A , 

(mg!2) , (eV¢'! - e - v¢,T),!msmh [2v - il,p, - 11'12)1 + g(e'l< PI - e -II< P2) 
(13) 

C = C(A,A ') = sinh (v - v')lsinh(v - v' + i/1), 

b = (A,A ') = isin,u/sinh(v - v' + i/1), 

A = exp v, A' = exp v'. 

C. In general how to apply the quantum spectral trans
form method on the continuum level is not straightforward. 
Usually one adopts some discretization scheme, like that in 
Ref. 9, where the quantum inverse scattering formalism as a 
basic ingredient includes a matrix equation: 

Xtf/= (~ + iQ )tf/= 0, (14J 

with Q = Q (x) = ii (x,A ). Its discretized version on a linear 
lattice of length L and spacing D, N = L I {) reads 
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tf/n+' = Ln(x)tf/n, 

i
xn +0 (Xn +0 

Ln (A ) = I + i Xn Q (z) dz = 1- Ln L (z,A ) dz, 

(15) 

Xm = - LI2 + no, n = O,I, ... ,N, N = Llo. 

In particular one finds 

N-I~ 

tf/Llo = tf/N : = T(A) = IT Ln(A) = L N _ I (A ) .. .Lo(A). 
n=O 

(16) 

The so defined transition operator for an interval L = N{), 
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T(A.) = (A (A.) B(A.)) (17) 
c (A. ) D (A.) , 

R (A.,A. ')(T(A. ) ® T(A. ')) = (T(A. /) ® T(A. ))R (A.,A. '), 

is a fundamental object of the quantum inverse method. 
Upon discretization of (15), one represents 
A (A. ),B(A. ),C(A. ),D(A. ) by operators in the 2Nparticle Hilbert 
space :Jr2N = n~= 1 ® (h ® h )j carrying a (2N particle) Fock 
representation of the CCR algebra: 

N 

tPj(n)n = 0, Vi = 1,2, n = 1,2, ... ,N, n = II ® (wo ® wO)j , 
i= 1 

[tPj(n)jtPj(m)]~ =8ij8mn oa, [tPj(n),tPj(m)]~ =0, (18) 

tPj(n) = ;8 L ,tPj(x)Xn(x) dx, 

{
I, XE [ X n ,x n + 8] , 

Xn(X) = 
0, XE[Xn"Xn +8]. 

In particular we can consider the action of matrix elements 
of the operator Ln (A. ) on the Fock vacuum n. One immedi
ately verifies that 

L n21 n = 0, 

Ln11n = {I - ~im8sinh[2v - il.Jt -1T/2)]}n 

= {I + !m8cosh(2v - ip)}n 

~exp[!m8cosh(2v - ip)]oJ1 (19) 

= exp[a(A. )08 ]on. 

In the above we use an identity 
sinh [(2v - ip) + i1T/2] = icosh (2v - ip), 
Analogously, 

Ln22n~exp[d(A. )08] on = exp{ - !m8cosh (2v + ip)}n, 
(20) 

and consequently, 

exp [a(A. ) + d (A. )] 8 = exp(im80sin wsinh 2v), (21) 

i.e., 

exp[a(A.) + d (A. )]N = exp ikL = (exp ik8)L/{', (22) 

k = (m sinp)osinh 2v, 

with [make a product of matrices Ln according to (16)]: 

A (A. ~ = exp[ a(A. )N] on, D (A. ~ = exp[ d (A. )N ] on. (23) 

Hence in addition to the R-matrix (13), we have specified the 
reference (Fock) state n solving the eigenvalue problem for 
A (A. ),D (A. ), Eqs. (19)-(23) and being annihilated by C (A. ). 
These data completely suffice to specify a representation of 
the algebra of A, B, C, D operators as defined by the commu
tation relation (17). Then we can construct the eigenvectors 
of the transfer operator 

TrT (A. ) = Y(A. ) = A (A. ) + D (A. ), 

as follows 
n 

1A.1,···,A.n) = II B(A.j)n, 
;= 1 

provided we have satisfied the periodicity condition 
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(24) 

(25) 

'k L II" sinh(v j - Vj + ip) exp I· = 
I j=nsinh(vj-vj-ip) 

k j = (m sinp)osinh 2vj , Vj = 1M" i = 1, ... ,n. 

The respective eigenvalue reads 

with e(A.,A. /) given by (13). 

(26) 

D. By recalling Ref. 9 we find that upon a mere identifi
cation [compare, e.g., (1.29) in Ref. 9], 

(28) 

the above representation becomes isomorphic with this 
found for the quantum sine-Gordon model on a lattice. Ob
viously letting 8-<) (continuum limit) must be accompanied 
by msG-OO to keep m MT finite. The msG-OO demand is 
quite natural in the light of our previous analysis of the rela
tionships between the sine-Gordon and xyz Heisenberg 
models. 10.11 These two models can be considered as equiva
lent in the continuum limit, upon the lattice identification 
analogous to that of (28): 

(29) 

of the xyz model parameter [/ (an elliptic modulus of Jacobi 
theta functions), see, e.g. Refs. 11 and 12 and the sine-Gor
don coupling constant m sG ' where 8-<) means both 
msG-OO and [/-<) (the weak anisotropy limit of Ref. 13.). 

In the above discussion one must, however, remember 
that the Bose MT algebra (17) is represented in the Hilbert 
space:Jr N = n ~= " .. (h ® h )j, while this for the sine-Gordon 
system in :Jr N = n ~= 1 .. hi' and this for the xyz model can 
be represented in a proper subspace p:Jr N = n ~= 1 .. (ph )j of 
:Jr N' withp being a two-level projection of Ref. 10 in h. P 
:Jr N can be equivalently rewritten as n ~= " .. (C2 );, where C2 

is a two-dimensional vector space. 
On the lattice level both the Bose MT and sine-Gordon 

representations of the algebra ( 17) are equivalent and both 
become equivalent to the representation of the xyz Heisen
berg model algebra in the continuum limit. In this case the 
Coleman's equivalence with the Fermi MT is a straightfor
ward consequence. 

E. With respect to the mass spectrum or the S-matrix 
arising in the continuum limit of the above models, the (Cole
man's) equivalence of the Bose MT and the Fermi MT is 
guaranteed by the lattice identification of the Bose MT with 
the sine-Gordon model in the quantum inverse method. The 
procedure of Ref. 9 allows then the recovery of a continuum 
limit for the spectrum of the lattice models. 
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A few words should be said about the related quantum 
fields. One knows that while passing from the xyz model to 
the Fermi MT, there is a natural way to recover Fermi fields 
from renormalized lattice spin 1/2 degrees. 10--14 However, if 
one starts from the lattice Bose models, 10 like the above sine
Gordon or Bose MT, the emergence offermions is not appar
ent at all. The lesson of Refs. 4, 10, and 11 in this context is 
that these lattice models can be constrained via the so called 
spin 1/2 approximation to the xyz model. A continuum limit 
of such a projected lattice Bose model gives the S-matrix and 
the spectrum identical to that of the sine-GordonlFermi MT 
models. However, in contrast to the full Bose MT, the result
ing state space is precisely the space of Fermi states of the 
quantum Bose field, see, e.g. Refs. 4 and 11. 

On such a space the irreducible Fermi fields can be con
sistently defined. Certainly the Bose MT can be rewritten as 
the reducible Fermi model. For 1 + 1 dimensional models, a 
formal relationship with the spin (1/2) xyz Heisenberg model 
can be introduced by means of the previously defined projec
tion P: 

HB =PHBP+PHB(l-P) 

+(l-P)HBP+(l-P)HB(l-P), (30) 

where (this is a spin 1/2 approximation constraint) 

PHBP=Hxyz ' (31) 

For the sine-Gordon system in the continuum limit one ar
rives, 10.11 at the property rather rarely realized for lattice 
Bose systems: 

HB==-Hxyz + (1 - P)HB(l - P), 

[HB'P]_=O, (32) 

which is in fact another version of the equivalence statement 
for the xyz and sine-Gordon models on the appropriate (a 
continuum limit of P 7t" N) state space. The procedure of Ref. 
11 with slight modifications can be repeated for the Bose 
MT, to prove that the formula (32) is valid in the continuum 
limit of the Bose MT. However, now the starting lattice Hil
bert space of interest is 7t"2N and 

N N 

P7t"2N = PII '"'(h ®h )i: = PII '"'(h 2i - 1 ® h2i ) 
;= 1 ;=1 

N 2N 

= II '"' [(Ph bi- 1 ® (ph bd = II '"'(ph L (33) 
;= 1 ;= 1 

where p is a two level projection of Ref. 10 in the single 
particle Hilbert space h. 

If we start from the lattice CCR algebra generators as
sociated with (18) 
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[au ,an = 8ui ' [ au ,an _ = 8upaJl = 0 = aJl v k, 
(34) 

[a~,an_ =0= [au,ad- = [a:,an_, 
the underlying projections are 

Pu = :exp( - auau): + a::exp( - a:au ):au 

Pu = :exp( - auau): + a::exp( - ii:ou ):ou 
N 

(in h), 
(35) 

(in h), 

P= II (Pu.pul 
u=1 

and one easily checks that 

(36) 

determine the spin 1/2 SU(2) group generators for the linear 
chain of spins 1/2. Upon the change oflabelling 
rat iT± I _rat I rat iT± l u , u u = 1 •...• N l u u = 1 •...• 2N. l 2, - l' u 

= ail L= 1.2 ..... N being newly introduced, an application of 
the Jordan-Wigner transformation allows us to convert a 2N 
site spin 1/2 system into the 2N component Fermi system. 
This step was carefully investigated in Ref. 14. 
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1. INTRODUCTION 

Nonperturbative phenomena in quantum field theory 
are obviously of great importance. One such phenomenon, 
the formation of bound states, is an example of an unsolved 
problem almost as old as quantum field theory itself. The 
study of solvable quantum field theoretic models is of con
siderable interest since it may shed light on mechanisms re
sponsible for some nonperturbative features of more realistic 
theories. 

There exists considerable literaturel on solvable quan
tum field theories in one space and one time dimension. To 
the best of our knowledge, there are no solvable models in 
three space and one time dimension. In this paper, we pre
sent a nonrelativistic (in the sense that negative frequencies 
are absent) field theory in three space dimensions for which 
the spectrum of the Hamiltonian can be exactly calculated. 
Moreover, we demonstrate that all the eigenstates of the Ha
miltonian can be obtained by a recursive procedure. Thus, 
the S-matrix element for any process is, in principle, exactly 
calculable. 

This paper is organized as follows. In the next section, 
we write down the Hamiltonian and the equations of motion 
for our model. It is noted that the vector space of states is a 
countable union of noncombining subspaces, each labeled by 
the values of two conserved quantum numbers, ffl andff2 
(see Eqs. 2.3). In Sec. 3, it is shown that the spectrum of the 
Hamiltonian in any subspace is simply related to that in the 
subspaces with the same value of ffl but with ff2 differing 
by one unit. In Sec. 4, it is shown that the spectrum of the 
Hamiltonian and the corresponding eigenstates in the family 
of subspaces with ff2 = 0 can be readily obtained by expli
citly solving the equations of motion. The complete spec
trum can then be obtained from this by using the recursive 
procedure described in Sec. 3. In Sec. 5, we show that, for 
fixed ffl' the eigenstates in the subspace labeled by ff2 can 
be obtained from the corresponding states in the subspace 
labeled by ff2 - 1. In doing so, we find that certain "eigen
values" of the Hamiltonian (as obtained in Secs. 3 and 4) are 
spurious in that the corresponding eigenvector is null. We 
end with some concluding remarks in Sec. 6. 

2. THE FERMIONIC LEE MODEL2 

The model we consider consists of two fermion 3 fields N 
and () interacting with a boson field Vvia aYukawa-type 
interaction. It is assumed that the fields N and Vare infinite
ly massive so that their energy is independent of the momen
tum. For simplicity, we assume the () particle is massless. 
The Hamiltonian for the system is given by 

H = moVtV + J d 3/lat(/)a(/) 

+ J d 3lj(/)[VtNa(k)+at(/)NtV]. 

The quantization rules are, 

IN,Nt] = [V,vt] = 1, 

I a(k ),at (/)] = 8(k - h 
I N,N] = [V,v] = I a(k ),a(/)] = 0, 

IN,a(k)] = IN,at(k)] = [N,V] = [N,Vt] 

= [a(k ),V] = [a(k ),vt] = 0, 

together with their Hermitian conjugates. 
The operators, 

ffl =ffv +,A/'N' 

and 

with 

and 

ffv = VtV, 

ffN = NtN, 

(2.1) 

(2.2) 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

(2.4c) 

commute with the Hamiltonian. The vector space of states 
is, therefore, a countable union of disjoint subspaces labeled 
by the eigenvalues OL;f/l and ff2. 

We denote the eigenstates of the free Hamiltonian [the 
bilinear operator part of (2.1)] by I ) whereas the eigenstates 
of the complete Hamiltonian are denoted by I ». The phases 
of the free Hamiltonian eigenstates are defined by4 

I vaN() (kd"'() (kb)=(Vttat(kl) .. ·at(kb)NtIO), (2.5a) 

and 

I V a() (k l ) .. ·() (kb )=(Vt)aat(kl) .. ·at(kb)IO). (2.5b) 

For simplicity of notation, we shall label the exact eigen
states by their eigenvalues A, suppressing all other labels that 
specify the state. 

In theffl = a, ff2 = b subspace (or, for short, the 
va _ () b sector) there are just tw05 coupled amplitudes, 

(2.6a) 

and 

l,6,dkw",kb + 1 )-«..1 IVa - W() (kd,,,·,() (kb + d). (2.6b) 

The equations of motion satisfied by these can be readily 
obtained from the Hamiltonian. We find, 
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(A - amo - k) ... - kb)"';..(k)tk2 , ... ,kb) 

= (- l)ba J d 31f(l)tP;..(I,k), ... ,kb), 

and 

[A - (a - l)mo - k),. .. ,kb+) ] tP;..(k),. .. ,kb + )) 

= ( - l)b+) [ - f(ktl"';..(k2, ... ,kb+)) 

+ J(k2)",;..(k),k3,· .. ,kb+ 1) 

(2.7a) 

+ ... ( - YJ(k; )"';. (k),k2,· .. ,k; _ pk;+ ) ,. .. ,kb + tl + ... ]. 
(2.7b) 

It is easily seen that for a = b = 1 these reduce to the equa
tions of motion in the V-O sector of the fermionic Lee model 
as given in Ref. 3. 

Our purpose is to find those values of A for which Eqs. 
(2.7) yield nontrivial solutions. To this end, we construct6 the 
states vW 1..1. » and at(k )1..1. » which reside in the subspace 
characterized by (ft), ft2 + 1) if the state 1..1. » was in the 
subspace labeled by (ft), ft2)' By considering the action of 
the Hamiltonian on these new states, we are able to relate the 
spectral values in the (ft), ft2) subspace with those in the 
(ft), ft2 + 1) subspace. This forms the subject ofthe next 
section. 

3. THE RELATIONSHIP BETWEEN THE SPECTRA IN 
THE (%" %2) AND (%,. %2 + 1) SUBSPACES 

As discussed at the conclusion of the previous section, 
we proceed by considering an eigenstate 1..1. » of the Hamil
tonian in the particular subspace with (ft), ft 2) = (a,b ).It is 
clear that the states at( p)IA » and VtN 1..1. » belong to the 
subspace with (v4/'1' ft2) = (a,b + 1). The action of the Ha
miltonian on these states can be readily calculated using Eqs. 
(2.1) and (2.2) to be 

(H -A -p)at(p)IA» =J(p)VtNIA» (3.1a) 

(H - ..1.- mo)VtN 1..1.» = J d 3kJ(k )at(k )./VIlA» 

=aJ d 3kJ(k)at(k)IA». (3.2b) 

If Ill» is an eigenstate of the Hamiltonian in the (a,b + 1) 
sector, we easily obtain the equations of motion for the am
plitudes 

(3.3a) 

and 

(3.3b) 

to be 

(3.4a) 

and 

IJl-A -mo)O";.1' =..Ja f d 3kJ(k)1];'I'(k). (3.4b) 

These are formally identical to the equations of motion in the 
lowest noninteracting sector of the Lee model,2 with a cou· 

pIing constant enhanced by a factor..Ja. It easily follows from 
Eqs. (3.4) that 

1811 J. Math. Phys., Vol. 24, No.7, July 1983 

aa!/l-A)O";..I' =,Ja J d 3kf(k)8!/l-A-k) 

=,Jaf!/l- A), (3.5) 

where 

f 3 p(k) 
aa(z)~-mo-a d k --. 

z-k 
(3.6) 

It follows immediately that for Il to be in the spectrum 
ofthe Hamiltonian, O"H' we must have either 

(i)1l = A + k, k> 0, corresponding to the "scattering" 
solutionS or 

(ii) aa!/l - A ) = 0, corresponding to the "discrete" 
solution.s 

Before proceeding to analyze these further, we list some 
properties ofthe function aa' regarded as a function ofthe 
complex variable z. 

(i) a q (z) is analytic in the z plane except for a cut along 
the positive real axis. 

(ii) aa (z) has no complex zeros. 

(iii) For real, negative values of x, a~ (x) > 0 and 
aa( - 00)<0. 

(iv) Again, for x < 0, aa (x) - a I (x);;;'O. 

In particular, if al(O-) > 0, aa(O-) > 0 Va. This ensures a 
zero of aa (x) if a I (x) has a zero. The monotonicity of aa 
ensures that the zero, if it exists, is unique. In this paper, we 
will assume that in the lowest nontrivial sector there is a 
discrete point in thespectrumatMI , i.e., al(MIl = O,MI <0. 
It then immediately follows that for all a there exists Ma 
such that aa (Ma) = 0, with Ma > Mb iff a < b. 

We have thus shown that if A EO" H' Il is not a solution to 
Eqs. (3.4) unless 

(3.7a) 

or 

(3.7b) 

In otherwords,Il~O"H unless it is of the form (3.7). We will see 
in Sec. 5 that not all values of Il of the type (3.7) are in the 
spectrum. Before proceeding to do so, we first find the spec
trum in the (ft), ft2) = (a,O) sector of the model. The reo 
mainder of the spectrum can be obtained using Eq. (3.7). We 
proceed to do so in the next section. 

4. THE (%,. ft2) = (a.O) SUBSPACE 

In the va sector of the model, the equations of motion 
(2.7) reduce to 

(A - amo)"';. = a f d 31J(l)tP;..(l), (4.1a) 

and 

[A - (a - 1)mo - k ]tP;.(k) =f(k )"';.. (4.lb) 

Once again, carrying out the same manipUlations that led to 
Eq. (3.5), we find that the spectrum consists of one discrete 
state with A = (a - I )mo + Ma and a continuum of scatter
ing states with A = (a - I )mo + p, p>O. The corresponding 
(unnormalized) state vectors can easily be calculated. We 
find, 
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for the discrete state and 

+ fd 3k [8(S - k) + al(k)i(~)]lVa- W8(k), 
S - k + IE 

(4.2b) 

with S = A. - (a - l)mo for the continuum states. Here 
aa± (S) + aa(S ± iE). The spectrum in this subspace, there
fore, consists of 

and 

(i) a discrete point at A. = (a - 1 )mo + Ma 

(ii) a continuum starting at (a - l)mo and extending to 
infinity. 

It is interesting to notice that the discrete point in the 
spectrum occurs at A. = (a - 1 )mo + Ma' (a - 1) bare V par
ticles act as mere spectators whereas only one of them is 
bound by the interaction, with an effective strength in

creased by a factor (ti. This can also be seen from the wave
function, since Eq. (4.2a) can be rewritten as9 

IB lal» = IVa - I) ® [ (ti IV) 

+afd 3k I(k) IN8(k)]. 
Ma- k 

(4.3) 

The presence of the other V particles merely enhances the 
effective coupling constant by the abovementioned factor. 

This phenomenon of "limited interaction" can be 
naively understood if we recognize that the bare V particles 
can interact only in the presence of N particles. For more 
than one V particle to directly interact, more than one N 
particle would have to be present, which is not possible be
cause of the fermionic nature of N coupled to the no-recoil 
structure of the Hamiltonian. 

The spectrum in the subspace (fll' fl2 ) = (a, 1) can be 
obtained from that in the (a,O) subspace using Eqs. (3.7). In 
fact by repeating the procedure b times, we can obtain the 
spectrum in any arbitrary subspace. It is obvious that this 
procedure would lead to, among other things, eigenvalues of 
the form eMa or "eMa + continuum" with e=/= 1 in contra
diction 10 with the considerations of the previous paragraph. 
The elimination of these spurious eigenvalues forms the sub
ject of the next section. 

5. THE ELIMINATION OF SPURIOUS SOLUTIONS 

As we have pointed out in the last section, and also in 
our earlier papers,3.6 it is the solution to the equations of 
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motion for the Kallen-Pauli amplitudes that yield nontrivial 
eigenvectors of the Hamiltonian. It is quite possible3.6 to 
have nontrivial solutions to equations of motion for any aux
iliary set of amplitudes which lead to trivial solutions for the 
Kallen-Pauli system. It is, therefore, essential to check 
whether the solutions to Eqs. (3.4) really correspond to gen
uine eigenstates of the system. We proceed as follows. 

For any eigenstate IA. ) ) in the fll = a subspace, we 
define the state l,u) ) by 

l,u» =fd3P71AI'(p)at(p)IA.» + (JAp vtNIA.». (5.1) 
(ti 

It is easily verified that 

(5.2) 

when Eqs. (3.4) are satisfied. l,u» is thus a new eigenstate. 
There are two types of eigenstates l,u) ) that can be obtained 
from IA. » [See Eqs. (3.7)]. These are 

(i) the "scattering" type with,u = A. + k 

and 

(ii) the "discrete" type with,u = A. + Ma. 

The corresponding solutions are 

( ) 
_ (ti/(p).JZ: 

71,11' P - M ' 
a -P 

(5.3) 

with 

for the discrete type, and 

where 

,u = A. + k, 

for the continuum type. 
Following the same procedure as was used to obtain 

l,u» from IA. », we now proceed to obtain the state Iv» 
from l,u) ). There are then three possibilities for v, viz. 
v = A. + 2Ma,v = A. + Ma + 1 and v = A. + k + I. We have 
calculated the state vector Iv» in terms of the vector 1..1. » 
for the three cases. We find that for v = A. + 2Ma the state 
vector vanishes on account of our choice statistics for the 
particles. This is completely in keeping with our earlier ob
servation that "2Ma " could only arise due to a simultaneous 
interaction of two V S which we had rule out earlier. For the 
state with v = A. + k + M a , we find 
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Iv»=Fa,JZ:Jd 3q f(q) at(q)at(k)lli» 
Ma -q 

+a3/2~,JZ:Jd3Pd3q f(p)f(q). at(q)at(p)lli» 
a + (k ) (Ma - q)(k - p + 1£) 

+ Fa,JZ: f(k) J d 3q [ f(q) - f(q).] at(q)VtN Iii » 
a+(k) Ma -q k-q+l£ 

+ ,JZ: VtNat(k )11i ». 
Fa 

(5.5) 

The same state is obtained whether we choose f.l = Ii + M a, v = f.l + k or f.l = Ii + k, v = f.l + Ma. Finally, for the state with 
v = Ii + k + I, we have 

It is seen that Iv» is anti symmetric under the change (h--+I) 
as it should be. 

We have thus seen that if liEUH,jlEUH iff 

(5.7a) 

or 

(5.7b) 

provided Ii =1= E + M a , EEU H' 

Since the spectrum in the (ff(, ff2 ) = (a,O) sector is 
exactly known, and since any state in the (ff(, ff 2 ) = (a,b) 
sector can be reached by a sufficient number of applications 
ofthe operators at(p) and Vt(N). The spectrum in the 
ff( =asubspacethusconsistsofthepointsMa,k,Ma + k, 
Ma + k + I,.·., where k,l, .. ·,;PO. 

6. CONCLUDING REMARKS 

In all renormalizable quantum field theories in three 
space dimensions, the scattering of fermions occurs via an 
exchange of a boson. In this paper, we have studied a consid
erably simplified version of one such theory and obtained the 
exact spectrum of the Hamiltonian. Furthermore, we have, 
in principle, obtained all the Hamiltonian eigenstates. The 
exact S matrix for this theory is, therefore, calculable. Al
though some features of our calculation were peculiar to the 
particular model (such as the "mass nonrenormalization" of 
a bare V particle in the presence of other V particles), all the 
results we obtained were in keeping with our intuitive expec
tations. Although all our considerations have been confined 
to a non-relativistic framework, it is hoped that some of the 
results obtained here may serve to elucidate some nonpertur
bative features of more realistic quantum field theories. 
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We show that the gravitational analog of the Dirac magnetic monopole does not exist for a gauge 
theory of gravitation with either a T4 or an SL(2, C) Q< T4 gauge group. 

PACS numbers: 04.20.Cv, 14.80. - j, 04.20. Jb 

I. INTRODUCTION 

A number of papers have been written investigating the 
possibility of gravitational analogs of magnetic monopoles. 
In this paper, we will be interested in Dirac I type monopoles, 
not in the finite energy instantonlike 't Hooft2-Polyakov3 

monopoles also known as gravitational pseudoparticles. 
Dowker and Roche4 were among the first to consider this 
possibility, and they exploited the analogy with electricity 
and magnetism. The idea that the NUT5 solution to Ein
stein's field equations describes a gravitational dyon with 
both ordinary and "magnetic" mass has been considered by 
Newman and Demianski6 and by Dowker. 7 The NUT pa
rameter nb is often referred to as magnetic mass. 8 Misner9 

has analyzed NUT space in detail and has shown that it does 
not admit an interpretation without a periodic time coordi
nate. This acausal behavior precludes a single pole having a 
role classically. The NUT solution has a string of singulari
ties in the metric, and this has more serious consequences, as 
we just mentioned, than the corresponding string of singu
larities in the vector potential in the electromagnetic case. 
Thus the NUT solution, while having many properties anal
ogous to electromagnetic magnetic monopoles, still does not 
make a viable gravitational "magnetic monopole." The 
question then arises: Can we prove, in general, whether or 
not gravitational magnetic monopoles of the Dirac type can 
exist? We will show below that they cannot exist. 

Ezawa and Tze lO have written a very nice paper classi
fying Dirac monopoles, 't Hooft-Polyakov monopoles, and 
Nielsen-Olesen II vortices in terms of I11(G), I11(B), and 
I11(G), respectively. G is the gauge group or structure group 
of the fiber bundle and B is an isotropy subgroup of G. II I is 
the first homotopy group. We will rely heavily on Ezawa and 
Tze below, making appropriate modification so that their 
work can be applied in the context of a fiber bundle gauge 
theory of gravitation. To do this, we must first decide what 
gauge group is appropriate in the gravitational case. A cer
tain variety exists in the literature. Utiyama 12 was the first to 
consider a gauge theory of gravitation. He used the Lorentz 
group as the gauge group, as did Sciama 13 later. A difficulty 
with Utiyama is that a manifold with curvature appears 
from the start. Kibble l4 extended this to the lO-parameter 
inhomogeneous Lorentz group. Other gauge groups include 
GI(4) used by Yang l5 and SL(2,C) used by Carmeli. 16 Carme
li's theory yields the usual Eisntein field equations, but 
Yang's theory leads to field equations of higher order than 
those of general relativity, and hence to additional solutions 
which are apparently unphysical. Cho17 has written down a 

very nice fiber bundle model using T4 (the four-dimensional 
translation group) as the gauge group. This was also consid
ered by earlier investigators. 18 This theory is consistent if 
spinor sources of the gravitational field are not included. 
Curvature is created naturally in this theory, not assumed a 
priori. If spinor sources are included, Cho l9 has also shown 
that the appropriate gauge group is SL(2, C) Q< T4 , which 
leads most naturally to the Einstein-Cartan theory, but can 
also give the Einstein theory although not as naturally. It is 
still an open question whether or not torsion plays a role in 
gravitation in the presence of spinor sources. In the follow
ing, for thoroughness, we shall consider the cases where T4 
and SL(2, C) ex T4 are the gauge groups. 

One peculiarity of gravitation arises immediately if it is 
considered to be a gauge theory. In the T4 case,17 for exam
ple, the gauge group is not an internal symmetry group, but 
acts on space-time itself. In the fiber bundle formalism, this 
means that the gauge potential B ~, which is a connection in 
the fiber bundle, becomes identified as the nontrivial part of 
the vierbein fields 

(1 ) 

which describe space-time itself. In order to apply the classi
fication of Ezawa and Tze to gravity, we must generalize 
their work slightly (1) to apply to theories where G can act on 
the base space and (2) to apply to theories where G is not 
compact[T4 and SL(2, C) Q< T4 are not compact]. This latter 
provision is necessary since Ezawa and Tze assume and use 
compactness, which we do not have in the gravitational case. 

We will show that the classification of Ezawa and Tze 
can be applied to T4 and to SL(2, C) ex T4 gauge theories in 
Sec. II below. We will calculate the necessary homotopy 
groups in Sec. III, and we will finally complete our demon
stration that gravitational "magnetic monopoles" of the 
Dirac type do not exist for a T4 or SL(2, C) ex T4 gauge the
ory in Sec. IV. 

II. APPLICATION OF THE WORK OF EZAWA AND TZE 
TO GRAVITATION 

Let us look briefly at the proof of Ezawa and Tze lO to 
see how to apply it in the case of a gravitational gauge theory. 
They take an element U (xo) in the field manifold and perform 
an equivalent transport of U (xo) along a loop I in the base 
space X to a point x E I, getting 

(2) 
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where T (G ) is a certain holomorphic representation of the 
gauge group or symmetry group G, and 

g/(x, xo) = pexp( - ie { dxJ.l AJ.l) E G. (3) 

P is an ordering parameter along I. g/(x, x o) draws a curve I * 
in G, which is not necessarily a loop, as the loop in X is 
traversed. If I is swept over a 2-sphere S at a fixed time in X, 
I * trace out a surface g(s) in G with boundary ag(s), a loop. R 
is defined as the subset of G, which is swept by all possible 
boundaries ag(s). Thus with any sphere S, a member of the 
second relative homotopy group Il2(G,R,e) can be associat
ed. Two such spheres enclose the same type of monopoles if 
they are mapped into the same homotopy class of Il2(G,R,e). 
Ezawa and Tze lO then prove that monopoles are classified by 
the fundamental homotopy group III (R ), using the exact ho-

a 
motopy sequence Il2(G )-Il2(G,R )-IlI(R ). They go on to 
show that for Dirac monopoles, R = G so that Dirac mono
poles are classified by IlI(G). 

Ezawa and Tze assume that G is compact, which is not 
true in the gravitational case. If we look at their proof that 
monopoles are classified by IlI(R ), we see that compactness 
is not necessary, but only the weaker requirement that 
Il2(G) = O. Thus, for their work to apply to a gravitational 
gauge theory with either G = T4 or SL(2, C) Q< T4, we must 
show that 

(4) 

and 

(5) 

We calculate these in the next section. 
A further stumbling block to the application of their 

proof to gravitation is the fact that in gravity, G also acts on 
the base space, space-time itself, through (1). We now want 
to show that this does not ruin their argument. We wiIllook 
at the T4 case. Similar arguments apply for SL(2, C) ex T4· 
Following Cho, 17 we shall use indices a, f3 = 1,2,3,4 to refer 
to the structural group G with four commuting generators 
Sa' Indices i,j,k = 1,2,3,4 refer to four orthonormal vector 
fields e j forming an orthonormal basis for space-time with 
commutation relations 

[ eo ej ] = T/ ek • (6) 

Finally /1, v = 1,2,3,4 refer to a commuting coordinate basis 
for space-time. Using Cho's notation and explicitly includ
ing the gauge generators in (3) gives 

g/(x, xo) = P exp( - {B f Sa dX) (7) 

for the gravitational case. B f is the gauge potential for the T4 
gauge theory, which is identified with the nontrivial part of 
the vierbein fields describing space-time as in (1). Using (1), 
we can write (7) as 

g/(x, xo) = P exp( - _1_ (X (h f - Df) Sa dx j
) • (8) 

.)Y" Lo 
Since a space-time vierbein now appears in g/(x, xo), the 
question arises whether a closed loop in the base space can 
still lead to an open loop in I * in G. If not, ag(s) = 0 and 
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R = ! 0 1 leading to a breakdown in the argument of Ezawa 
and Tze. We can now write (8) in terms ofa coordinate basis, 
using the definition of a vierbein, as 

g/(x, x o) = P exp( - ~ {Sa (dX::'urved - dX:a,). (9) 

where dX::'urved refers to curved space and dx:a, refers to flat 
space. The flat space term in (9), when integrated around a 
closed loop in the base space, always produces a closed loop 
in G leading to ag(s) = 0 and R = ! 0 J . The curved space part 
of (9), when integrated around a closed loop in the base 
space, in general, will not produce a closed loop I * in G, 
however. It is well known20 that carrying a vector around a 
small parallelepiped in curved space gives 

.:1S a = R a[3J.lY S [3 dxT/ d xY¥O, (10) 

where R a [3T/Y is the curvature tensor. Thus the boundary 
ag(s) is nonzero, in general, and the subset R of G is no longer 
trivial. The argument ofEzawa and Tze can thus be applied, 
even though G acts on space-time. 

To summarize this section, gravitational "magnetic 
monopoles" are classified by Il I (T4 ) [or IlI (SL(2, C) ex T4 ) in 
the more general case] if we can show that Il 2( T4 ) = [0 1 [or 
Il2(SL(2, C) ex T4 ) = [0 l]. We thus need to calculate these 
homotopy groups. 

III. HOMOTOPY GROUPS 

For a T4 gauge theory, we need to calculate IlI(T4) and 
Il 2(T4). For the more general SL(2, C) ex T4 gauge theory, we 
needIlI(SL(2, C) Q< T4)andIl2(SL(2, C) Q< T4).Letuslookat 
the T4 case first. This is easily handled using the following 
theorem21

: 

Theorem: If a space X is contractible by a homotopy 
that leaves Xo fixed, then Iln (X, x o) = ! 0 1 for each n> 1. 

X is contractible if there is a point Xo in X and a homo
topy H:X XI-X such thatH(x,O) = x andH(x,l) =xo, 
where x E X. In particular, the real line, Euclidean space of 
any dimension, an interval, and a convex figure in Euclidean 
space are all contractible spaces.21 Now since T4 is isomor
phic to four-dimensional Euclidean space, we have that T4 is 
contractible. Thus 

(11) 

Turning to the SL(2, C) ex T4 gauge theory now, where 
Q< denotes the semidirect product, we need the following 
theorem22

: 

Theorem: Let X and Y be two given spaces and Xo EX, 
Yo E Ybe given points. Consider the product space 
Z = X X Yand the point Zo = (xo, Yo) in Z. Then for every 
n > 0, we have Iln (Z, zo) -;:::;IIn (X, xo) ® lIn (Y, Yo), where ® 

denotes the direct product and -;:::; an isomorphism. 
The proof of this theorem depends on using the obvious 

projections ofloops in Z into loops in X and Yand, converse
ly, any pair of loops in X and Y determining a loop in Z. It is 
clear from the proof that SL(2, C) Q< T4 is a product space in 
the sense of the theorem so that we can write 

lIn (SL(2, C) ex T4)-;:::;Iln(SL(2, C))®Iln(T4) (12) 

for n >0. 
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We still require il)(SL(2, C)) and il2(SL(2, C)). Since 
SL(2, C) is simply connected, we have 

il)(SL(2, C)) = (OJ. (13) 

il2 of all compact Lie groups is (0 J, 23 and since SL(2, C) is 
compact, we further have 

il2(SL(2, C)) = (OJ. 

Putting (12) and (13) into (11) then gives 

il)(SL(2, C) Q< T4 ) = (OJ 

and 

IV. CONCLUSIONS 

(14) 

(15) 

( 16) 

Using the results of the preceding section, we are now 
ready to put everything together. Since il2(T4) = (0 J and 
il2(SL(2, C) ex T4 ) = IO}, the earlier arguments of Sec. II 
leads us to conclude that the classification of Ezawa and Tze 
can be applied to a gauge theory of gravitation based on a T4 
gauge group [or more generally, based on an SL(2, C) ex T4 
gauge group]. Thus il)(G) classifies the Dirac monopoles. 
However, we showed that il)(T4) = (OJ and 
il)(SL(2, C) Q< T4 ) = IOJ. We thus conclude that Dirac-type 
gravitational "magnetic monopoles" do not exist. The only 
way out is if gravitation is based on a gauge group different 
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from T4 [or, more generally, SL(2, C) ex T4] with greatly dif
ferent homotopy properties. This seems very unlikely. 
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After introducing a new way of writing the Tomimatsu-Sato solutions of Einstein's field 
equations, we consider the geometry in the neighborhood of the "poles." We also show that 
nonequatorial timelike and null geodesics can reach none of the ring singularities. 

PACS numbers: 04.20. J b 

I. INTRODUCTION 

Ever since the discovery of the Tomimatsu-Sato solu
tions 1,2 of Einstein's vacuum field equations, the structure of 
these solutions has puzzled those investigators who have 
dared to indulge in calculations with them. 

The first Tomimatsu-Sato solution, which we shall des
ignate by TS 1, is the famous Kerr metric, which has been the 
subject of innumerable investigations. By comparison, very 
little has been done with any of the other TS solutions. How
ever, a calculation3 of the Weyl conform tensor invariants 
for TS2led Ernst4 and Economou5 to consider exact vacuum 
solutions which approximate TS2 in the neighborhood of the 
"poles," the locations of apparent directional singularities in 
the metric. They found that these auxilliary solutions are of 
Petrov type D and that the poles are null surfaces rather than 
points. For TS3 the Weyl conform tensor invariants were 
evaluated by Hoenselaers,6 but very little else is known about 
that solution. 

The purpose of the present work is threefold: first, we 
shall cast the Tomimatsu-Sato solutions into a form which is 
more amenable to analysis than the original one; then, we 
shall address ourselves to the problem of the poles of TS3; 
and finally, we shall answer the long debated question con
cerning whether or not a timelike or null geodesic, not in the 
equatorial plane, can reach the ring singularities. 

II. NEW FORM OF THE TS SOLUTIONS 

In their original paper,2 Tomimatsu and Sato wrote 
their series of solutions in the form 

dS2=1-1[~(~ +....!!L) +p2dfjJ2] 
C x 2 - 1 1 _ y2 

- I(dt - (jJ dfjJ )2, (2.1) 

wherep2 = (x 2 
- 1)(1 - y2). The solutions correspond to 

Ernst potentials of the form 

€ = (a - fJ )I(a + fJ), 
where a and f3 are polynomials of orders {j 2 and {j 2 - I, re
spectively, in x and y and of order {j in p and q (p2 + q2 = 1). 

-) This work supported in part by National Science Foundation grants PHY-
75-08750 and PHY-79-08627. 

Furthermore, 

I=A/B, A =aa· -fJfJ·, 
(2.2) 

B = (a + fJ )(a· + fJ .), C = p26 (x2 _ y2)6
2 

- 1 • 

Some time ago we noticed that the even {j TS solutions 
can be written in the form 

ds2 = (B /C)[d5 2/(1 + 52) + d1]2/(1 _1]2)] 

+ B- 1 [5 21]2{f..tdfjJ - v dt )2 - (O'dfjJ - 1" dt n 
(2.3) 

while the odd {j TS solutions can be written in the form 

ds2 = (B /C)[d5 2/(1 + 52) + d1]2/(1 _1]2)] 

+ B -1[1]2( J.ldfjJ - vdt)2 - 5 2(O'dfjJ - 1"dt n 
(2.4) 

where 

5 2 = x 2 _ I, 1]2 = 1 _ y2, 

B = J.l1" - vO', C = p26 (5 2 + 1]2)6
2 

- I, (2.5) 

and where J.l, v, 0', and 1" are polynomials in x and y. For TS2 
these polynomials were listed in Ref. 4. 

For TS3 one finds 

J.l = ((px + I)lp)! 6(p25 8 + q21]8) + 32p25 4(5 2 + I)) 
+ 4P5 6(35 2 + 4) + 5 2

1", (2.6a) 

v = q{ p25 4(35 4 + 85 21]2 + 61]4) + q21]8J, (2.6b) 

0' = 8q( px + 1 )1]4 ( 35 2(5 2 + 1]2) + 2(5 2 + 31]2) - 4 ) 
4q5 21]4 ( 3(5 2 + 21]2) - 4) + 1]2V, (2.6c) 

1" = p{ p25 8 + q21]4(65 4 + 85 21]2 + 31]4)J. (2.6d) 

From Eqs. (2.3) and (2.4), it is obvious that the degenerate 
metric induced on the "hypersurface" 5 = 0 has Lorenzian 
signature for the even and Euclidean signature for the odd {j 
solutions. 

III. THE "NORTH POLE" x = 1, Y = 1 IN TS3 

Considering the geometry of the TS3 solution near the 
"north pole" x = I, y = I, one is tempted to replace 

5-..1.5, 1]-..1.1], t-32(p + l)t /(p2..1. 4), (3.1) 

and to rescale the metric by 

(3.2) 
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and then to take the limit ,1,-0. In this way one arrives at the 
metric 

ds2 = (B /C )(ds 2 + drl) 
+ B -I{ 1J2(f-L'd¢J - vdt)2 - 52(7'# - rdt )2]. (3.3) 

where 

f-L' = p3S4, (7' = - p2q1J4, C = p6(S 2 + 1J2)8, (3.4) 

and v and r are the same as in Eqs. (2.5b) and (2.5d). The 
auxiliary solution we obtain in this manner is actually the 
third in a series of non asymptotically flat solutions given by 
Ernst. 7 The invariants of the Weyl tensor are given by 

II = 3(p6(S2 + 1J2)8/{33)(p + iq)(pS4 + iq1J4), 

12 = 144(p'2(s2 + 1J2)15/{35)S21J2(p + iq)2, 

where 

{3 = p2s 6 - q21J6 + 3ipqs 21J2(S 2 + 1J2). 

(3.5) 

As in the case of the original TS3 metric, the invariants of the 
auxiliary metric tend to zero as 5 and 1J go to zero, regardless 
of the value of 5 /1J. 

On the other hand, the metric (3.3) cannot, in contrast 
to the {) = 2 case, be regarded as a valid approximation to 
TS3, as here one has to perform the conformal rescaling (3.2). 

Furthermore, the Hamilton-Jacobi equation for null 
geodesics with vanishing angular momentum becomes 

p2(S 2 + 1J2)8(S. 5 2 + S. '" 2) = p2s 6 _ q21J6, 

which shows that no such geodesics can reach 5 = 0 for non
zero 1J. This is not what one would expect from our examina
tion of the full TS3 metric. 

To get an impression of how geodesics behave near the 
axis, we consider the equation of geodesic deviation: 

t a + r PrJ) U Pur; {; + 2r Pru Pt r = 0 (3.6) 

for the deviation vector ~, where the dot denotes the ordi
nary derivative with respect to the affine parameter of the 
geodesic, whose normalized tangent vector is ua and along 
which the r 's are evaluated. 

For future use we want to keep the discussion fairly 
general. Therefore, we assume that the metric under consi
deration is of the form 

ds2 = a(dxl)2 + b (dX2)2 + dK T gdK, 

where 

K= (~). 

(3.7) 

Furthermore, a, b, and the matrixg are functions of x I and x 2 

only, symmetric under the reflection x 2
_ - x 2

• Moreover, 
we take a geodesic with x 2 = 0 as reference geodesic. It is 
obvious from the symmetry of the metric that such geodesics 
exist. 

Keeping in mind that under the above circumstances all 
first x 2 derivatives vanish in (3.6), the equation for; = ; 2 
becomes 

t - (I/2b )[a. 22 v2 + KT g. 22K]b + (In b). I tv = 0, 

where v = u I and all expressions are evaluated at x 2 = O. 
However, two of the conservation laws yield 
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gK = k = const 

and (3.8) 

av2+kTg- Ik=c=0, ± 1. 

We shall also use the resulting equation 

t - (I/2ab )[ac - ae g-'k 122; + (In b). I tv = 0 (3.9) 

in the following section. 
We shall now consider null geodesics in the neighbor

hood of the axis by taking 

(0) I 2 k = l' x = 5, x = 1J, c = O. 

Those geodesics have also been used by Szekeres and Mor
gan8 for the analysis of the Curzon metric. 

From the exact metric (2.3), one derives 

D £- 6 _ 9'P4q2£- 16".,2 + D ak Tg-Ik = _ o!> !>'/ I 

p6(S 2 + 1J2)8(1 + 52) , 

where Do = Do(S) = [32(1 + p)pj2 + 0 (SZ) and 
D, = D,(s, 1J) = 0 (1J4). Hence 

J",,,,ae g-'k I", =0 ~16[32(1 + p)l(p2s 6)f, 

where the symbol ~ denotes the terms which diverge most 
rapidly as 5-0. With 

B~32p4(1 + p)s12, 

and hence 

b~32(1 + p)l(p2S4), 

Eq. (3.9) reduces to 

t - (4/s)tv + (8/5 4
); = 0, (3.10) 

where we have kept only the most rapidly diverging terms. 
As 

V2=t 2 = -a-IkTg-Ik~S-2, 

we have 

t~-s-3, t=;.d, t=;.sd 2 +;.st, 

and thus 

S2;.55-5s;.s+8;=0. (3.11) 

The two independent solutions of Eq. (3.11) are 

;0:.5 2 and ;0:.5 4
• (3.12) 

From t ~S - lone concludes that V = 52 is twice the affine 
parameter for smalls. Now we use K = 1J/S 2 and V = 52 as 
coordinates and write the metric (2.4) in the form 

ds2 = PI dK2 + (2P2K/V)dK dV + (P3/V3)dV2 

+K2N#2_2K 2V 2Ld¢Jdt- V 3Mdt 2, (3.13) 

where 

1T = 32(1 + p)lp2, f-L = q/p, 

P2~1T[1 + V(~ - 8~)], 

P3-1Tl! + VIA -~) + V2[~ + ~K2 + K4(1 + ~f-L2l] 

+ v3 [( P - 2)1128 + -?i,~ -llK4 + K6(6 - 5f-L2l] J, 
N~1T{1 + ~V + 9V2(-h - K4f-L 211, (3.14) 

L~3f-L{ 1 + 3K2V - V2B~ - K4(2 - 9f-L2)]]. 
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M ~(ll1r)l 1 - V H + 9p,2,r) + 9 V 2 [ 1i + p,2,r(~ - 5,r)] 

- V 3 [(p + 54)132 + p,2,r(W- 7:z,r 
+ l00K4 

- 81p,2K4)] J . 

Following Ref. 4, we now perform a coordinate trans
formation 

t = u + I(V, K), ¢ = '" + g(V, K), (3.15) 

where the functionsl and g are to be chosen in such a way 
that the diverging terms with dK dV, dV 2, d", dV, etc., are 
cancelled. In this way we obtain the metric 

ds2 = du dV + tr(d,r +,r d~) + hij dxi dx j
• (3.16) 

hij is a tensor whose components go to zero at least as o( V). 
Functions I and g which accomplish this are 

1= 1T1l/(4V2) + (l/V)(! -,r) - ~ In V + 3K4 -:z,r 

+ V [(1 - p)/64 - H,r + 5K4 - 6K6 + !K6p,2] J, 
g= -~p,[ln V+!V(:z,r-l)]. 

An entirely analogous procedure is of course applicable to 
the "south pole" x = 1, y = - 1. One can again, as in Ref. 4, 
identify the future of the south pole with the past of the north 
pole and vice versa. Thereby one arrives at a toruslike struc
ture with the null geodesics threading through the opening 
of the doughnut, where V = O. There the space-time be
comes momentarily fiat. 

It is interesting to note that the metric near V = 0 is 
independent of the rotation parameter q. Furthermore, the 
part of the horizon x = 1 wherey,c: 1 has been pushed out to 
K = 00 in our coordinates. 

The whole structure ofTS3 confirms earlier conclu
sions drawn from an investigation into the Voorhees me
trics9 and also agrees with the pictures we have of the Curzon 
metric, which the static limits of the TS solutions approach 
the large {j. We therefore believe that the poles of all Tomi
matsu-Sato metrics are fiat except for {j = 2. 

IV. GEODESICS NEAR THE SINGULARITY 

As has been pointed out by Tomimatsu and Sato and 
confirmed by the calculation of the Weyl invariants, the TS 
metrics have curvature singularities where a + /3 vanishes. 
There are {j of those singularities, all lying in the equatorial 
plane y = O. In the case of the even solutions, these are all 
naked singularties, while in the case of the odd {j solutions, at 
least the outermost ring singularity must lie outside of the 
possible event horizon at x = 1. 

For the Kerr solution it is known 10 that geodesics off 
the equatorial planey = 0 cannot reach the singularity. The 
derivation of this result was facilitated by the existence of a 
Killing tensor, which enabled Carter to solve the geodesic 
equations completely. 

For the TS metrics with {j> 1, for which no analogs of 
the Kerr-Killing tensor are known, it has been a long unan
swered question whether off equatorial plane timelike or null 
geodesics can reach at least one of the ring singularities. To
mimatsu and Sato did show that geodesics confined to the 
equatorial plane reach the outermost ring singularity in a 
finite proper time. 

We shall resolve the question concerning off equatorial 
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plane geodesics by tackling the equation of geodesic devi
ation (3.9) withx 1 = x andx2 = y in the neighborhood of one 
of the singularities, whose location we designate by 
x =Xo,y = O. 

From Eq. (2.2) it is clear that as the singularity is ap
proached, A and B behave at least as 5 = (x - xo) and 52, 
respectively. Then we may infer from Eq. (2.5) that the nu
merators of gt/>t/> and gt/>I also behave as 5. From 

detg = - (x2 _ 1)(1 _ y2) 

we find that M = Bg becomes a singular matrix for smalls. 
Furthermore, from Eq. (2.5) it follows that 

(In b), 1 ~2/s 

and 

(l/2ab )(aE - ae g-lk), 22 ~C/S4 
with some constant c, while from Eq. (3.8) it follows that 

v2 =x2 = t2 = e2/s 3 

with another constant e, where, of course, k has to be chosen 
so that e2 is positive. Now, again keeping only the dominant 
terms, we can write Eq. (3.9) in the form 

st,ss + !t,s + c't = O. 

With the ansatz 
00 

t=sm L anS n, 
n=O 

the recursion relation for the an is found to be 

an = -c'an_1[(n+m)(n+m-!ll-1 

for m = 0 and !. 
The general solution, a linear combination of the solu

tions belonging to the two m values, will miss the singularity 
unless the m = 0 part is absent. 

with 

Now letY~Y1K. Then we have from (3.7) 

at2 + by2 + e g-lk = E 

a~als2 + a2y2, 

b~blS2 + b2y2, 

e g-lk~(nls + n2y2)/(d1s
2 + d2y2). 

Consequently we find for the velocities 

t~c + 0 (5), y~(cYl/2K)[1 + 0 (5)], 

if E - e g- 1 k = 0 (1) or 

t~cK + 0(5), y~Cy/2 + 0(5) 

ifE - eg-1k = 0(5)' 
The y component of the geodesic equation reads 

2bY + 2b,sty + b,yy2 - a,yt 2 + (e g-lk ),y = o. 

By direct calculation of the leading order it can be shown 
that this equation cannot be satisfied for either of the above 
cases. Hence we conclude that no geodesic, save those con
fined to the equatorial plane, can reach the singularity. As 
our discussion was quite general and used only the dominant 
behavior of the various functions, the result holds for all 
Tomimatsu-Sato metrics. 
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v. ADDITIONAL REMARKS 

As the complexity of the TS solutions increases tremen
dously with D, we have found it necessary to perform some of 
the calculations with the help of a computer. To this end, one 
of us (eR) has developed the program POL YNOM, which is 
capable of performing algebraic operations including divi
sion and differentiation with polynomials. Even though the 
expressions (2.6) were first calculated by hand, a check by 
POLYNOM improved our confidence in them. The Weyl in
variants of (3.3) were calculated entirely by computer. 
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Response to gravitational probes and induced Newton's constant 
L. S. Brown and A. Zee 
Department of Physics, University of Washington, Seattle, Washington 98195 

(Received 7 December 1982; accepted for publication 4 February 1983) 

We study the response of the action functional to external probes and derive a representation for 
Newton's constant without specializing to conformally flat space, as is normally done in standard 
discussions of induced gravity. 

PACS numbers: 04.30. + x 

Now that three of the four fundamental interactions 
have been unified, it is particularly urgent to understand 
how gravity is related to the other three interactions. The 
difficulty is, of course, that gravity looks quite different from 
the other three interactions, now known to be described by 
nonabelian gauge theories. In particular, while Yang-Mills 
theory is scale invariant in four-dimensional spacetime, the 
Hilbert-Einstein theory is not. An attempted forced mar
riage of gravity and the other interaction is attended by nu
merous unwanted guestinos, hitherto unobserved particles 
whose names end in "ino." An attractive alternative is that 
Einstein's theory of gravity actually represents a long dis
tance effective phenomenological description. I~ In this 
case, Newton's constant G is determined by the other three 
gauge interactions. A formal representation for G was de
rived independently in Refs. 2 and 3: 

_1_ = _ _ 1_' f(d 4x)x2(T*[T(X) T(O»). (1) 
16rrG 96 

Here the trace of the stress-energy tensor 

T = TI"l" = YfI",.TI"V (2) 

appears in the covariant time-ordered product [T*] taken in 
the flat-space vacuum expectation value. The flat-space met
ric is denoted by YfI"V which has the signature (- + + +). 
In principle, this formula allows us to calculate Newton's 
constant. 

The formula (1) holds in the approximation where gra
vity is treated as a classical field. Note that, as emphasized in 
Ref. 5, the appearance of the trace of the stress-energy ten
sor Trather than the stress tensor T I"V itself is crucial since T 
is a soft operator. Calculations of Newton's constant G using 
formula (1) in various models have been attempted. 3

,6 This 
formula has also been studied using considerations based on 
analyticity and positivity,7 

One derives Eq. (1) by studying the response of the ac
tion functional to an external classical gravitational field 

(3) 

treating hi'" as a small perturbation. In Refs. 2 and 3 hl"v is 
chosen to be conformally flat, hl"v(x) = 1 Yfl"vh (x), for arith
metical simplicity. The field h (x) is coupled to Yfl"vTI"V, and 
this accounts for the appearance of Tin Eq. (1) rather than 
T 1"". However, general coordinate invariance guarantees 
that physical results do not depend on what external probe 
one chooses to use. In this note, we shall derive formula (1) 
without restricting gl"v to be conform ally flat,8 and we shall 

discuss the structure of the effective gravitational Lagran
gian in some detail. 

As a by-product of our discussion, we write down a 
representation for Kl"vAp(X) = (01 T* [T I"v(x) TAp (0)] 10) 
with the correct Schwinger terms included, which, as far as 
we know, has not been given in the literature. We thus add to 
the work of Boulware and Deser,9 who, following 
Schwinger, analyzed years ago the commutator 
[Tl"v(x), TAp (0)]. 

As an interesting problem in applying the idea of in
duced gravity to cosmology one might wish to study the 
behavior of Newton's constant as a function of temperature. 
At finite temperature, Lorentz invariance is, of course, lost. 
The first step in the study would involve writing down the 
correct expression for Kl"vAP at zero temperature and then 
generalizing to finite temperature. 

The response of quantum fields to an arbitrary external 
field is described by the generating functional of connected 
Green's functions: 

W[ g) = ~ f (d 4x) hl"v(x) (TI"V(x) 

+ ~ (+ r f (d
4
x)(d

4
y) hl"v(x) hpu(Y) 

X (iT*[TI"V(x) TPU(y)]) + ... 

=+A f (d
4
x) rfvhl"v(x) 

+ ~ (+ r f (d
4
x)(d

4
y) hl"v(x) 

Xhpu(Y) K I"VPU(x - y) + .... (4) 

The generating functional is not altered by general coordi
nate transformations. This invariance is assured by requiring 
invariance under the infinitesimal transformations 

(5) 

Examining the terms which are linear in the gravitational 
field hl"v, we conclude that the two-point stress-tensor corre
lation function must obey the divergence condition 

JvKJ.lVPU(x - y) = A [YfpuJ I" - rfuJP - ifPJU] 8(x - y). 

(6) 
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Hence we define 

K f'VPCT(X - Y) 

= K f'VPCT(X - Y) 

+ A [7]f'V ifCT - 7]f'P7]VCT - 7]f'CT 7] VP] 8(x - y) 

so that K f'VpCT is free of divergence, 

JvK f'VPCT(X - y) = o. 

(7) 

(8) 

Introducing the decomposition (7) into the generating 
functional expansion (4) gives 

W[g]=Af(d4X)[~h 1'_ ~hf'Vh +~h f'h v] 2 I' 4 f'V 8 I' v 

+ + (+ r f (d
4
x)(d

4
y) 

Xhf'v(x) hpCT(Y) Kf'VPCT(X - y) + .... (9) 

With the gravitational field hf'v restricted to be slowly vary
ing, we can identify this as the expansion of an effective local 
gravitational Lagrangian, 

(10) 

The terms in the square brackets in Eq. (9) are precisely the 
first few terms of the expansion of the determinantal factor 

[-=g in powers of hf'v, Hence 

X eff =A + "', (11 ) 

and we must identify A with the cosmological constant. We 
should note that, in view ofEq. (6), A can be computed from 
the stress-tensor correlation function as well as the simple 
single vacuum expectation value (T 1"'). 

To derive the Hilbert-Einstein piece of the effective La
grangian, we need to first examine the kinematical structure 
of the correlation function or, equivalently, the structure of 
its Fourier transform 

K f'V PCT(k ) = f (d 4X) e - ikx K I1V PCT(X). (12) 

Taking account of the obvious symmetries of K I1VPCT(k), we 
may write its most general tensor structure as 

K I1V PCT(k ) = 7] I1VifCT A (k 2) + (7] I1P7] VCT + 7] I1CT7] VP) B (k 2) 

+ (7] I1Vk Pk CT + k "k v7] PCT) e (k 2) 

+ (7] f'Pk vk a + 7] I1CTk vk P 

+ 7] vPk Ilk" + 7] VCTk"k P) D(k 2) 

+ k "k Vk Pk "E (k 2). (13) 

The scalar functions A '00. ,E are devoid of kinematical singu
larities. The divergence condition 

(14) 

gives three constraints among the five scalar functions. Thus 
there are two independent combinations. The constraint 
equations are satisfied by A = - k 2e, B = ! k 2e, 
D = - !e, and E = O. Hence there is a conserved tensor 
combination of order k ak !3 whose scalar coefficient is free 
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of kinematical singularity. We introduce the notation 

/PV=7] 11 vk2_k"kV (15) 

and express this tensor as 

L f'VpCT = (11k 2)[ll11P llVCT + ll"CTll VP _ 2ll I1V II PCT]. 

( 16) 

The combination of terms in the square brackets contain an 
overall factor of k 2, which is cancelled by the 11k 2 to produce 
a nonsingular tensor of order k ak !3. Thus L I1VpCT is a tensor 
polynomial in k. There is no unique definition of the tensor 
which remains to complete the basis. It is, however, conven
ient to define this tensor by the requirement that it be trace
less, and so we write 

M I1V pCT = II I1P II VCT + II I1CT II VP _ j II I1V II pCT. (17) 

We now have 

(18) 

with K 1(k 2) andK2(k 2) free of kinematical singularities. It is 
important to note that, with our choice of the tensor M I1VPCT, 
the scalar coefficient K l(k 2) is determined solely by the trace 
of the stress-energy tensor: 

- 12k 2K1(k 2) + 8A = f (d 4x)e- ikx (iT*[T(x) T(O)]). 

(19) 

In particular, by setting kl1 = 0, one obtains a two-point re
presentation of A. 

In order to derive the effective low-energy gravitational 
Lagrangian, it is convenient to introduce the Fourier trans
form of the gravitational field and write 

f (d 4x) f (d 4y) hl1v (x) hpCT(y)KI1VPCT(X - y) 

=f(d
4
k)h (k)h (_k)KI1VPCT(k). 

(21T)4 I1V pCT 

Now to order h 2 

f
(d

4
k)h (k)L"VPCT(k)h (k) 

(21T)4 I1V pCT 

~ - 8 f (d 4x) [-=g R, 

(20) 

(21) 

where R is the scalar curvature. Comparing with Eq. (9), we 
conclude that 

(22) 

and hence 

(23) 

Expanding the exponential in the integrand in Eq. (19) gives 

12K1(0) = + f (d 4x)X2 (iT*[T(x) T(O)]), (24) 

which, combined with Eq. (23), yields the formula (1) for 
Newton's constant. 

Expanding Eq. (20) to higher powers of k yields higher 
order terms in the effective Lagrangian. Again examining 
the terms of order h 2, we find that 
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f (d
4
k)h (k)k2L!-,vP"(k)h (-k) 

(217")4 !-'v P" 

'" f (d 4X) f-=g (4C!v P" - j R 2) 

while 

f (d
4
k) h (k) M!-'VP" h (- k) 

(217")4 !-'V P" 

is proportional to 

f (d 4
x) f-=g C!vp,,' 

(25) 

where C!-'vp" is the conformally invariant Weyl tensor. Thus 
we secure the Eddington-Weyl contribution to the effective 
Lagrangian 

2' eff = ... + yC!v P" + pR 2 + .... 
where y is proportional to K ; (0) and K 2(0) and 

p = - iK;(O). 

with 

(26) 

(27) 

(28) 

In Ref. 5 it was argued that if p is set equal to zero in the 
classical Lagrangian. a calculable and finite value of p is in
duced since it is related to a matrix element of the soft opera
tor T(x). On the other hand. the coefficient y will in general 
be divergent. The formal representation for y involves the 
hard dimension four operator T !-,V. 

The structure of the stress-tensor correlation function 
can be exhibited in more detail if we write Kallen-Lehmann 
representations for the scalar functions: 

K 1,2 (k 2) = roo ds U~'2 (s) . 
Jo k +s 

(29) 

Here we shall proceed in a formal manner and disregard any 
possible convergence difficulties. Writing 

Kl(k 2) = roo ds u
1
(s) _ k 2 roo ds ~. (30) 

Jo s Jo s k 2 + s 

and. performing some rearrangement of terms. we obtain 
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K !-,vP"(k) = M !-'vp" roo ds u2(s) - u 1(s)/2 
Jo k 2 + s 

+ n !-'v n P" r" ds (4/3s) u1(s) 
Jo k 2 + s 

+ L !-'vp" roo ds uds) 
Jo s 

+ A [1/ !-'v1/ peT - 1/!-'P 1/ VeT - 1/!-,eT 1/ VP]. (31) 

The traceless part corresponds to the spin-2 intermediate 
state contribution. Hence 

pz(s) = uz(s) - u1(s)/s 

is the spectral weight for these states. while 

Pols) = (4/3s) u1(s) 

(32) 

(33) 

is the spectral density of the spin zero intermediate states. 
One could clearly continue this analysis. For instance. 

one could examine the effective interaction offour gravitons. 
By extracting the appropriate coefficient. one could repre
sent l/G as an integral over the four-point function 
(T* [T!-,v(z) T"p(Y) T"T(X) T'I"'(O)]). General coordinate in
variance guarantees an infinite hierarchy of identities. 
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The production of gravitational waves is explored, both analytically and numerically, using a null 
cone formulation of axially symmetric gravitational and matter fields. The coupled field 
equations are written in an integral form, on a single conformally compactified patch, which is 
well suited for numerical computation. Some analytic and numerical solutions of the initial value 
problem are given. The total mass and radiation flux is studied in detail for a special class of 
collapsing dust configurations. 

PACS numbers: 04.30. + x, 02.40. + m 

I. INTRODUCTION 

Recent experimental progress in the search for gravita
tional radiation has been enormously exciting. The beautiful 
results obtained from the binary pulsar PSRI913 + 16 firm
ly establish the existence of gravitational radiation reaction 
and quantitatively confirm the detailed predictions of gen
eral relativity. I During the past decade, the energy sensitiv
ity of resonant Weber-bar gravitational wave receivers has 
improved by a factor of a million. While similar improve
ments in performance may still be needed for direct observa
tion of radiation from natural astronomical sources, there is 
no shortage of promising new techniques and dedicated ex
perimentalists willing to work toward achieving the goal. 2 

Recently, prototypes of broad-band laser interferometric re
ceivers have shown such promise of delivering detailed 
waveform information that serious consideration is being 
given to their use in creating a new astronomical window 
during the 1 990s. 3 

Strong pulsed gravitational wave bursts, which are like
ly to be detected first, can only be emitted from astronomical 
objects with intense gravitational fields and large internal 
velocities. Prediction of the pulse structure from these 
sources demands solution to the coupled nonlinear equa
tions of relativistic gravitation and of hydrodynamics and 
extraction of the elusive part representing gravitational radi
ation. Although theorists have been working on this formi
dable problem since 1918, it has now taken on renewed im
portance with the prospect of experimental data for 
comparison in the near future. 

Most theoretical studies of this problem over the past 50 
years can be grouped into three distinct approaches: pertur
bation methods,4 asymptotic analysis of space-time,5-9 and 
numerical solution via large-scale computers. 10 Perturba
tion methods have provided detailed formal estimates ofra
diation for a wide variety of processes, but questions of con
vergence obscure their application to describe realistic 
astronomical situations. Asymptotic techniques provide the 
only rigorous way to characterize radiation. However, they 
are generally unable to supply any link between sources and 
emerging waves. Computer techniques offer great promise 

alSupported in part by the NSF Grant PHY·800823. 

for the future. So far, however, they have been applied to 
evolving Cauchy data for the motion of matter within a finite 
size box centered within a space-time. The numerical esti
mates of radiation made in this region are, at present, heuris
tic and without error bounds or basis for systematic im
provement. Nevertheless, numerical and perturbative re
sults are often in good qualitative and even quantitative 
agreement despite extrapolations beyond the expected 
realms of validity of the schemes used. 

The purpose of this paper is to describe an approach to 
calculating radiation which is conceptually clear and well 
founded and which leads to surprisingly simple and numeri
cally accurate techniques. The key ingredients of this pro
gram combine numerical and asymptotic methods. These 
include: (1) formulation of the problem in terms of the evolu
tion of axisymmetric data specified on an initial null cone; (2) 
using conformal techniques to map the entire null hypersur
face into a finite coordinate patch with one edge representing 
null infinity; (3) use of the field equations to find the rate of 
change of the data out of the initial hypersurface; and (4) 
direct computation of total energy and radiation flux from 
the fields found at null infinity. The difficult problem of 
combining the gravitational evolution with the matter hy
drodynamics is left for the future and will not be attempted 
here. (This task is somewhat of a "black art" requiring highly 
specialized techniques of its own. II) 

In Sec. II, the mathematical formulation of the charac
teristic initial value problem is discussed. Previous results 
for vacuums are extended to space-time with perfect fluids. 
In comparison to the usual Cauchy problem, 12 the proce
dure is enormously simplified. From the initial density, ve
locity, and one metric component (in the axisymmetric case), 
the full metric as well as the time derivatives of the matter 
and field variables are constructed sequentially from a mi
raculous hierarchy of explicit equations. At each stage, these 
formulae only involve differentiation and integration of 
known data (initial data or fields found at earlier steps), and 
are well suited to economical numerical evaluation. 

Section III describes the asymptotic behavior of the 
gravitational field at large distance from matter. The power
ful method oflinkage integralsR

•
I
] is used to find the system's 

energy and radiation flux at null infinity. 
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Section IV applies these tools to initial data correspond
ing to anisotropic dust models with vanishing gravitational 
shear. Exact analytic solutions to the field equations on the 
initial hypersurface are obtained. Radiation flux, total ener
gy, and Newtonian comparisons are discussed. 

Section V describes the numerical techniques used to 
solve the field equations. These are tested against the models 
of Sec. IV, and their accuracy is ascertained. Numerical 
models for dust distributions are explored in cases too com
plicated for analytic treatment. 

II. NULL CONE EVOLUTION 

Our prime assumption is the existence of a timelike geo
desic whose points have future null cones which extend to 
null infinity without caustics or crossovers. For our purpose, 
the study of gravitational radiation, it is not essential that 
this timelike geodesic be complete. A geodesic segment will 
suffice. Thus the formation of an event horizon is not ex
cluded, but our investigation would be restricted to the exte
rior asymptotically flat region. However, as later examples 
will illustrate, our treatment can extend to the interior of a 
particle horizon. Although our assumption encompasses a 
wide class of interesting astrophysical systems, it notably 
does not apply to a system such as two extremely separated 
stars, in a scattering state. In this case all null cones would 
undergo focussing. Thus, while we allow the existence of 
strong gravitational fields, we do rule out systems with 
"large quadrupole moments." 

We use this timelike geodesic as the origin of a null 
coordinate system. In the presence of a hypersurface-orthog
onal axisymmetry, the construction proceeds along the lines 
of Ref. 5, except that boundary conditions are imposed at the 
origin rather than null infinity. As a retarded time coordi
nate for the outgoing null cones, we take the proper time 
X

O = u along the timelike geodesic. A luminosity distance is 
chosen as the radial coordinate Xl = r, so that surfaces of 
constant u and r have area 41T,-2. Two ray labels ~ (A = 2,3), 
which are constant along the outgoing null geodesics, com
plete the coordinate system. The line element then takes the 
form 

ds2 = (Vr- 2e21J - U 2,-2e2Y ) du2 + 2e21J du dr 
+ 2U,-2e2y du d(} - ,-2(e2Y d(} 2 
+ e - 2y sin2(} d</J 2), (2.1) 

wherewechoose~ = ((},</J). For boundary conditions at the 
origin, we require that t = u + r, x = r sin (} cos </J, y = r sin
(} sin </J, and z = r cos (} define a smooth, local Fermi coordi

nate system, in which the metric takes the Minkowski form 
at r = O. This requires V = r + 0 (r), /3 = 0 (,-2), U = 0 (r), 
and y = 0 (,-2). In addition, smoothness of the axis requires 
that U /sin (} and y/sin2(} be continuous at (} equal 0 and 1T. 

As matter source, we consider an ideal fluid described 
by T!-'v = (p + p)w!-,wv - pg!-'v' with 4-velocity normalized 
by wi-' w!-' = 1. Axisymmetry implies W3 = O. The matter var
iables must also satisfy smoothness conditions at the origin, 
in the above Fermi coordinate system. In particular, in our 
null polar coordinates, this requires WI = D 
- E cos (} + 0 (r) and W 2 = Er sin (} + 0 (,-2), with 

D 2 - E 2 = 1. E vanishes for a matter flow with reflection 
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symmetry about the equatorial plane. Also, for smoothness 
of the axis, w2/sin (} must be continuous. 

In order to simplify the analysis of the characteristic 
initial value problem consider the tensor field 
H!-'v=G!-'v + 81TT!-'v' (We use unit G = c = 1.) Einstein's 
equation, H!-'v = 0, implies the following: 

hypersurface equations, H Iv = 0, 

gravitational evolution equations, 

HAB - ~gAB gCD HCD = 0, 

matter evolution equations, 

(2.2) 

(2.3) 

H!-,v; v=81TT!-, v; v =0. (2.4) 
We now establish that the converse is also true. The proof 
follows from writing out the matter evolution equations in 
the form 

H!-, v;v = (_g)-II2[( _g)II2H!-, vL + !g"IJ,!-,HalJ 

and then dropping terms which vanish because of the hyper
surface and gravitational evolution equations. For J.L = 1, 
this givesgCD HCD = O. For J.L =A, it gives (,-2HAO ), I = 0, 
from which H A 0 = 0 follows by smoothness at the origin. In 
the same way, for J.L = 0, we obtain H 00 = O. Thus the hyper
surface and evolution equations are equivalent to Einstein's 
equation. Note that this proof depends neither on the axi
symmetry nor the ideal fluid model assumed in this paper. 

The hypersurface equations are constraints which are 
intrinsic to each null hypersurface of constant u, i.e., no u 
derivatives appear. In terms of the Ricci tensor, they take the 
form 

RII = - 81TTII = - 81T(p + P)WIW I, (2.5a) 

RI2 = - 81TT12 = - 81T(p + P)W IW2, (2.5b) 

gAB RAB = 81T(T - gAB TAB) 

= 81T[p - P + r- 2(p + p)e- 2y (w2n (2.5c) 

where, in terms of metric variables, 

- ! rR II = /3, I - ! r(y, .)2, (2.6a) 

- 2,-2R 12 = [r4e2(Y-IJ) U, III - 2,-2[,-2(r- 2/3), 12 

- sin -2 (} (sin2 (}y), 12 + 2y, IY, 2]' (2.6b) 

- ,-2 e21J gAB R AB 

= 2 v: I + ! r4e2
(Y -IJ) (U, .)2 - (,-2 sin (} )-I(sin (} r4 U), 12 

+ 2e2( IJ - y) [ - 1 + (sin (} )-I(sin (}/3, 2), 2 - Y,22 

- 3Y,2 cot (} + ( /3, 2)2 + 2y, 2(y, 2 - /3, 2)]' (2.6c) 

Given an equation of state p( p), the unconstrained initial 
data consists of the matter variablesp, WI' W2' and the single 
metric variable y, which determines the metric gAB intrinsic 
to the surfaces of constant u and r. From this data, the re
maining metric variables /3, U, and V follow by solving the 
hypersurface equations. This task is enormously simplified 
since these potentially coupled partial differential equations 
actually form a hierarchy of purely radial ordinary differen
tial equations, which may be solved by simple quadrature! 
The boundary conditions at the origin require that all inte
gration constants vanish. Once the metric is found, the re
maining matter variable Wo is determined by normalization. 
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The gravitational evolution equations then determine 
the time derivative of the metric data r, from information 
totally within the hypersurface. Because of axial symmetry, 
these equations contain only the one independent condition 

R22 - e4r R33/sin2 0 + 817'( P + p)(W2)2 = 0, 

which gives 

4r(ry),OI = [2ry, 1 V - r(2r.2U + U. 2 - U cot 0)], 1 
- 2r(sin O)-I(r.1Usin 0).2 +! r4e2Ir-f3IW i 
+ 2e2

( f3 - rl [( /3. 2)2 + /3. 22 - /3. 2 cot 0 

+ 41T(p + p)(wzn (2.7) 
The matter evolution equations determine the time deriva
tives ofp, WI' and W 2. By forming appropriate linear combi
nations they may also be cast into a simple hierarchy. To 
accomplish this, introduce null vectors ka =u.a and 
la =2wa - (kf3 wf3)-lku ' To fixp.o we use 

0= Taf3;f3la 

= (p _pl;awa + (0w;.)-IP;aku 

+ (p + p)[wa;a - (0 W;. )-IWa;f3ku wf3]. 

The only time derivatives which survive arise from the first 
term, giving 

0= (1 - Vs 2)P.awa - (Wl)-lp.l + (p + P)[W l. l 
+ W 2

,2 + 2( /3,1 + r-l)w l + (2/3. 2 + cot 0 )w2 

- (Wl)-I(WI. lWI + W1,2Wz + ! g af3. lWaWf3)]' (2.8) 

where Vs =(JpIJp)1/2 is the speed of sound. Next wl,o maybe 
found by projecting along wa 

0= Taf3;f3wa =(p+p)WU;u +P;awa. 

This may be put into the form 

0= wl,o + r-l(re2f3 WI), 1 + (sin 0 )-1 

X (sin Oe2f3 wZ),2 + (p + p)-le2f3P,awa, (2.9) 

Finally, w2 ,o may be found by using this condition to obtain 

O=(oa' +l'wa)T,f3;f3 
= (p +p)w f3 [wa;f3 - (0W;.)-IW,; f3 k'wa] 

+ (0w;.)-IP;f3 kf3wa -P;a' 
This gives wz.o in terms ofw1• o from 

0= w[1 wz].f3 wf3 + ! w[1 ~f3 ,2] Wu Wf3 - (p + p)-IW[1P.2]' 
(2,10) 

In summary, given r, p, WI' and W2 on the initial hypersur
face and an equation of state, we may determine /3, U, V, and 
Wo within this surface and then compute r.o,p.o, w I • O' and 
w2• 0 ' thus determining the evolution to the next hypersur
face. This entire process only involves differentiation and 
radial integration of known functions within the hypersur
face. 

III. ASYMPTOTIC PROPERTIES 

According to the scheme of Sec. II, the asymptotic be
havior of the initial data determines all asymptotic proper
ties. In order that the resulting space-time be asymptotically 
flat at future null infinity we require of this data that 
r = K + r-lc + 0 (r-2) and the p be of compact support. 
The shear of a null hypersurface of constant u, which is pro
portional to r. I> then has the minimal r- 2 falloff consistent 
with asymptotic flatness. 
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By integration of the hypersurface equations, the 
asymptotic behavior of the data leads to 

/3 = H - c2/(4r) + 0 (r- 4
), (3.1a) 

U = L + 2eZIH-KI H,21r - [c sin2 Oe2(H-K))'zl 

(r sin2 0) + 0(r- 3
), (3.1b) 

V = r(L sin 0 ). 2/sin 0 + re2
(H - K I 

X [1 + 2(H.2 sin e l.z Isin 0 + 4(H, 2)2 

- 4H. 2K, 2 - 2(K, 2)2 

+ K.22 + 3K,2 cot 0] - 2eZH M + O(r- l ). (3.1c) 

Furthermore, integration of the evolution equation for r 
gives 

r,o = K.o + r-lc,o + 0(r- 2
), 

where 

K. ° = -! e - 2K sin e (e2K L Isin 0 ), 2' 

(3.2) 

(3.3) 

Thus the evolution equations are consistent with the initial 
asymptotic conditions. 

The resulting asymptotic flatness is best exhibited by 
introducing a conformal geometry7 d'S2 = a 2 ds2, with 
a = 1/r. This leads to a smooth manifold with boundary, 
where the boundary I (future null infinity) consists of points 
a = O. Choosing I = 1/r as a new radial coordinate, the line 
element takes the following form at I: 

d-S2 = - L 2e2K du 2 
- 2e2H du dl 

+ 2Le2K du dO - e2K dO 2 _ e - 2K sin2 0 d¢ 2, 
(3.4) 

As required by asymptotic flatness, I is a null hypersurface, 
with null geodesics tangent to nl" = (1 ,O,L,O), in terms of the 
chart xl" = (u,l,O,¢ ). This description of I differs, in two re
spects, from a standard conformal Bondi frame description,8 

in which the line element (3.4) would have vanishing L, H, 
and K. First, the angular coordinates are not constant along 
the null generators of I. This reflects the difference between 
specification oflocal inertial frames at the origin and at infin
ity. In the present treatment, 0 and ¢ are pinned down by 
Fermi propagation at the origin and are not the natural 
Bondi coordinates (e B' ¢ B) for 1. For the same reason, the 
surfaces of constant u do not describe a Bondi slicing of I. 
Second, a is not a Bondi conformal factor, i.e., the intrinsic 
2-geometry of cross sections of I is not that of a unit sphere 
and is not even cross-section-independent. These two fea
tures of the present formalism are unavoidable in a global 
treatment. They lead to no substantial problems as long as 
care is taken to describe asymptotic properties in terms of 
truly physical quantities, which are both coordinate-inde
pendent and a-independent. However, certain technical 
complications do arise, as described below. 

One such set of physical quantities are the linkages, 
which describe the total energy-momentum, supermomen
tum, and angular momentum at a given retarded time. S

•
13 

They are linear representations of the BMS asymptotic sym
metry group, whose generators 51" satisfy, at I, 

a 2:£ {; giN = O. 

Weare particularly interested here in the Bondi energy-mo
mentum associated with BMS translations. At I, these trans-
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lation generators have the form S"" = AnI" . In a standard 
conformal Bondi frame, A must be a linear combination of 
I = 0 and I = 1 spherical harmonics. In the present case, A 
can be determined by finding the transformation from the 
x'"' chart with conformal factor n = I to a standard Bondi 
conformal frame. In this way, we find A = ae - 2H /w, where 
a is a combination of 1= 0 and I = 1 harmonics of the angu
lar variables (8 B,tPB)' with tPB = tP and 

~ e2K (d8-Ldu) 

sin 8 B 
(3.5) 

sin 8 

and where w = eK sin 8 B /sin 8. Notice thatthe integrability 
condition for such a 8 B follows from the relationship (3.3) 
between K.o and L. 

In order to evaluate the Bondi energy-momentum, the 
translation generators must first be extended to a neighbor
hood of I. Although this may be done quite arbitrarily, 13 the 
simplest extension in a null coordinate system is via the null 
hypersurface propagation laws 

[t1,";Vi -! sP;p g'"V]u;v = 0, 

which in the x I' chart reduces to 

so, I = 0, (3.6a) 

SA. I = - e2
{3 gAB SO, B' (3.6b) 

S I = - ~ r[( SA sin 8), A/sin 8 - Us 0. z]. (3.6c) 

These equations uniquely determine S'" in terms of its value 
at I. The component of Bondi energy momentum associated 
with 5'" is then given by 

(3,7) 

where B'"V = u;[1' r;v)/u;ar;a is the normalized bivector or
thogonal to the integration surface. The integral is to be eval
uated, in the limit r_ 00, over a cross section of I with con
stant u. This limit may be calculated using the asymptotic 
expressions (3.1) for the metric variables and the formulae 
(3.6) for the derivatives of S '" . In the final result, all 8 deriva
tives of SO = a(8B )e - 2H /w may be removed by a parts inte
gration. After a straightforward but lengthy calculation, we 
find for the "a component" of energy-momentum: 

P [a] = (l/81T) f aw-1e - 2K (2e2K M - 2c + 3c. z cot 8 

+ e. zz - 4c, z(H + K), z - c[4(H. z)z 

- 8H.zK,z - 4(K,z)z + 2(H + K),22 

+ 6(H + K),z cot 8]) sin 8d8dtP. (3.8) 

In a standard Bondi frame, this reduces to Bondi's original 
expression5 for the total energy E, for which we set a = I, as 
an integral of the mass aspect M [introduced in Eq. (3.1c)], 

E = (41T)-1 f M sin 8 d8 dtP· 

Another asymptotic quantity of physical interest is the 
gravitational flux of energy-momentum to null infinity. This 
may be obtained by applying the divergence theorem to the 
linkage integrals (3.7). However, in order to put the resulting 
expression in a useful form, unwieldly manipulations using 
Einstein's equation would be necessary. It is preferable to 
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begin with a conformal space flux expression in which these 
manipulations have already been carried out. By translating 
the expression given in Ref. 13 back into physical space, we 
obtain for the energy-momentum flux through a region dV 
of! 

F [a] dV = _1_ aeZH w[X,"vXI'V - ~2]r sin 8d8 dtP du, 
321T 

(3.9) 

where X,"v = .Y T gl'v' X = g I'V X,"v' and r-' is a BMS time 
translation with a = 1. This flux expression is to be evaluat
ed in the limit r_ 00 . As in the calculation of P [a], this limit 
may be evaluated using the asymptotic expressions for the 
metric variables (3.1) and (3.2) and Eqs. (3.6) for the BMS 
generator rt, with 7 0 = e - 2H /w. In this way, we obtain 

F[a] dV = (l/161T)(a/w)e - 211 (2e,o + 2e. 2L 

+ cL, 2 + eL cot 8 + e - 2K w sin 8 
X [(e

2H w), z(W
Z sin 8)- T z) 2 

X sin 8 d8 dtP duo (3.10) 

In a standard Bondi frame, the resulting energy flux leads to 
Bondi's original equationS 

dE = _ _ 1_,C (c.o)Z sin 0 dO dtP. 
du 41T j 
An interesting feature, in the case of a highly compact 

matter distribution, is the existence of a particle horizon 
crossing the initial null cone and its concomitant white hole. 
(In the time-reversed version of our model, for which the 
initial cone would extend to past null infinity, this would 
correspond to an event horizon.) A sufficient, although not 
necessary, criterion for such a horizon is the existence, on the 
initial cone, of an r = const surface which is antitrapped, i.e., 
whose two orthogonal sets of future null directions diverge. 
(By construction, the future directed set lying in the initial 
null cone automatically diverges.) In terms of our present 
formalism, this antitrapped surface condition takes the form 

V<r(sinOU),z/sinO, (3.11) 

for some value of r. When this condition is satisfied, a singu
larity must exist somewhere in the past of the initial cone, 
although the geometry ofthe initial cone remains completely 
regular. 

IV. RADIATIVE MODELS WITH SHEAR·FREE DATA 

As a first approach to the general problem outlined in 
the previous sections, we now consider the mathematically 
simplest initial data which leads to the production of gravita
tional waves by matter. For the gravitational data, we set 
y = 0 so that the initial null cone is shear-free. For the mat
ter, we choose pressure-free dust which is initially "at rest" 
in the sense that its 4-velocity w," satisfies WI = 1, W A = O. In 
the Minkowski-space case, this corresponds exactly to a 4-
velocity field, on the initial cone, which is co moving with the 
vertex world line. The initial data then consists entirely of 
the density p, with Minkowski space resulting from the 
choicep = O. 

The gravitational hypersurface and evolution equa
tions, (2.S), and (2.7), now take the simplified integral form 
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P = 21T L pr dr, 

U = 2 i r 
dr r- 4 e2f3 i' S4(S-lp. 2). s ds, 

V = L dr I - 41Tre2f3 p - e2
{3 

X [ - 1 + P, 2 cot e + P,22 + (f3, 2)2] 
- !r4 e - 2f3 ( U, 1)2 + (2 sin e ) - 1 

(4.1) 

(4.2) 

X[r- 2 sin e(r4 U).lllJ, (4.3) 

rr.o = L dr{ e;: [P,22 - P. 2 cot e + (P, 2)2] 

+ re--
2f3 

Wd 2 - sine [(r.U),I] }. (4.4) 
8 4r sm e .2 

Furthermore, the asymptotic quantity K now vanishes so 
that the conformal factor UJ, which determines the transfor
mation to a standard conformal frame, equals 1. The Bondi 
energy and the energy flux then reduce to 

E = (41T)-1§ M sin e de d¢> (4.5) 

and 

F= (41T)-l e -2H[c.o + sin e(e2H H.l/sin e).2]2, (4.6) 

where we have set F[a] dV la ~ 1 = F sin e de d¢> duo It is 
convenient to introduce the relativistic internal energy 
E I = f pwa dVa , which is conserved for a dust model. In 
the present case, E I = f pr sin e dr de d¢> on the initial 
cone. 

Gravitational radiation arises when the density is not 
spherically symmetric. Remarkably, there exists such a den
sity distribution for which the gravitational equations (4.1)
(4.4) can be integrated analytically. This case, described be
low in model A, provides an important check on our numeri
cal program for more complicated distributions. In addition, 
it provides valuable physical insight into the properties of 
Bondi energy and radiation. It turns out that the Newtonian 
binding energy, for the Newtonian analog of this special 
model, cannot be integrated analytically. For this reason, we 
also consider model B, consisting initially of a homogeneous 
spheroid, whose Newtonian binding energy is well known. 
We carry out an expansion, in powers of density, of the gen
eral relativistic model which shows, in the weak field case, 
that its binding energy differs from the Newtonian value, 
except for spherical distributions. 

This feature stems from the physical meaning of shear
free data. 14 In the absence of matter, the shear comprises the 
entire data on the initial null cone, with vanishing shear de
termining Minkowski space. Thus, in the vacuum case, the 
simplest choice of data from a mathematical standpoint
zero shear-leads to the simplest interpretation from a phys
ical standpoint-no incoming radiation. However, in the 
presence of matter, a shear free initial cone no longer corre
sponds to the absence of incoming waves, unless the matter 
distribution on the cone is also spherically symmetric. This 
can be understood by considering a collapsing sphere of dust 
with Schwarzschild exterior. Here gravitational radiation is 
clearly absent but the bending of light by matter introduces 
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shear on a null cone whose vertex is displaced from the cen
ter of symmetry. Resetting this shear to zero is thus equiva
lent to introducing incoming radiation. 

A. An exact model 

We now present the analytic solution of the gravita
tional hypersurface and evolution equations (4.1 )-(4.4) for an 
initial dust distribution described by the thick shell 

{

a, r<R, 
p = k /(81Tr), R<.p;;j" (e )R, 

0, r>A.(e)R. 

Here k is a constant which determines the density scale, and 
A. (e) describes the angular dependence of the outer bound
ary, which breaks spherical symmetry. Thep integral (4.1) 
then becomes 

{

a, r<R, 

P = k (r - R )/4, R<r<A.R, 

kR (A. - 1)/4, r',;?A.R, 

so that H = kR (A. - 1)/4. Note thatp. 12 has o-function be
havior described by the integral 

i
AR' 

fT3, 12 dr = 1 kA., 2RfIAR' 
AR 

for a test function! When this is taken into account, the U 
integral (4.2) gives 

{

a, r<A.R, 

U = 2H (1 1 U 2R 2) 1 - 2e H 2 -- - - + --, r',;?/LR. 
'3A.R r 3r 

In the Vintegral (4.3), theo-function contributions fromp, 22 

and U. 12 exactly cancel. We obtain 

V _ {r, r<R, 
- 2R_4k-l_eklr-RI/2(r_4k-I), R<r<AR, 

and, for r',;?A.R, 

2re
2H 

[ H 0 ] V = 3AR - H,22 - H,2 cot e - 2(H, 2f + ~ 
+ re2H [1 + 2H, 22 + 2H, 2 cot e + 4(H, 2f] - 2e2H M 

2e2H A. 2R 2 [ + H 22 + H 2 cot e - 4(H 2)2 3r " , 

+ ,,2 + ,2 
2H 0] 4e2H A. 4R 4(H f 

A. 3r 

where the mass aspect is given by 

M = AR [1 + H,22 + H,2 cot e + ~(H, 2)2] 
+ A., 2H , 2R + (21 k )(e - 2H - I) - Re - 2H. 

In the r,o integral (4.4) the o-function contributions from 
p, 22 and U. 12 again cancel. For r<AR, we obtain r,o = 0, 
and, for r',;?A.R, 

e
2H 

[ {) 2(H)2 A. 2H 2] r 0 = -- H 22 - H 2 cot u + 2 - -' -'-
, 3AR" 'A. 

C A 2R 2e2H [ + -;:- + 6r H,22 - H,2 cot e + 8(H,2)2 

U, 2H, 2] _ A. 4R 4e2H (H, 2)2 
+ A 2r 
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where 

c. o = -! e2H [H. 22 - H.2 cot B + 3(H. 2f]. 

From these results, we obtain for the Bondi energy (4.5) 
(after a parts integration) 

E = (1/41T) f IAR [1 + ~ (H. 2)2] 

+ e - 2H (2Ik - R) - 21k l sin B dB dqJ, (4.7) 

and, for the energy flux, 

F= (1/161T)e2H [H.22 - H.2 cot B + (H. 2)2j2. (4.8) 

In order to examine the content of these results, let us 
first consider the low density limit k-o. An expansion of the 
Bondi energy integral (4.7) gives 

E = !kR 211T (A 2 - 1) sin B dB 

- ~ k 2R 3 Sa
1T 

[(A - If(A + 2) - A (A. 2)2] 

X sin B dB + 0 (k 3). 

We may compare this with the corresponding Newtonian 
system consisting of dust, initially at rest, satisfying the Pois
son equation V2cp = 41TP (at an initial absolute time). For 
this model, the mass m of the Newtonian system equals the 
relativistic internal energy E I' 

m = f p,z sin B dr dB d¢ 

= A kR 2 IT (A 2 - 1) sin B dB, 

and the Newtonian binding energy equals 
B = ! f pcp,z sin B dr dB d¢. We immediately see that 
E = m + 0 (k 2). Furthermore, for spherically symmetric 
systems, the Newtonian binding energy is easy to compute, 
and we find that 

E = m + B + 0 (k 3). (4.9) 

In the nonspherical case, the Poisson equation cannot be 
integrated to give an analytic expression for the initial New
tonian potential corresponding to our model. (This state-of
affairs is ironic since we have analytically integrated the gen
eral relativistic initial value equations.) In fact, Eq. (4.9) does 
not hold for nonspherical distributions, due to the incoming 
radiation discussed at the beginning of this section. In model 
B we furnish an explicit calculation and further discussion of 
this effect. 

When A does not have equatorial reflection symmetry, 
the system has non vanishing Bondi momentum P = (1/ 
41T) ~ cos B M sin B dB d¢. In the low density limit, this 
Bondi momentum is 0 (k 2), consistent with the "initially-at
rest" condition. At order k 2, this momentum arises from the 
incoming waves. 

In the low density limit, the energy flux (4.8) has the 
dependence 

F= (k 2R 2/2561T)(A. 22 -A.2 cot B f + O(k 3). 

The existence of an 0 (k 2) initial flux is quite distinct from 
what one would expect if there were a simple Newtonian 
correspondence. In that case, the Einstein radiation formula 
would lead only to an 0 (k 4) flux (which, for our model, 
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would initially vanish since, for a Newtonian system initially 
at rest, the quadrupole moment has vanishing third time 
derivative). The existence of this 0 (k 2) outgoing flux is an
other effect arising from the incoming waves associated with 
the shear-free condition on the initial data. Also note that the 
flux vanishes to order k 2 when A is a combination of 1 = 0 
and 1 = 1 harmonics, consistent with the lack of monopole 
and dipole gravitational radiation. However, when A con
tains 1 = I harmonics, an 0 (k 4) flux arises from the (H. 2f 
term in (4.8); but this flux does then have a quadrupole 
(sin4 B) angular distribution. 

In the nonlinear regime, extreme effects arise from rap
id angular behavior. If A has the form 2 + CPt (cos B), then, 
for high I, the (H. 2)2 dominates the Bondi energy (4.7) so that 
E _/2. Similarly, F _/4 so that short-wavelength ripples are 
rapidly smoothed by gravitational radiation. In the high
density limit of any nonspherical distribution the result is 
more drastic: E - k 2 but now e - 2H F - k 4 so that, since 
H - k, the smoothing proceeds at a rate which increases ex
ponentially with k. 

Note that in the high-density limit of a spherical distri
bution the Bondi energy approaches the limiting value AR as 
k--+ 00. This can be understood in reference to the Schwarzs
child radius at r = UR, which is now exterior to the outer 
boundary ofthe shell at r = AR. Thus, in this limit, there are 
antitrapped surfaces so that the spherically symmetric ex
tension of the solution into the past must include part of the 
initial Schwarzschild singularity. The Bondi mass apparent
ly saturates at the valueAR because a particle, which satisfies 
our "at rest" condition, has zero energy (with respect to in
finity) at half the Schwarzschild radius; i.e., wI's!" = 0 at 
r = M where sl' is the static Killing vector. 

The properties of this model, as described above, are 
manifest in Figs. 1 and 2. In addition, these figures reveal a 
linear regime in which the radiation power is proportional to 
k 2 (or k 4 in the exceptional 1 = 1 case), which extends to a 
density at which the Bondi mass differs by roughly 10% 
from the corresponding Newtonian mass. This gives an indi
cation of the range of validity oflinear perturbation calcula
tions. 

B. Homogeneous spheroids 

We now consider the homogeneous density distribution 
p = k 1(81T), for r<,liR, andp = 0, for r>AR. In particular, 
we take A = (1 - £2 sin2 B)-I12, which describes an oblate 
spheroid of eccentricity E. In this case, the Newtonian mass 
m and binding energy B (for the spheroid initially at rest) are 
well known: 

m = 41TpR 3/3(1 _ E2) (4.10) 

and 

B= -(41TpmR 2sin-IE)l5E(I-E2)1/2. (4.11) 

The general relativistic hypersurface integrals (4.1)
(4.3) lead first to 

f3 = {k,z 18, for r<"IiR, 
kA 2 R 2/8, for r>AR 

so thatH = kA 2R 2/8. Heref3. 12 has theo-function behavior 
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FIG. 1. Curves of E / E I vs k for thick dust shells. The surface of each shell 
has shape AI = 2 + aIP,(cos e), with curves corresponding to I = 0,1, ... ,10 
drawn from bottom to top. (a , is chosen to make E Ilk constant.) Note that 
E is positive for all shapes and densities. Large values of k correspond to 
models with particle horizons (white holes). 

Taking this into account, the U integral leads to U = 0, for 
r<) .. R, and 

2 2H (1 1 U
2
R2) 

U = e H, 2 -; - 3AR - 3T ' 
for r">AR, Next, for r<AR, the V integral gives 

V = - rek
?i4 + 2 i r 

dr ek
?i4, 

where the right-hand side involves an integral. 
As in the previous model, the 8-function contributions, 

at r = AR, from U, 12 and [3, 22 combine to cancel in the V 
integral. For r>AR, we obtain 

V I ~R = (re2H [1 - H,22 - H, 2 cot () - 2(H,2f] 
- (4,1 2R 2/r)e2H (H,2)2(1_A 2R 2/3r) 

+ ~(sin ()) -1[sin () (e2H ),2 (3r - 2r /3AR 

+ U 2R 2/3r)12) I~R' 

We now compare, at low density, the general relativistic 
and Newtonian models. From V, we find that the mass as
pect has the expansion 
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FIG. 2. Initial gravitational radiation power vs k for thick dust shells. 
Curves with 1= 1,2, ... ,10 run from bottom to top. Radiation from I = I 
models only becomes significant for large k. 

kA 3R 3 kR 3(,1 2,1 sin (}) 
M=--- + .2 .2 

6 4 sin () 
k 2A 5R 5 k 2A 3R 5(A)2 _ + .2 + a(k3). 

60 24 

This leads to the Bondi energy 

E = ~ (17 d() sin () [A 3 R 3 + 
12 Jo 
_ kA

5

R
5

] +a(k3). 
10 

After carrying out the angular integration, this may be put in 
the form 

E = m - I 41TpmR 2/[5(1 - (02)2])(1 - j ~ + ~ fOb) + a (k 3). 

(4.12) 

The a (k) first term is the mass of the Newtonian model. For 
spherical symmetry (fO = 0), the a (k 2) second term reduces to 
the Newtonian binding energy (4.11), as in our previous 
model. 

In the nonspherical case, the Bondi energy has the small 
fO expansion 

E = m - ~ 1TpmR 2 [ 1 + j ~ + j f04 + a (f06)] + a (k 3) 

while the Newtonian binding energy has the expansion 
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B = - ~ 1TpmR 2 [I + j e2 + Is e4 + 0 (e6
)] • 

We see that the 0 (k 2) term in the Bondi energy equals the 
Newtonian binding energy up to 0 (e2

) and exceeds the New
tonian binding energy at 0 (e4

). This agrees with the physical 
picture presented at the beginning of this section: The shear
free data implies the presence of an incoming gravitational 
wave, with 0 (k ) amplitude at low density. The energy ofthis 
wave makes apositive 0 (k 2) contribution which increases the 
Bondi energy above the Newtonian binding energy. At the 
same time, this also confirms, in the context of a radiation 
space-time, the close correspondence between Bondi energy 
and Newtonian energy, at low density and velocity. Refer
ring to (4.12), in the e-l pancake limit, the wave energy 
dominates and the total 0 (k 2) Bondi energy is positive. The 
balance point, at which E = m + 0 (k 3), occurs at e:::::O.898. 

To examine the prolate spheroidal case, the substitution 
e2_c/(e2 

- I) gives the corresponding expressions for E, 
m, and B. The energy comparisons are completely analogous 
to the oblate results except that the condition for 
E = m + 0 (k 3) is ezO.878. In both the oblate and prolate 
case, a high eccentricity is necessary for the energy of inc om
ing waves to be comparable to the Newtonian binding ener
gy. The lower eccentricity, at the balance point, for the pro
late spheroid is consistent with the interpretation that this 
incoming radiation arises from the shear-free condition. A 
cigar-shaped object has greater focussing power, and would 
therefore normally introduce greater shear, than a disc. 
Thus a stronger incoming wave is necessary, in the cigar 
case, to remove the shear. 

Numerical results for this model are given in the next 
section. 

v. NUMERICAL PROCEDURES AND RESULTS 

In the formulation of a scheme for numerical solution 
to the field equations, we have been guided by Penrose's 
beautiful geometric characterization of radiation in asymp
totically flat space-time. To discuss boundary conditions 
and fields at null infinity, we perform a coordinate transfor
mation which assigns finite coordinate values to points at 
future null infinity. The physical space metric is necessarily 
singular at these points. However, all divergences may be 
collected into an overall conformal factor. The resulting con
formal geometry is regular everywhere and completely char
acterizes the global structure of the asymptotically flat 
space-time. Therefore, it is ideally suited for numerical com
putation. 

For the rest of this section, we will change the previous 
notation and denote the physical space coordinates, metric, 
and matter fields used in earlier sections by writing a tilde 
over the former symbols. We introduce new coordinates 

u = ula, x = r/(a + r), y = - cos e, ¢ = (p, 
where a is an arbitrary constant which may be chosen to set 
the scale of the geometry and O<x < I, - I <y< I. The coor
dinate x serves to compactify the radial direction and maps 
null infinity into the edge of the new coordinate patch at 
x = 1. New metric fields are introduced in the new frame by 

y(u,x, y)=y(u,r,e )/sin2 e, 
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{3 (u,x, y) !J (u,r,e), 

U(u,x,y)=aU(u,r,e )lsin e, 

S(u,x,y)=a[V(u,r,e) - r]lr 

and new matter fields are denoted by 

p(u,x, y)==.a2p(u,r,e), 

p(u,x, y)==.a2p(u,r,e), 

wdu,x, y)=wdu,r,e), 

w2(u,x, y)=w2(u,r,e )I(a sin e). 

The physical and conformal metrics are related by 

ds2 = fl -2 ds2 

with conformal factor 

fl=(r+a)-l =(I-x)la. 

fl vanishes at null infinity as required. The conformal geom
etry has the metric 

ds2 = [(I - x)(1 - x + xS)e2/3 - x 2(1 - y2)U 2f(y)] du 2 

+ 2e2
/3 du dx + 2x2Uf(y) du dy 

- x 2[J(y)dy2/(1 _ y2) + (I _ y2) d¢ 2If(y)], 

wheref(y)-exp[2y( I - y2)]. From the discussion of asymp
totic behavior in Sec. III, it follows that the new matter and 
metric fields are regular everywhere in the conformally com
pactified space-time. 

In order to calculate the value of the metric fields result
ing from the matter distribution, the field-equation hierar
chy of Sec. II is transformed to the new coordinate frame. 
For fixed u, the compactified (x, y)-hypersurface is approxi
mated by a lattice of discrete points (Xi' Yj)' where Xi = if I 
for i = 0,1,2'00',1 andYj = ±jlJ forj = 0,1,2,00.,J. At each 
lattice site, the values of y, {3. U, S, and Y.u are computed by 
numerical integration over x, using a simple rectangular ap
proximation with the integrand evaluated at points (Xk + 112' 

Yj) for k = 0, I ,2,00.,i - 1. The sites are traversed in order of 
increasing Xi so that old values of the integrals may be incre
mented to obtain the new field values. This provides an effi
cient numerical procedure. The values of the total gravita
tional energy and radiation power are readily found by 
numerical integration over y, using the actual field values 
computed at null infinity (x = I). 

The exact thick shell solution of Sec. III A provides an 
independent check on the accuracy of the numerical calcula
tions. The total energy and total radiation flux (power) are, in 
addition to their physical significance, sensitive indicators of 
computational error. For a typical model (with k = 1.6, 
R = ~, A = 2 + 0.49P4( - y) and a numerical grid with di
mensions I = 144 and J = 24) the computed energy is 
0.1996, compared to the exact value 0.2002. The computed 
power is 0.1022, while the exact value is 0.1024. Thus nu
merical computations are in excellent agreement with the 
exact results. 

Figures 3 and 4 are graphs of the numerical calculations 
of energy and radiation power for the oblate spheroidal mod
e!s ~f Sec. III B. The results for prolate spheroids are quite 
slmtlar for the parameter ranges illustrated. Again, as in the 
shell model of Sec. III A, there is a linear regime, in which 
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FIG. 3. E / E I vsk for dust spheroids. Curves of constant eccentricity E" = 0, 
0.3, 0.5, and 0.7 are plotted from bottom to top. (E I /k is constant for all 
spheroids.) Here, curves for E"<O.I would be indistinguishable from the 
E" = a curve. 

the power is proportional to k 2, which extends to a density at 
which (El-E)/El :::::;0.1. 

Figure 5-11 illustrate the fields associated with a dum
bell-shaped dust distribution. The dust configuration is giv
en by 

_ kr [ (r - ro)2 (abS(COS e) - 1)2} p--exp - -- - . 
81T O'r O'y 

This gives two regions of dust, separated by a distance 2ro in 
the axial direction. For the case in the illustrations, ro = 1, 
the density parameter k = 2, and the widths of the Gaus
sians O'r and O'y are 0.5 and 0.35, respectively. All of the 
figures are graphed in the compactified coordinates defined 
earlier in this section, and each shows a metric field in rede
fined (untilded) form. We again adopt the shear-free and "at 
rest" conditions. 

Figure 5 shows the density distribution itself. Figures 
6-8 show the metric components f3 through S, calculated by 
numerical integration of the hypersurface equations. Figure 
9 shows the u derivative of y, calculated from the evolution 
equation. 

Figure 10 gives the flux F as a function of the y-coordi
nates. This is in its original (tilded) form, as given in Sec. IV. 
Note that the flux distribution is four-lobed. The inner, larg
er lobes are produced by they derivative of H, while the outer 
lobes are contributed by the u derivative of y. 
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FIG. 4. Gravitation radiation power vs k from dust spheroids. Curves with 
E" = 0.1, 0.3, 0.5, and 0.7 are drawn from bottom to top. 

The final figure shows the sign of the trapped surface 
condition given at the end of Sec. III. The upper plateaus 
represent regions where both of the two orthogonal (to an 

FIG. 5. The dust density distribution for a pair of blobs on the symmetry 
axis. The density formula is given in the text. For this and the following 3D 
plots, the origin lies along the x = 0 edge, and I along the x = I edge. The 
angles from a to 1T are spanned by y ranging from - 1 to 1. 
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FI G. 6. Plot of the metricfunction /3 resulting from the density distribution 
of Fig. 5. 

r = const surface) sets of null directions diverge. Were these 
plateaus to form a complete band at some constant x(r), an 
antitrapped surface would exist. In the case shown, this con
dition for an anti trapped surface is not fully satisfied. The 
internal energy cannot be computed analytically, but nu
merical integration gives E / E I = 1.29 for this case. 

VI. OUTLOOK FOR THE FUTURE 

The analytic and numerical results, obtained in our ex
ploration of initial data corresponding to shear-free dust "at 
rest," constitute only the first step toward realistic dynami
cal models of radiating sources. Weare currently modifying 
our computer codes to incorporate the effects of shear, pres-

FIG. 7. Plot of the metric function U resulting from the density distribution 
of Fig. 5. This is the untilded U, as defined in Sec. V. 
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FI G. 8. Plot of the metric function S resulting from the density distribution 
of Fig. 5. This is the untilded S, which plays the role of V. 

FIG. 9. Plot of the u derivative of y resulting from the dust distribution of 
Fig. 5. Y itself is taken to be zero for this model. This is the untilded Y.u, as 
defined in Sec. V. 
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FIG, 10. Plot of the flux F, produced by the dust distribution of Fig. 5, vs the 
angular coordinate y. Note that the distribution is four-lobed, 
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FIG. 11. This plot shows the sign of the trapped surface condition. as de
scribed in the text. for the dust distribution of Fig. 5. 

sure, and velocity. An analytic integration of the initial value 
equations, for a model which includes any of these additional 
effects, would provide an extremely valuable check. 

Some important conceptual problems remain in the 
physical interpretation of the data for the characteristic ini
tial value problem. The low-density limit of our exact models 
has a consistent semi-Newtonian interpretation as an incom
ing gravitational wave superimposed upon a dust configura
tion. Work is proceeding on examining these results in the 
general context of a rigorous Newtonian limit, 15 in which 
c_ 00. This should identify the appropriate conditions on 
the initial shear which rule out incoming radiation in the 
weak field case. The presence of some admixture of incoming 
radiation seems unavoidable in the strong field case. First, 
the characteristic initial value problem, set on an outgoing 
null hypersurface, has no unique evolution into the past un
less the history of the news function, at future null infinity, is 
specified. Second, even if this history were known, it would 
be unfeasible, using existing techniques, to determine the 
radiation fields at past null infinity. Third, any local crite
rion to exclude incoming waves would be obscured, from a 
physical standpoint, by the backscattering of prior outgoing 
radiation, which normally occurs in the strong field case. 

We feel that this subtle physical issue poses the most 
important problem in the theoretical analysis of gravita-
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tional radiation from a specific astrophysical source. It is a 
problem common to both the characteristic and spacelike 
approaches. As research progresses, "computer experi
ments," which evolve an initially weak field system into the 
strong field regime, should provide physical intuition to help 
formulate a theoretical resolution. 
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The nonsymmetric Kaluza-Klein theory 
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This paper is devoted to a five-dimensional unification of Moffat's theory of gravitation and 
electromagnetism. We found "interference effects" between gravitational and electromagnetic 
fields which appear to be due to the skew-symmetric part of the metric of Moffat's theory. Our 
unification called the nonsymmetric Kaluza-Klein theory becomes the classical Kaluza-Klein 
theory if the skew-symmetric part of the metric is zero. The possible generalization to an arbitrary 
gauge group is discussed. 

PACS numbers: 04.50. + h 

INTRODUCTION 

The aim of this paper is to find the Kaluza-Klein ana
log for Moffat's theory of gravitation. 1-3 In other words, it 
will be a five-dimensional unification of Moffat's theory and 
classical Maxwell electromagnetism. Our unification, called 
nonsymmetric Kaluza-Klein theory, is analogous to the re
lation between Moffat's theory and general relativity. The 
diagram (Fig. I) places our unification among the above
mentioned theories. 

Roughly speaking, in general relativity, mass curves 
space-time. In Moffat's theory, mass and fermion charge 
(fermion number) curve and twist space-time. In the classi
cal Kaluza-Klein theory, mass curves space-time, and elec
tric charge curves the fifth dimension. In the nonsymmetric 
Kaluza-Klein theory, mass and fermion number curve and 
twist space-time, and electric charge curve and twists the 
fifth dimension. 

Moffat's theory of gravitation is based on three funda
mental geometrical quantities: two connections r py and 

Wpy and the nonsymmetric metric g a{3' This nonsymmetric 
metric is equivalent to the existence of two geometrical ob
jects defined on space-time: the symmetric metric tensor 

g = gla{31 1r ® (j3 

and the two-form 

8: = gl/.lv] eJ' A ev
• 

In the general theory of relativity we have only one connec
tion with vanishing torsion and a symmetric metric on 
space-time. Thus we have only rand g. Of course, in Mof
fat's theory connection rand Ware interrelated and have 
non vanishing torsion. 

The classical Kaluza-Klein approach and its general
ization to nonabelian gauge groups (see Ref. 4-8) was based 
on the following ideas. 

On the space-time we have Riemannian geometry 
based on the metric tensor 8:, and we have general relativity 
with the local coordinate invariance principle. Simulta
neously, we have a principal fiber bundle over space-time 

skew symmetric part of the metric,torsion 

the 

fifth dimension 

elec ric charge 

fermion current 

(fermion number) 

skew symmetric part of the metric, 
torsion in the fifth dimension 

fermion number 

(fermion current) 

-) On leave of absence from the Institute of Philosophy and Sociology of 
Polish Academy of Sciences, 00-330 Warsaw Nowy Swiat 72, Poland. 

Curvature and torsion in 

the fi th dimension 

elec ric charge 

FIG. I. The position of the 
non symmetric Kaluza
Klein theory among general 
relativity, nonsymmetric the
ory of gravitaiton, and the 
classical Kaluza-Klein the
ory: G.R.T. = general the
ory of relativity; 
N.G.T. = nonsymmetric 
theory of gravitation (Mof
fat's theory; real version); 
K.K. = Klein-Kaluza the
ory; N.K.K. = nonsymme
tric Kaluza-Klein theory. 
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with the structural group U( 1) (in some generalization an 
arbitrary nonabelian group G). The connection on this bun
dle describes the electromagnetic field (or in the case of an 
arbitrary gauge group Yang-Mills field-gauge field). We 
have also the local gauge invariance principle for the electro
magnetic field (or the Yang-Mills field). 

The local coordinate invariance principle and the local 
gauge invariance principle seem to be two major concepts of 
physics. The Kaluza-Klein theory unifies these two con
cepts and reduces them to the first, the local coordinate in
variance principle, but in a more than four-dimensional 
world. In the electromagnetic case we deal with a five-di
mensional manifold [in general with (n + 4)-dimensional for 
an arbitrary gauge group, where n = dim G]. 

The basic idea is very simple. On the gauge group we 
have bi-invariant symmetric tensors (for example, the Car
tan-Killing tensor). This tensor plays the role of a metric in 
the Lie algera of the gauge group G (normally it is supposed 
that Gis semisimple). In the five-dimensional (electromag
netic) case we have as this tensor the number ( - 1). 

On the fiber bundle we have the natural distribution of 
horizontal spaces induced by the connection. 

On space-time acts the metric tensor g. 
We can divide every tangent vector to the fiber bundle 

in only one way (the connection is established) into two 
parts-horizontal and vertical. The horizontal part we can 
project onto space-time, and the vertical one, due to the 
connection, onto the Lie algebra of the gauge group. Thus we 
have natural (symmetric) metrization of the fiber bundle. We 
can "measure" independently the length of both parts by 
two (symmetric) metric tensors and after this add these two 
results. This construction was first introduced by Traut
man.9 Having the principal fiber bundle metrized in a natu
ral way (the metric tensor is bi-invariant with respect to the 
gauge group action on the bundle), we introduce linear con
nections on the bundle which are compatible in some sense 
with the metric. The simplest solution is to suppose that this 
connection is the Levi-Civita connection. This was done in 
the five-dimensional Kaluza-Klein theory. If we calculate 
the Ricci curvature scalar for this connection, we get a sum 
of the Ricci curvature scalar on space-time and the electro
magnetic Lagrangian. In the nonabelian case [In + 4)-di
mensional] the result will be more complex; we get a sum of 
the Ricci curvature scalar on space-time, the Yang-Mills 
Lagrangian plus cosmological constant, which is 10127 times 
bigger than the upper limit from observational data. This 
makes us change geometry on the metrized fiber bundle, and 
abandon the Levi-Civita (Riemannian) connection. We must 
employ the connection with torsion. This was done in a natu
ral geometrical way in Ref. 10. The cosmological constant 
vanishes (it is almost zero from observational data). 

In the light of the new observational data concerning 
the quadrupole moment of mass for the sun (see Ref. 11), it 
seems that the general theory of relativity is unable to ex
plain the perihelion movement of Mercury and Icarus. 

Moffat's theory can explain the observational data (see 
Refs. 12 and 13). Moffat's theory due to using fermion cur
rent (fermion number F = B - L, where B is barion charge 
and L is lepton charge) as second gravitational charge (the 
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first is the mass) seems to be closer to the elementary particle 
theory than general relativity. 

Thus it would be natural and important because of 
further investigations to find the Kaluza-Klein analog for 
Moffat's theory. 

This theory-the nonsymmetric Kaluza-Klein the
ory-unifies the coordinate invariance principle from Mof
fat's theory and the local gauge in variance principle. 

Following ideas concerning the geometry of the Ka
luza-Klein theory described above, it is necessary to find the 
natural nonsymmetric metrization of the fiber bundle over 
space-time. The existence of a nonsymmetric metric on the 
fiber bundle is equivalent to the existence of two bi-invariant 
geometrical objects: y and t. The first y is a symmetric bi
invariant tensor, and the second tis a bi-invariant 2-form on 
the fiber bundle. The first is constructed and used in the 
classical Kaluza-Klein theory (natural symmetric metriza
tion). It is necessary to construct the second one. 

Following the basic idea of the previous construction, it 
is necessary to choose a bi-invariant skew-symmetric form 
on the gauge group G. We have a natural skew-symmetric 
form defined on the Lie algebra of G. It is the commutator. 
This form has values in the Lie algebra of the group. But the 
inner product of this form and the vector 
C = habTr[(Xa )2]Xb (trace is with respect to the space of the 
generator representation and inner product is defined by the 
Killing-Cartan form) is a number. If the representation is 
real, we got what we were looking for. The form is bi-invar
iant with respect to the group action. This form is often zero. 
For example, it is zero for Uri) and all abelian groups. 

Now following the idea of the symmetric metrization of 
the fiber bundle, we can build t from £ and this form. If the 
form is zero, t = 1T.( £), where 1T. is a pullback of 1T (the 
natural projection on the fiber bundle). 

In this paper we deal with the simplest case, the electro
magnetic one. The general case will be done elsewhere. 

But in this very simple case we got interesting results. 
The nonsymmetric Kaluza-Klein theory seems to be a real 
unified theory of electromagnetic and gravitational fields. It 
not only reduces two major principles of invariance to the 
local coordinate in variance principle, but it provides new 
effects, which are absent in the classical Kaluza-Klein the
ory. These effects are also absent in Moffat's theory of gravi
tation and in Maxwell's electromagnetism. Thus they are 
some "interference effects" between gravitational and elec
tromagnetic fields. They are following: 

( I) the new term in the electromagnetic Lagrangian, 

(1/41T)( g[ /LV] F/LV )2; 

(2) the existence of an electromagnetic polarization of 
the vacuum M af3 ; 
(3) the additional term for the Lorentz force term in the 
equation of motion for a test particle, 

(glmo)g[ra ] H rf3 r.P, 

where g is a charge of test particle and mo its rest mass; 
(4) the new energy-momentum tensor em T/Lv for an 
electromagnetic field with zero trace; 
(5) the source for the electromagnetic field-the con-
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served currentja. 
All of these effects vanish if the metric of space-time 

becomes symmetric. In this case we get the classical Kaluza
Klein theory. 

The paper is organized as follows. In the first section we 
introduce the notations and definitions of all geometrical 
quantities which we use throughout the paper. In the second 
section we define the natural nonsymmetric metrization of 
the principal fiber bundle. In the third section we formulate 
the nonsymmetric Kaluza-Klein theory. We calculate con
nections wA Band WA 

B on the five-dimensional manifold, 
which are analogous to connections wp and Wp from Mof
fat's theory of gravitation. In Sec. 4 we write the geodetic 
equation on P (non symmetrically metrized electromagnetic 
bundle), and -we find a new correction to the Lorentz force 
term. We calculate the 2-form of torsion and the 2-form of 
curvature for the connection wA 

B' After this we write the 
curvature tensor for wA 

B and its contraction and the Mof
fat-Ricci tensor. Using obtained results, we calculate the 
Moffat-Ricci tensor and the Moffat-Ricci curvature scalar 
for the connection WA 

B' 

In Sec. 5 we define the Palatini variational principle for 
the Moffat-Ricci curvature scalar R (W). We get field equa
tions for gravitational and electromagnetic fields. We dis
cuss and interpret our results and point out all differences 
between the classical and the nonsymmetric Kaluza-Klein 
theory. We write down all "interference effects" between 
gravitational and electromagnetic fields which appear in our 
theory. In Sec. 6 we discuss some numerical predictions of 
the theory with a comparison to observational data. In Sec. 7 
we deal in detail with an equation of motion for a test parti
cle. 

1. ELEMENTS OF GEOMETRY 

In this section we introduce the notation and define 
geometric quantities used in the paper. We use a smooth 
principal fiber bundle P, which includes in its definition the 
following list of differe~tiable manifolds and smooth maps: a 
total (bundle space~; a base E (in our case it is a space-time); 
a projection 1T: P·-~E; a map $: p X G-+~ defining the action 
of G on ~; if a,bEG and EEG is the unit element, then 
$ (a)O$ (b) = $ (ba) and $ (E) = id and $ (a)p = $ (p,a); 
moreover, 1TO $ (a) = 1T. W is a I-form of a connection on ~ 
with values in the Lie algebra of the group G. Let $ 'ta) be the 
tangent map to $ (a) where $ *(a) iscontragredient to $ (a) at 
the point a. The form w is a form of ad type, i.e., 

$ *(a)w = ad~ IW, (1.1) 

ad~ I is the tangent map to the internal automorphism of the 
group G 

adQ(b)=aba- ' . 

Due to the form w we can introduce the distribution field of 
linearelementsHr~, whereHr C Tr(~)isasubspaceofthe 
space tangent to ~ at a point rand 

uEHr¢,>w(u) = O. 

we have 
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(1.2) 

(1.3) 

where Hr is called a subspace of horizontal vectors and Vr of 
vertical vectors. For vertical vectors UE Vr we have 1T'(U) = O. 
This means that v is tangent to fibers. Let us define 

v = hor(u) + ver(u), hor(v)EHr' ver(v)EVr . (1.4) 

It is well known that the distribution Hr is equivalent to a 
choice of the connection w. We use the operation "hor" for 
forms, i.e., 

(hor f3 )(X, Y) = f3 (hor X,hor Y), (1.5) 

where X, YETr (~). The 2-form of curvature of the connection 
w is 

{J = hordw. (1.6) 

It is also a form of ad type like w. {J obeys the structural 
Cartan's equation 

{J = dw + Hw,w], (1.7) 

where 

[w,w](X,Y) = [w(X),w(Y)]. 

Bianchi's identity for {J is 

hord{J = O. (1.8) 

For the principal fiber bundle we use the following conven
ient scheme (Fig. 2). The map e:U-+~, ueE, so that 
e01T = id is called a local section. From the physical point of 
view it means choosing the gauge. Thus 

e*w = e*(wQ X ) = AQ ()I.l X a I-l a' 

e*{J = e*({JQ X ) = 1 FQ 0 J.lI\O vX 
a 2 fLV a' 

Further we introduce a notation 

{JQ = !HQ J.lV (}I' 1\ ev, 

where (}I' = 1T*(OJ.l) and 

F:v = aJ.lA Qv - avA: + C~cA!A ~,xQ' 
a = 1,2,. .. dim G = n, 

are generators of the Lie algebra of the group G and 

[Xa,xb] = C' abXc' 

(1.9) 

(1.10) 

In this paper we use also a linear connection on manifolds ~ 
and E using the formalism of differential forms. So the basic 
quantity is a I-form of connection wAn. The 2-form of curva
ture is the following: 

{JA B = dwA 
B + wA 

C 1\ WeB 

and the 2-form of torsion 

(LlI) 

(1.12) 

where ~ are basic forms and D means the exterior covariant 
derivative with respect to w1. The following relations define 
the interrelation between our symbols and generally used 

p 

,V I 
I I 
I I 
I I 

1T: I 
I 

I I 
I I 

fer ~ I , I : , 
E ~ 

W 

[; 
V 

G 

FIG. 2. Principal fiber bun
dleP. 
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ones: 

wA B = r A BC OC , 

fr =! ~ BC en 1\ OC , (1.13) 

flA B = ! RA BCD OC 1\ ~ , 

where r A BC are coefficients of the connection (they do not 
have to be symmetric in indices Band C), R ABCD is a tensor of 
curvature and Q ABC is a tensor of torsion. Covariant exterior 
differentiation with respect to wA 

B is given by the formulas 

DBA = dBA + wA 
C 1\2, 

(1.14) 
D~A B = d~A B + wA 

C I\~c B - WC
B I\~AC' 

The forms of curvature fl AB and torsion fr obey Bianchi's 
identities 

DflA B = 0, 
(US) 

Dfr = fl AB 1\ en . 
In the paper we use also Einstein's + and - differentia
tions for the nonsymmetric metric tensor gAB: 

(1.16) 

where D is the covariant exterior derivative with respect to 
wA B and ~ BC is the tensor of torsion for wA B' In a holono
mic system of coordinates we easily get 

DgA + B ~ = gA + B ~ ;cO C 

= (gAB,C - gDBr ~c - gAD r ~B)O C. (1.17) 

All quantities introduced in this section and their precise 
definitions can be found in Refs. 9, 14, IS, and 16. 

2. THE NATURAL NONSYMMETRIC METRIZATION OF A 
BUNDLEP 

Let us introduce the principal fiber b.undle P over the 
space-time E with the structural group G and with the pro
jection 1T. Let us suppose that (E, g) is 'a manifold with non
symmetric metric tensor 

gl'v = g( IlV) + g[ I'V] . (2.1) 

Let us introduce a natural frame on P 

eA = (1T*(8 a), (f' = AWa), A = const. (2.2) 

It is convenient to introduce the following notations. Capital 
Latin indicesA,B,Crun 1,2,3, ... ,n + 4, n = dim G. Lower 
Greek indices a, /3,y,{j = 1,2,3,4 and lower Latin cases 
a,b,c,d = 5,6, ... ,n + 4. The overbar over rr and over other 
quantities indicates that these quantities are defined on E. 

It is easy to see that the existence of the nonsymmetric 
metric on E is equivalent to introducing two independent 
geometrical quantities on E. 

g = ga{3Ba ® 8f3 = g(a{3)Ba ® 8f3, 

£ = ga{3Ba 1\ 8f3 = g[a{3 lBa 1\ 8f3 , 

(2.3) 

(2.4) 

i.e., the symmetric metric tensor g on E and the 2-form g. On 
the group G we can introduce a bi-invariant symmetric ten
sor called the Killing-Cartan tensor: 

h (A,B) = Tr(AdA cAdB ), (2.5) 

where AdA (C) = [A,C]. It is easy to see that 
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h (A,B ) = hab Aa ·Bb , 

where 

hab = CCadCdbc> hab = hba , 

A =Aaxa, B=Baxa. 

(2.6) 

This tensor is distinguished by the group structure, but there 
are, of course, other bi-invariant tensors on G. Normally it is 
supposed that Gis semisimple. It means det(hab ) =1= O. What is 
a natural2-form on G, or a natural skew-symmetric bi-invar
iant tensor? It is easy to see that 

K (A,B) = h [[A,B ],C], C = hab ·Tr[(Xa )2]Xb (2.7) 

has these properties and 

K (A,B) = Kbc Ab .Bc, (2.8) 

where 

Kbc = - K cb ' h abhac = {j~. 
The trace Tr is here understood in the sense of the represen
tation space of generators Xa . If the representation is a real, 
than K is a real too. The tensor K is zero in the two important 
cases: 

( 1) G is abelian; 
(2) 1\ a Tr[(Xa )2] = O. 

Thus K is zero for V( 1). Let us turn to the nonsymmetric 
natural metrization of t Let us suppose that 

y(X,Y) = g(1T'X,1T'Y) + A 2h (w(X),w(Y)), (2.9) 

y(X,Y) = g(1T'X,1T'Y) +,uA 2K (w(X),w(Y)), (2.10) 

,u = const and is dimensionless, X, YEtan(P). The first for
mula (2.9) was introduced by Trautman (see Ref. 9) for the 
symmetric natural metrization of P, and it was used to con
struct the Kaluza-Klein theory for-VI 1) and nonabelian gen
eralizations of this theory. 7.8.10 It is easy to see that 

y = 1T*g + hab (f' ® Ob , (2.11) 

1:. = 1T*£ + ,uKab (f' 1\ ~ , (2.12) 

or 

For 

(
gla{3) I 0) 

YIAB) = 0 hab ' 

(
g[a{3 1 

Y[AB 1 = 0 

YAB = Y(AB) + Y[AB]' 

one easily gets 

(
'ga{3 I 0 'j 

YAB=~' 

(2.13) 

(2.14) 

(2.1S) 

where lab = hab + ,uKab . Tensor Y AB has this simple form in 
the natural frame on P, eA . This frame is unholonomical, 
because 

dO a = y, [HaI'VOI' 1\ ov - (l/A2)C a
bc ObI\OC] =1=0. 

(2.16) 

We also introduce a dual frame 

Y(SA) = YIAB) en . 
We have SA = (Sa ,aa) and 
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(2.18) 

(2.19) 

Thus Y is bi-invariant with respect to the group action on ~ 
(Sa are. of course. fundamental field on ~). In the case with 
Tr(Xa )2 = 0 for every a we have 

(~) Y AB = :-0 I hab . (2.20) 

For the electromagnetic case [G = U(I)] one easily finds 

YAB = ~g~ I _ ~) . (2.21) 

Now let us take a section e:E~P and fit to it a frame v" • 
a = 5.6 •...• n + 4. selecting XI-' ~ const on a fiber in such a 
way that e is given by the condition 

e*v" = O. 

Thus we have 

UJ = (1/ A )v" Xa + 1T*(A ~ () I-')Xa. 

where 

e*UJ = A = Aa I-' ()I-' Xa' 

In this frame the tensor Y takes the form 

_ (ga/3 + A 2labA ~A % A1cbA ~) • 
YAB - Al A c I (2.22) 

ac /3 ab 

where 

lab = hab + f-lkab · 

The nonsymmetric theory of gravitation (see Refs. 1.2, and 
3) uses the nonsymmetric metric gl-'v such that 

/3v _ gv/3 _ 8/3 gl-'vg -gvl-' - 1-" (2.23) 

where the order of indices is important. If G is semisimple 
and Tr(Xa )2 = 0 for every a. 

lab = hab' det(hab)#O 

and 

habhbc = 8~. (2.24) 

Thus one easily finds in this case: 

YACYC = YCAyCB = 8!. (2.25) 

where the order of indices is important. We will have the 
same for the electromagnetic case [G = U (1)]. In general, if 
det(lab)#O, then 

(2.26) 

where the order of indices is important. From (2.15) we have 
(2.25) for the general nonsymmetric metric y. 

3. FORMULATION OF THE NONSYMMETRIC KALUZA
KLEIN THEORY 

Let P be the principal fiber bundle with the structural 
group G = U( 1), over space-time E with a projection 1T, and 
let us define on this bundle a connection a. This bundle we 
call an electromagnetic bundle and a an electromagnetic 
connection. For the electromagnetic bundle ~ we can specify 
all quantities introduced in Sec. 1. We have 

1839 J. Math. Phys., Vol. 24, No.7, July 1983 

.a = da = !1T*(Fl-'v ()I-' /\ ()V), 

where 

FI-'Y = JI-'Av - JyAv, ea = AI-' ()I-' 

and e is a local section of P. AI-' is the 4-potential of the 
electromagnetic field and FI-'v is its strength. Bianchi's iden
tity is the following, 

dfl=O, 

and due to this the 4-potential exists. It is, of course, the first 
Maxwell equation. 

On space-time E we define a nonsymmetric metric ten
sor ga/3 such that 

ga{3 = gla{3) + g[u/31 ' 
(3.1) 

ga{3gy{3 = g{3ag{3y = 8~, 

where the order of indices is important. We define also on E 
two connections (fjU {3 and Wn /3 : 

and 

(fju /3 = P /3y 8r (3.2) 

U)[l -a 2 ~a -W 
n /3=UJ /3-jU/3 ' 

(3.3) 

where 

W = W ()r = l(W" - W" ley r 2 'Y" ·ay· 
For the connection (fjU {3 we suppose the following condi
tions: 

Dga +/3- = Dga/3 - gab es {3y(r) = 0, 

Qa /3a(r) = 0, 

(3.4) 

where D is the exterior covariant derivative with respect to 
(fju {3 and Qa /3Jr ) is the torsion of (fju {3 • 

Thus we have on space-time E all quantities from Mof
fat's theory of gravitation (see Ref. 1,2, and 3). Now let us 
turn to the natural nonsymmetric metrization of the bundle 
t According to Sec. 2. we have 

r = 1T*g - 8 5 ® 8 5 = 1T*( gla{3)fla ® ()i3) - 8 5 ® 8 5
, 

t: = 1T*8. = 1T*( g[a{3]fla /\ ()i3), (3.5) 

where 8 5 = Aa. From the classical Kaluza-Klein theory we 

know thatA. = 2{G!c2 (see Ref. 5). We work with such sys
tem of units that G = c = 1 and A = 2 

(ga{3 I 0, 
YAB = '\ 0 - 1)" (3.6) 

We can introduce on ~ on a dual frame tA = (ta .t5) similar 
as in Sec. 2 for general case. 

Now we define. on P, a connection UJA B such that 

DYA+B_ = DYAB -YADQDBdr)8c =0, 

:f UJAB = 0, 
S5 

where 

UJA B = r A Be 8C 
, 

(3.7) 

D is the exterior covariant derivative with respect to the con-
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nection UJA B [see Eq. (1.16)] and OV BC (F) is the tensor of 
torsion for the connection UJA B' 

After some calculations on finds 

UJA B = (1T'*((ij" p)+ gya H 1'13 () 5 

~p(hyp + 2Fpy)()l' 

where Hpy is a tensor on E such that 

gopgYOHya + gao gOYHpy = 2gao gDYFpy . 

we define on P a second connection 

UJA = (1T'*(ijin 13)+ gyaH yp() 5 Hp~ () 1') • 

B gaP (H 1'13 + 2Fpy)() l' 

(3.8) 

(3.9) 

Thus we have on f all five-dimensional analog of quantities 
from Moffat's theory of gravitation, i.e., 

WA B' UJA B' and r AB . 

4. GEOMETRY OF THE MANIFOLD P 

Let us write an equation for geodesics with respect to 
the connection UJA B on t 

UBVBUA =0, (4.1) 

where UA (1') is a tangent vector to the geodesic line and V 
means covariant derivative with respect to the connection 
UJA B' Using (3.7), one easily finds 

Dif + U5(2rPYF + rPYH + gyaH )U 13 = ° h 5 ~ 5 ~ ~ , 

(4.2) 

where D / d1' means covariant derivative with respect to (JA B 

along a curve to which if (1') is tangent. 
In the classical Kaluza-Klein theory (see Ref. 5), 2Us 

has the interpretation of ( g/mo) for a test particle and the 
system of equations (4.2) has first integral US = const. In our 
case it is possible iff 

H yp = -Hpy . (4.3) 

And finally we get 

D::; +2U5(~YFyp _glaYlHyp)UP=O, 

US = const (2U
S = !J. (4.4) 

Thus we get the Lorentz-force term in the equation of mo
tion for a test particle. This term really differs from the anal
ogous term in the classical Kaluza-Klein theory. But, if the 
metric is symmetric, we get the classical Lorentz-force term. 
Let us turn to calculations of the torsion for UJA B 

EJA (r) = D(JA . 

One easily gets 

Q~y(r) = Qpy(r), 

Q ~y(r) = 2(Fpy - Hpy), 

Q~y(r) = - Q~5(F) = 2(g(aPIHpy _gaPFpy ), 

Q ~y (r) = Q ~5 = 0. 

Let us define a tensor Kpy such that 
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(4.5) 

(4.6) 

Hpy = Fpy + K py . (4.7) 

Now we have 

Q~y(F) = - 2Kpy . (4.8) 

We will find a physical interpretation of this tensor. 

Now we calculate the 2-form of curvature for the con-
nection UJ~ : 

n ~ (F) = dUJ~ + UJAC !\ UJ ~. 

One easily gets, using (4.9), (3.7), and (4.3), 

na 13 = na 13 (F) + VI' ( gya H yp)() I' !\ () 5 

+ [ graHypFl'v - gatJ(2FtJI I' 

-HtJII') -Hvlp]() I'!\()V, 

n~ = [VII' [~p(Hvlp - 2Fvlp )] 

+ ! gaP (Hyp - 2Fyp)Q ;v(F) 1 () I'!\ () v 

+ gtJagYPHtJy(Hl'p + 2Fpl')() s !\ () 1', 

n sp = [VII'HIPIV + !HpyQ;v(F)]() I'!\()V 
+ gtJYHY!'Hdp () I'!\ () 5, 

n ~ = gypHrl I' (Hvlp - 2Fvlp )() I' !\ () v. 

(4.9) 

(4.1Oa) 

(4.1Ob) 

(4.1Oc) 

(4.1Od) 

na 
13 (F) is the 2-form of curvature of the connection(Ja 13 and 

V is the covariant derivative with respect to (ij" p' After some 
calculations, one gets the curvature tensor RA BCD from Eqs. 
(4.10) and a contraction of this tensor: 

ABC(F) = R ABCA (F). (4.11) 

One obtains 
- - 13 tJ 

ApI' (F) = ApI' (F) + 4gY HypFl'a + 2~ HOI'Hap 

+ (gatJ Fao )Hpl' , (4.12) 

A55(F) = goagYPHtJyHap - 2gtJagypHtJyFaP' (4.13) 

where 
ApI' (F) = R a pl'a (F) 

is a contraction of the curvature tensor for the connection 
(Ja p. Now we pass to calculation of Moffat-Ricci tensor (see 
Refs. 1 and 3). 

Rpl' (F) = ApI' (F) + ~(Ra aPI' + R 55131') 
- - 0 tJ 

= Rpl' (F) + 4gy HypFl'a + 2~ HOI'Hap 

+ (~tJFatJ)Hpl' + (gyaHyaFpl" (4.14) 

where 

Rpl' (F) = ApI' (F) + ~ R a aPI' 

is the Moffat-Ricci tensor for the connection (Ja 13: 

Rss(r) = Ass(r) = gtJa gYP HtJyHap 
- 2gtJa gYP HoyFap. (4.15) 

Using (4.14) and (4.15), one easily finds the Moffat-Ricci cur
vature scalar: 

R (F) = yAB RAB (r) = gPI' Rpl' (F) - Rss(r) 

= R (F) + 2( gll'vl Fl'v)2 - Hl'a Fl'a' (4.16) 

where 

R (F) = gPI' Rpl' (F) 

is the Moffat-Ricci curvature scalar for the connection (Ja 13 

and 
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Hl'a = gPI' gra H pr . 

Let us tum back to the connection W'" P and WA 
B and calcu

late the Ricci-Moffat tensor and the Ricci-Moffat scalar 
curvature for WA 

B' It is easy to see that 
Rpl'(W)=Rpl'(r)+j W[P.I'] (4.17) 

and 

R55(W) = R55(r). (4.18) 

And finally we get 

R (W) = R (W) + 2( g[l'v] Fl'vf - Hl'a Fl'a' (4.19) 

where 

R (W) = gPI'Rpl'(r) + jiPI'] W[P.I'] (4.20) 

is the Moffat-Ricci curvature scalar for the connection W'" P 

(see Refs. 1 and 3). 

5. THE VARIATIONAL PRINCIPLE AND FIELD 
EQUATIONS. INTERPRETATIONS AND CONCLUSION 

Let us define the Palatini variational principle on the 
manifold ~ for R (W) 

o LR (W)fY d 5x = 0, VC~, (5.1) 

wherey= det(YAB) = -det(gaP) = -g. We vary with re
spect to independent quantities gaP' W'" PI' and AI" After 
simple calculations one gets 

Rap(W) - !gapR (W) = 81T em TaP' (5.2) 

g[l'v].1' = 0, (5.3) 

g I'v,a - g~vr£a - gl'~riv = 0, (5.4) 

a!, (Hal') = 4g[aP ] ap( g[l'v] Fl'v, (5.5) 

where 

em TaP = (1!41T)[grl' HraFI'P - 2il'v] Fl'vFap 

- !gap[HI'V Fl'v - 2( g[jotv] Fjotj]], (5.6) 

g[jotv] =J=g gll'vl, Hl'a =J=g gPl'graHpr , (5.7) 

and 

gt;p grt;Hra + gat; ~rHPr = 2gat; ~rFPr' (5.8) 

Equations (5.2) and (5.3) are equations for the gravitational 
field in the presence of electromagnetic sources. em TaP plays 
the role of an energy-momentum tensor for the electromag
netic field. Equation (5.4) is a compatibility condition for the 
metric on space-time [see Eq. (3.4)]. Equation (5.5) plays the 
role of the second Maxwell equation. It is easy to see that 

~P em Taf3 = 0 

and 

aa(4g[aP] apt g[jotv] Fl'v)) = O. 

(5.9) 

(5.10) 

Now we are able to interpret all quantities in our theory. 
First of all, it is easy to see that HaP plays the role of the 
second tensor of the electromagnetic strength, and Eq. (5.8) 
expresses the relationship between both tensors Faf3 and 
H af3 · 

In the classical electrodynamics of continuous media 17 

or in nonlinear electrodynamics 18 it is necessary to define 
both of these tensors. The first tensor Faf3 is built from (i, B) 
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and second HaP from (D}l). 
If the metricgaf3 is symmetric then Faf3 = H af3 . Thus it 

is interesting that the skew-symmetric part of the metric 
g[af3] induces some kind of an electromagnetic polarization 
tensor of the vacuum. 

In the classical electrodynamics of continuous media II 
and in nonlinear electrodynamics,'8 it is possible to define 
the electromagnetic polarization tensor of the continuous 
medium (classical electrodynamics) or the vacuum (nonlin
ear electrodynamics) called Maf3: 

Haf3 = Faf3 - 41TMaf3 · 

It is easy to see that 

(5.11 ) 

41TMaf3 = - Kaf3 (5.12) 

[see (4.7)]. Thus we got a geometrical interpretation of Maf3 

Q5 af3(F) = 81TMaf3 . (5.13) 

The electromagnetic polarization induced by the skew-sym
metric part of the metric g[ jotv] is the torsion in the fifth di
mension. This is in very good accordance with results from 
Ref. 19 and 20. The only difference is that in Refs. 19 and 20 
the electromagnetic polarization has its origin from external 
sources and (5.13) plays the role of the Cartan equation in the 
Kaluza-Klein theory with torsion. 

But this is not all. The skew-symmetric part of the met
ric g[ jotv] changes also the electromagnetic Lagrangian 

2' em = (1!81T)[2( g[ jot v] Fjotv)2 - H jota Fl'a]. (5.14) 

In (5.14) we have a new term 2( g[l'v Fjotv )2, which is an inter
action between the skewon field and the electromagnetic 
one. This term vanishes if the metric is symmetric and is 
always nonnegative. 

Thus classical electrodynamics in the non symmetric 
theory of gravitation (Moffat's theory) will be different from 
that in general relativity. 

The skew-symmetric part of the metric induces also a 
source for the electromagnetic field. In Eq. (5.5) we get a 
current 

ja = (1!1T)g[apv]ap(g[jotv]Fl'v), 

which is conserved: 

ja,a = O. 

(5.15) 

(5.16) 

This current vanishes if the metric is symmetric. This is com
pletely different than in classical Kaluza-Klein theory (see 
Refs. 4 and 5). In the classical approach based on a symmet
ric metric on space-time, one obtained the second Maxwell 
equation in the vacuum. Thus nonsymmetric Kaluza-Klein 
theory, combining Moffat's theory and the electromagnetic 
Maxwell theory, is much stronger than the classical Kaluza
Klein approach combining general relativity and electro
magnetism. 

In the nonsymmetric Kaluza-Klein theory there exist 
"interference effects" between gravitation and electromag
netism, which are absent in the classical approach. These 
new "interference effects" are the following: 

(1) the new term in the electromagnetic Lagrangian 

(1/41T)( gljotv] Fjotv )2; 

(2) the existence of an electromagnetic polarization of 
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the vacuum MaP which has geometrical interpretation as a 
torsion in the fifth dimension. 

(3) the additional term for the Lorentz force term in the 
equation of motion for a test particle, 

(g/mo)g[ya) H yp UP; 

Due to these three fundamental "interference effects," 
we get other effects: 

(1) the new energy-momentum tensor em TaP for the 
electromagnetic field with zero trace; 

(2) sources for the electromagnetic field-conserved 
currentr· 

All of these "interference effects" vanish if the metric of 
I 

o 
-,-2 

o 
o 

for inverse tensor g/L
V we similarly have: 

g/L

v 

= [ ~ II ~ 2m~)11 + 1'/1') 

12/,-2 

where m is a mass and 12 is a fermion charge. Let us estimate 
contribution of (6.1) to the Lorentz force term on a surface of 
the sun using (6.2) as a metric. In the Moffat theory (see Ref. 
12) 

1 = '0 = (3.1 + 0.5)X 103 km, 

and we have for the radius of the Sun 

R0 = 0.7x 106 km. 

Thus on the surface of the Sun we get 

(6.4) 

(6.5) 

lU0=1~/R~"'1O-6. (6.6) 

Ifwe consider Eq. (5.8) for (6.2) with (6.6), we get 

H py = Fpy + terms of higher order in lU0 . (6.7) 

Thus 

Hpy ~Fpy (6.8) 

and the electromagnetic polarization tensor induced by the 
skew-symmetric part of the metricg[I4) = lU0 is very small. 
One gets 

(q/mo)g[a y H yp uP ~(q/mo)g[ay) Fyp Up. (6.9) 

But the only nonvanishing components of G [ay) are 

G(14) = - w
0

=1O- 6 , (6.10) 

and the contribution (6.9) to the Lorentz force is 10- 6 with 
comparison to the usual Lorentz force term. Thus it is negli
gible in the solar system. However for a neutron star we have 
(see Ref. 3) 

/N=7km, R N =6km, lUN:::::1, (6.11) 

and this new term should playa certain role. Unfortunately, 
only g(14) = tuN #0. Thus we have only a new term for the 
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space-time becomes symmetric. In this case we get classical 
Kaluza-Klein theory. 

60 NUMERICAL PREDICTIONS OF THE THEORY 

Let us pass to Eq. (4.4). We get here an additional term 
for the Lorentz force 

(6.1) 

In the Moffat theory of gravitation there is an exact nonsym
metric solution which is spherically symmetric and static 
(Schwarzschildolike solution). It has the following shape (see 
Ref. 3): 

(6.2) 

_/2/,-2 ] 
o 
o ' 

(1 - 2m/r)-1 

(6.3) 

electric part of the electromagnetic field (for the second ten
sor of strength HaP)' It is the same for the new term in the 
Lagrangian 

2( gl IH'IF )2 = 2w2 (F )2 = 2w2 .E 2 
fl.V N 14 N z· (6.12) 

The electric field does not play any important role on a sur
face of neutron stars in contradiction to the magnetic field, 
and it does not contradict observational data. 

It is also interesting to ask what will happen in the case 
of weak field approximation 

It is easy to see that coupling between F/Lv and h [/LV) in the 
whole Lagrangian is of second order in h [/LV) (now not only 
h (14) #0), Thus these interference effects are really very 
small and do not contradict experiments. 

However, it would be possible to predict significant ef
fects finding exact solutions of full field equations. It seems 
to be possible using the more general metric 

fl 
(6.14) 

o 
o -r 

o 
o 

where 

a = (1- 2m/r + p(r)]-I, 

w=12/,-2, (6.15) 

r = [1 - 2m/r + p(r)](1 + /4/r4). 

But, unfortunately, up to now this solution is unknown. 
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7. EQUATION OF MOTION FOR A TEST PARTICLE. 
MORE CONCLUSIONS 

Let us come back to Eq. (4.1). Due to the compatibility 
condition (3.7) we have (see Refs. 21 and 22) the first integral 
of motion for Eq. (4.1) 

or 

g(af3) if (t )Uf3 (t) - (U S)2 = const. 

However, due to (4.3), we have 

US = const. 

Thus we get 

g(af3) if (t )U/3 (t) = const. 

Let us rewrite Eq. (4.4) in the following form: 

m aU + qgay F. (dX
f3
) _ qg(aY)H (dX

f3
) = 0, 

o )/3 dt yf3 dt 

where 

(q/mo) = 2U s 

and 

(7.1) 

(7.1') 

(7.2) 

(7.3) 

(7.4) 

(7.4') 

(7.5) 

is a covariant 4-acceleration of a test particle. Let us consider 
an initial Cauchy problem for (7.4) such that 

dx
a 

() u a -- to = 0' 
dt 

(7.6) 
ga/3 U~ U (j = 1. 

Due to Eq. (7.3) we have for every t)to 

dxa dx/3 
ga/3 -ttl-ttl = 1. 

dt dt 
(7.7) 

Now we will find an interpretation of the additional term for 
the Lorentz force in Eq. (7.4), i.e., 

lay) H dx/3 -qg 13 --. 
Y dt 

(7.8) 

To do this, let us consider Eq. (7.4) without this term, i.e., 

dx f3 
moOa + qgay F -- = O. 

1'/3 dt 
(7.9) 

This equation is a simple generalization of an equation for a 
charged point particle in general relativity to the nonsymme
tric case. Now gay is not symmetric and the covariant 4-
acceleration is defined in terms of the connection (ija f3 on E. 
This connection is, of course, compatible with the nonsym
metric metric ga/3' One easily checks that 

(7.10) 

Thus, in general, Eq. (7.9) does not have the first integral of 
motion (7.3). It means that we are unable in general to pre-
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serve the initial normalization for the 4-velocity of a test 
particle. If we want to have the normalization (7.7), we must 
add to Eq. (7.9) the auxiliary condition 

c/>(if) = 0, 

where 

(7.11) 

C/> (if) = g(a/3) if U/3 - 1. (7.12) 
The auxiliary condition (7.11) is a nonhalonomic constraint. 
This constraint is non integrable and nonlinear (quadratic in 
velocities). According to the general theory of mechanical 
systems with constraints, we know that in such systems we 
have so-called reaction forces of constraints. Thus we should 
write (7.9) in a following form: 

moOa = - (2U smo)g"y Fyp UP + Q"', (7.13) 

c/>(if)=ga/3ifUf3 -1 =0. (7.14) 

Q'" is a reaction force of the constraint (7.14). The force Q'" 
much be such that (7.14) is automatically satisfied during a 
motion. Let us find this force. In order to do this, let us 
multiply both sides of(7.13) by gla(3) U/3 and integrate from to 
to t. One gets 

~moC/> (if) =!m o( g(af3) if Uf3 - 1) 

= It (g(af3) Uf3 Q'" - 2moU Sg(af3)g"YFyp Uf3 U P) dt. (7.15) 
to 

For (7.14) is satisfied we get 

L (g(af3) Uf3 Q'" - 2moUSgla(3)gaYFyp Uf3 U P) dt = O. 

(7J6) 

However, (7.16) is satisfied for every t. Thus we get 

g(af3) Uf3 Q'" - 2moU Sg(af3)g"YFyp Uf3 UP = O. (7.17) 

It is easy to see that Eq. (7.17) has a solution: 

Q'" = 2moU Sgay Fyp Up. (7.18) 

Ifwe put (7.18) into (7.13), we get 

moaa = O. (7.19) 

This solution has simple physical interpretation. Equation 
(7.19) is an equation of motion for an uncharged test particle. 
There is no Lorentz force. It corresponds to a choice U 5 = 0 
or equivalently q = O. Let us come back to Eq. (7.17) and 
transform it using condition (3.9). One gets 

[ga/3Uf3Q'" + gf3aUf3Q'" +moU5(gb/3gYbHya 

+ gab g'5YH f3y )if Uf3] = O. (7.20) 

Equation (7.20) has a solution 

Q'" = 2moU 5g[ay) H yf3 U/3 

= qg[ay) H yf3 Uf3. (7.21) 

Equation (7.21) gives us an interpretation for an additional 
term for Lorentz force in Eq. (7.4) or (4.4). This additional 
term is a reaction force of the nonintegrable, nonholonomic, 
nonlinear constraints (7.12). 

Let us pass to the field H af3 . This field plays the role of 
the second tensor of the electromagnetic strength. However, 
we have to do with only one electromagnetic field. Equation 
(5.8) expresses the relationship between Faf3 and H af3 . This 
equation is the linear equation for H af3 . Difference between 
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Ha(3 and Fa(3 appears due to the skew-symmetric part of the 
metric ga(3' If g[a(3] = 0, we have Ha(3 = Fa(3. The second 
pair of Maxwell equation [Eq. (5.5)] is the same as in a non
linear electrodynamics (see Ref. 18) or in a classical electro
dynamics of continuous media (see Ref. 17). In Eq. (5.5) we 
have a sources, a conserved currentr . This current is built 
from the skew-symmetric part of the metric g[a(3]' Thus the 
real source for H a (3 is the skew-symmetric part of metric. In 
the nonsymmetric theory of gravitation (see Ref. 3) a fermion 
current is a source for the differential equation of g[l"v]' In 
this way the fermion current becomes a source of a difference 
between Ha(3 and Fa(3' In the nonsymmetric theory of gravi
tation there is not a Lorentz-like force term connected with a 
fermion charge (see Refs. 1-3). 

It is a very important property of this theory. Due to 
this the weak equivalence principle is satisfied, i.e., universal 
falling of all uncharged bodies [compare Eq. (7.19)]. This 
statement is not true for charged bodies. We have the Lor
entz-force term. In the nonsymmetric Kaluza-Klein theory 
appears an additional term involving the tensor H a(3 and the 
skew-symmetric part of metric gray] . Due to this term the 
fermion charge has an influence on the motion of a charged 
test particle. It is, of course, an influence via a gravitational 
and an electromagnetic field (no additional Lorentz force 
with a fermion charge of a particle). But it is an influence. 
For example, the exact static, sterically symmetric solution 
of Moffat's theory has two sources: a mass-point m and a 
poin t fermion charge /2 (see Refs. 1-3). 

Let us pass to Eq. (5.8). We are able to solve this equa
tion using iterative methods for the weak gravitational field. 
In order to do this, we write (5.8) in a form 

and define following transformation, 
In + I) (n) 

H(3a = Ml"v (3aHl"v 

such that 
(0) 

H{3a = F{3a 

One easily gets that 
In + I) (0) 

(7.22) 

(7.23) 

(7.24) 

n = 0,1,2, .. · . (7.24/) 

H{3a = (Mn + l'r{3uHI"V = (Mn + I'('V{3uFI"V (7.25) 

the power (n + 1) means (n + 1 )-iteration of the transforma
tion (7.23). We get 

(n + I) (n) 

H(3u - H(3a 

Now let us suppose that the field ga{3 is weak. It means that 
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ga(3 = 17a{3 + ha{3' 
ga(3 = 17a(3 + iza{3, 

Iha{3l, liza{31 <a~l, 

(7.27a) 

(7.27b) 

(7.28) 

where 17a{3 is the Minkowski tensor. In this case one gets 

gl"b ';;f17I"D - 17al" 17yb hya . (7.29) 

The skew-symmetric tensors 

L{3" = - Lv# (7.30) 

form a natural linear six-dimensional vector space. Let us 
define the following norm in this space: 

IlL II = max IL#v I; {3, v ~ 1,2,3,4 
(7,31) 

thus our space becomes a Banach space. For sufficiently 
small a one finds 

(n + I (n) (nl (n - 1) 

II H - H II </3 (a)IIH - H II, (7,32) 

where O</3(a) = 96a< 1, ifO<a < 1/96, Equation (7.32) 
means that the transformation (7,23) is a contraction. Ac
cording to the Banach theorem this transformation has a fix 
point 

1001 1001 

H {3a = M I"v{3a H I"V (7,33) 

such that 
(00 I 

H{3a = lim(M"'("'{3a FI"Y 
n '00 

(7.34) 

The limit (7.34) is understood in a sense of the norm (7.31) 
and 

(00 I 

Ml"v{3a = lim (M"'('v{3a' (7.35) 

The limit (7.35) is understood in a sense of the usual linear 
operator topology generated by a topology of a Banach 
space. According to the Banach theorem there is one and 
only one fix point of the transformation (7.23) (in a weak field 
approximation). Thus we get that 

(00 I 

H{3a =Ml"v{3a FI"Y' (7.36) 

Equation (7.36) is a solution of Eq. (5.8). In this case the 
additional term for the Lorentz force in Eq. (4.4) takes the 
form 

(00 I 
_ qg [ay] M1lV U{3 F y{3 I"V . (7.37) 

It is purely described by the tensor Fl"v and the metric tensor 
ga{3' We have the same for the reaction force of constraints 
(7.14) 

(=1 
(!' = - qg[ay] M 1"" y{3 U{3 Fl"v' (7.38) 

For a nonholonomic (nonintegrable) constraint we have 
the following statement. A variational problem with differ-
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entia! (nonintegrab!e, nonho!onomic) constraints cannot be 
reduced to a form where the variation of a certain quantity 
(an action) is put equal to zero. This is true in a much simpler 
case oflinear nonholonomic constraints (see Ref. 23). Thus, 
unfortunately, we cannot formulate a principle of action for 
Eq. (4.4). However, we are still able to interpret the addi
tional term in the Lorentz force as a reaction force of the 
nonholonomic constraints (7.11). From the geometrical 
point of view (the force (!' is absorbed by a geometry) it 
seems that only metric geometry or Einstein geometry de
fined on the five-dimensional Kaluza-Klein manifold lead 
to the condition (7.1). The geometry defined by the metric 
g = g(aP) (;a ® ef3 , the 2-form8: = g[af3l(;a !\ eP and the con
nection (;ja f3 satisfying the condition (3.4) we call Einstein 
geometry. Ifwe want to get conditions (7.2) and (7.3) it seems 
that we have only three possibilities: 

(I) Riemannian geometry (classical Kaluza-Klein the
ory); 

(2) a generalization of the Einstein-Cartan theory and 
the Kaluza-Klein theory (see Refs. 19 and 20); 

(3) Einstein geometry with the condition (4.3), i.e., the 
theory described in this paper. 

The two first geometries are metric. The first is only a model 
of unification of electromagnetic and gravitational fields. 
This unification is to perfect. We do not get any "interfer
ence effects" between gravitational and electromagnetic 
fields. It seems that it is only five-dimensional notation of 
general relativity and Maxwell theory in Riemannian space
time. The second possibility due to Cartan equations in 
space-time and in the fifth dimension offers some intefer
ence effects: additional current connected to spin sources, 
Israel energy-momentum tensor as a tensor of energy-mo
mentum for the electromagnetic field, and contact interac
tion term of electromagnetic polarization in total energy
momentum tensor. Unfortunately, additional geometric de
gree of freedom, torsion is connected algebraically with ex
ternal sources: spin and electromagnetic polarization of mat
ter. Thus this torsion does not propagate. The third 
possibility seems to be more interesting. There are "interfer
ence effects" between gravitational and electromagnetic 
fields. Torsion propagates. It is interesting to notice that, 
despite completely different geometries in the second and 
third possibilities, we got the same equation connecting elec
tromagnetic polarization existing in the theory to a torsion in 
the fifth dimension. 
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The initial value problem is considered for the conformally coupled scalar field and higher 
derivative gravity, by expressing the equations of each theory in harmonic coordinates. For each 
theory it is shown that the (vacuum) equations can take the form of a diagonal hyperbolic system 
with constraints on the initial data. Consequently these theories possess well-posed initial value 
formulations. 

PACS numbers: 04.50. + h 

I. INTRODUCTION 

One major criterion of the physical acceptability of a 
gravitational theory (or a set of equations supposedly repre
senting the time evolution of any physical quantities in a 
spacetime) is that it possesses a well-posed initial value for
mulation. There must be a set of quantities such that when 
the values of these quantities (the initial data) is specified on a 
spacelike 3-surface (the initial surface), there exists a unique 
solution of the equations of the theory in an open neighbor
hood of the initial surface which matches the initial data on 
the initial surface. Further, the value of all physical quanti
ties at a point in the solution must depend only on the initial 
data within the past light cone of the point (only then is there 
relativistic causal development) and small perturbations of 
the initial data should produce only small perturbations of 
the solution (within a compact region). Since the initial value 
formulation reveals which variables are dynamically free 
and which are not, the details of a theory's initial value for
mulation must be known before the correct quantization can 
be established. 

The initial value formulation of general relativity has 
been studied in detail. A summary of the application of the 
harmonic coordinate method of this paper to general relativ
ity has been written by Bruhat. 1 As can be seen there, or in 
the exposition of the method in Sec. II below, in harmonic 
coordinates, Einstein's equation is a diagonal hyperbolic sys
tem with constraints on the initial data. Then a theorem 
proven by Leray2 (see Sec. II) guarantees a well-posed initial 
value formulation. 

The "conform ally coupled scalar field,,3 has been used 
in calculations of quantum effects in the early universe,4 but 
it is not obvious that it has a well-posed initial value formula
tion. The action (when no other matter is present) is5 

S = f ((l/81TG)R + gCdtP;ctP;d - !RtP 2)~ d 4x, (1) 

and the resulting field equations can be written 

_81TG 
Rab = I _ j~GtP 2 [2tP;atP;b - !jJabgCdtP;ctP;d - tPtP;ab] ' (2) 

(3) 

The second derivative of the tP term in (2) becomes a nondia
gonal term in harmonic coordinates. Before Leray's power
ful theorem applies, a diagonal hyperbolic form must be 
found. 

Attempts to quantize general relativity6 and attempts 
to regularize stress energy-momentum tensors of quantum 
fields propagating in curved spacetimes7 have led investiga
tors to consider gravitational actions involving curvature
squared terms. The most general action of this form is (for 
vacuum) 

where a and fJ are new universal constants (a Riemann
squared term can be eliminated using the Gauss-Bonet iden
tity; the term linear in R is necessary for a proper Newtonian 
limit). The "higher derivative gravity" field equation which 
follows8 from (4) is 

(a - 2 fJ jR,ab - aDRab - (~a - 2 fJ )gab DR 
+ 2aRcdRacbd -2fJRRab -!jJab(aRCdRcd -fJR2) 

+ (l/161TG)(Rab -!jJabR)=O. (5) 

This equation obviously involves fourth derivatives of the 
metric, hence the label "higher derivative." If this is to be 
considered as a new, physically reasonable competitor for 
general relativity, its initial value formulation must be inves
tigated. 

In Sec. II, the method of harmonic coordinates as ap
plied to general relativity is presented, because the proce
dures for the more complicated systems of interest here are 
simple extensions of the general relativity procedure. In Sec. 
III, this method is used to show that the conformally-cou
pled scalar field has a well-posed initial value problem. Sec
tion IV shows that the higher-derivative gravity equations, 
when treated as twenty second-order equations (not ten 
fourth-order equations), have a well-posed initial value prob
lem. 

In Secs. III and IV the equations of interest, when first 
written in harmonic coordinates, are nondiagonal systems, 
but equivalent diagonal hyperbolic systems are subsequently 
constructed. Not all quasilinear nondiagonal systems can be 
put in diagonal hyperbolic form. All of the nondiagonal sys
tems considered here have a common form when naively 
expressed in harmonic coordinates: each of the variables in 
off-diagonal second-order terms also appears in second or
der (hyperbolically) in "its own" diagonal equation. There is 
a method for "turning off" such off-diagonal terms,9 ex
plained in Sec. III. 
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II. INITIAL VALUE FORMULATION OF GENERAL 
RELATIVITY 

In this section, the initial value formulation of general 
relativity is outlined in a form that will later be extended to 
treat the conformally coupled scalar field and higher deriva
tive gravity. A simple form (applying to C "" data and solu
tions) ofLeray's theorem (which guarantees a well-posed ini
tial value problem once the system of equations has been put 
in suitable ("diagonal hyperbolic" form) is stated. The 
theorem will eventually be brought to bear on each system of 
equations considered. 

It is easily seen that four of the ten Einstein equations, 
when written out in a coordinate system, do not involve any 
second time derivatives of any metric component. These 
four, the (oa) components, do not specify time evolution, but 
are constraints that must be satisfied at all times. They are 

Gbch banC = Rbc h banc = Kba;b - K,a , 

3 

Gabnan
b 

= - HR - K2 + KabK
ab I ' 

(6) 

(7) 

where na is the normal to the constant time surfaces, h a b 

3 

projects onto the surfaces, R is the 3-curvature scalar on 

them and Kab is the extrinsic curvature of the 3-surfaces, 
representing how they are imbedded in the spacetime. These 
are particular forms of the equations of Gauss and Co
dacci.1O Equations (6) and (7) relate quantities determined by 
the local mass distribution (the left-hand sides with Gab re
placed by Tab) to quantities determined by the metric (right
hand sides). In finding solutions from initial data, if these 
constraints are satisfied on the initial surface, the fully con
tracted Bianchi identity guarantees the constraints every
where (once the evolution equations are solved). 

Following Bruhat, define a "gauge potential" 

(8) 

The harmonic gauge (coordinate) condition is then 

Fa = O. (9) 

The Ricci curvature can be expressed as 

Rab = - ~cdgab,cd + !(gacFC,b + gbcFC,a) + Hab , (10) 

where Hab represents terms strictly first order in the metric, 
whose detailed form is irrelevant to this discussion, Now, 
define 

Qab = Rab - !(gacFC,b + gbcFC,a) 

- I cd +H - - ~ gab,cd ab , (11 ) 

and choose as a field equation 

Qab =0 (12) 

(usually called "Einstein's equation in harmonic coordi
nates"). A solution oft 12) is a solution of Einstein's equation 
only if the harmonic gauge condition (9) is also satisfied. 

Regardless of whether Eq. (9) is satisfied or not, Eq. (12) 
[with Qab as in the second line of (11)] is a quasilinear diag
onal system9 of partial differential equations in ten un
knowns gab' It is quasilinear because each equation is linear 
in its highest order term, and diagonal in that each equation 
invoves the highest order (two) derivative of only one of the 
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unknowns. The system is "hyperbolic" in the sense that each 
of the second-order terms is a hyperbolic differential opera
tor acting on one of the unknowns (as long as the metric is 
nonsingular and has hyperbolic signature). For such a sys
tem Leray2 has proven a theorem, which, phrased for sec
ond-order equations and C"" solutions out of C "" data II is 

Theorem: Given (a) a quasilinear, diagonal, second-or
der hyperbolic system, 

h (k lab (X,U(j) ,U(J),c )U(k l,ab + b (k l(U(j) ,U(j),c) = 0 , 

k= 1, ... ,N, 

(13) 

in N unknowns u(j) (in n coordinates) where h (k lab and b (k l 

are C "" in their arguments; 
(b) a smooth [In - 1 )-dimensional] initial surface (region) S 
embedable in some n-manifold; 
(c) a range of values of each of the unknowns (a subset 1';J) of 
R n) for which all the h (k lab,s are Lorentz metrics (and the 
intersection of all the timelike cones is not empty) every
where onS; 
(d) initial data on S for the unknowns, lying in the allowed 
ranges 1'; Jl ' 

a solution u(j) exists in an open neighborhood of S, and suffi
ciently small perturbations of the initial data produce small 
perturbations in the solution (for a precise statement, see 
Ref. 10, pp, 226--255), and initial data that differ only outside 
some region S I of S produce solutions that differ only outside 
of a causal future (defined by the h (k lab metrics) of S I, 

For any solution of the field equations generated from 
specified gab ,gab (the dot indicating derivative in the timelike 
coordinate direction leading out of the initial surface), evalu
ating the covariant divergence of Qab [viewed as the first line 
of (11 )] minus one half its trace implies (using the factthat the 
field equations are satisfied) 

(14) 

where pa represents terms first order and homogeneous in 
F

b
, This is a quasilinear diagonal hyperbolic system on Fa, 

so that if the initial data happens to satisfy 

(15) 

(16) 

on the initial surface, then the solution necessarily has Fa 

zero everywhere. To get a solution in harmonic coordinates 
we must satisfy constraints (15) and (16) on the initial data. 
However, it can be seen I that on the initial surface, if (6), (7), 
(15), and the field equations in harmonic coordinates (12) are 
all satisfied, then (16) follows, and is not an independent con
straint. 

The last step in establishing that the initial value prob
lem is well posed is the verification that the set of all con
straints on the initial data is consistent (i.e., valid sets of 
initial data do exist). The usual procedure is to set goo on the 
initial surface to ( - 1), gOa initially to zero (these compo
nents are regarded as gauge, not geometric: they govern how 
the constant x lines leave the initial surface), and let (15) 
determine gOa algebraically in terms of other components of 
the 4-metric and its dot. Then, Bruhae details a solution of 
(6), (7) which fixes the conformal factor of the 3-metric and 
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three components of Kap' The remaining information in the 
3-metric (five "functions") and the remaining (three) compo
nents of Kap are left free. gaP is determined algebraically 
from Kap (for the choice of gOa above, the components of the 
two are equal). After the (gauge) fixing of gOa' there are eight 
"free functions," but specification of the coordinate system 
in the initial surface uses up three, and one more specifies the 
particular Cauchy surface in the 4-space foliation (by t ) that 
the evolution starts from. Thus there are four functions in 
the initial data which specify the physical configuration, 
while the other eight are "gauge-fixing." Four free physical 
functions (divide by two to find two "degrees offreedom") 
are what are needed to specify the evolution of a spin-2 mass
less field, the graviton. 

III. THE CONFORMALL Y COUPLED SCALAR FIELD 

The "conformally coupled scalar field equations in har-
monic coordinates" [the analog of(1l,12)] are 

Q 1 d ~rrG¢ A. + H' - 0 
ab = - 2ft gab.cd - (1 _ jrrG¢ 2) 'f',ab ab - , 

(17) 

gCd¢,cd = O. (18) 

In this form these equations are not diagonal, as differ
ent second derivatives of the single variable ¢ appear in every 
equation. There is a change of variables, however, which can 
"turn off' some unwanted off-diagonal terms. Taking a deri
vative of the scalar wave equation (18) and formally treating 
¢,a as an independent variable Va' an equivalent set of equa
tions to (17), (18) which are diagonal hyperbolic are 

1 8rrGA. 
cd 1 'I' V + H ' = 0 (19) - 2 g gab.cd - (1 _ jrrG¢ 2) a.b ab , 

gcd¢.cd = 0 , (20) 

gcdva,cd + gCd,aVc.d = O. (21) 

With this system, initial data for Va is not free at all, 

Va Is = (~,¢,a) , 

Va Is = (~'~,a) 
(22) 

(23) 

(~ is deduced by solving Eq. (20) on the surface). Leray's 
theorem guarantees that solutions (with the desired causal 
evolution and perturbation stability) exist for appropriately 
specified data. Then, given a solution, it is obvious that Va 

and ¢,a satisfy the same hyperbolic differential equation (21), 
and have the same initial data, so 

~=~ (~ 

everywhere in the solution. The conformally coupled scalar 
field has a well-posed initial value problem. The constraints 
on the initial data are very similar to those for general relativ
ity, but the detailed form is changed by the ¢;ab contribution 
to Rab [Eq. (2)] in the Gauss and Codacci equations (6), (7). 
This involves ~ and first derivatives of the metric. ~ can be 
elliminated by solving the scalar wave equation on the initial 
surface. Then, since the Gauss and Codacci equations are 
second order in the metric, their basic form and method of 
solution are unchanged. There is one more degree offreedom 
(which is ¢ ). 
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The diagonal system was found using a simple test of 
whether the procedure of taking extra derivatives can turn 
off all off-diagonal terms in a particular nondiagonal system 
of equations. 9 If there exists a set of nonnegative integers [Si J 
[the (formal) index numbering the equations], and I tj J (the 
index numbering the unknowns) such that the principal part 
(terms of the highest order) in unknown ui in equationjis of 
order (Si - tj) when i equalsj, and oflower order when i does 
not equalj, then the differentiation procedure can produce 
an equivalent diagonal system. Such a set of integers for the 
system (17), (18) is 

Sgraveq,ab = 3 , (25) 

sscalar eq = 2 , (26) 

tgub = 1 , (27) 

t", =0. (28) 

Any equation with S less than the maximum value (here, the 
scalar wave equation) must be differentiated to produce a 
new equation to be added to the system, and any variable 
with t less than the maximum value must be differentiated to 
produce a (formally) new variable. This done, the offending 
off-diagonal terms can be (formally) replaced by terms lower 
order in the new variable(s). The old diagonal terms are un
changed. 

This method is not highly specialized to the conformal
ly coupled scalar field. For example, the coefficient 1/6 in 
Eq. (1) can be replaced by 5, a nonminimal-coupling con
stant. The resulting field equations can be written in a form 
in which no new second-order terms appear, and the same 
method shows there is a well-posed initial value formulation, 
for any value of 5. Further, Brans-Dicke theory 12 has equa
tions of form similar, as originally posed, to those of the 
conform ally-coupled scalar theory above. A well-posed ini
tial value formulation of the original Brans-Dicke equations 
can be found directly using the method of this section, but it 
is well known that there is a transformation of variables that 
produces a diagonal hyperbolic set of equations for Brans
Dicke theory, except in the special case of w (the Brans
Dicke constant) equal - 3/2, when the transformation 
seems to break down. In this special case, the Brans-Dicke 
scalar field equation is conform ally invariant (using a differ
ent change of variables), and the complete set of equations is 
equivalent to the set of equations derivable from Eq. (1) with
out the first term (R /8rrG). The problem with this confor
mal-scalar version of Brans-Dicke theory is that the trace of 
the gravitational equation and the scalar field equation, 
which for all other values of U) are two distinct equations 
relating the scalar field to R, for this value are the same 
equation (if there is any other matter, appearing in the gravi
tational equations as Tab' the difference of the two equations 
is T equal zero). With this reduction by one of the number of 
independent field equations, one function (e.g., ¢) becomes 
totally unconstrained, and can be specified freely over a 4-
volume before finding the solution (for the rest of the varia
bles) in the 4-volume. Thus the w equal - 3/2 Brans-Dicke 
theory does not have a well-posed initial value formulation 
as defined by the Introduction. 
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IV. HIGHER DERIVATIVE GRAVITY 

Stelle8 has studied some classical aspects of higher deri
vative gravity (and reviewed earlier work). He has shown 
that linearized higher derivative gravity can be viewed as 
consisting of the (usual) massless graviton coupled to a mas
sive (mo) scalar field 

1 
m~=------

321TG (3 {3 - a) 

and a massive (m2) spin-2 field 

2 1 m 2 =---. 
161TGa 

(29) 

(30) 

It is not difficult to see that in the linearized theory the scalar 
and massive spin-2 field can be considered to be the linear
ized Ricci scalar and the linearized trace-free part of the 
Ricci tensor, respectively. Knowing this, a more natural, 
and more useful 13 form of the field equation is (for mo non
zero and a nonzero l4

) 

(O-m~)R=O, (31) 

(0 - m~ )Rab + M2m~ /m~ + 1 )RRab + 2R edCaebd 
-- c- ] -- cd--

- 2Ra Rbc + '2$ab R Red 

+ j(mVm~ - I)(R;ab - !$abm~R) = 0, (32) 

where Caebd is the Weyl curvature and Rab is the trace-free 
part of the Ricci curvature 

(33) 

[Eq. (32) is trace-free]. 
In the linearized version of higher derivative gravity, R 

and Rab look like a massive scalar and massive spin-2 field 
independent of the spin-2 null graviton only if the linearized 
field equations are treated as second-order equations with R 
and Rab independent variables and the (linearized) Einstein 
equation is considered as an independent equation on gab' 
with Rand Rab terms as sources. The linear initial value 
formulation is then obvious. In the same style, the higher 
derivative gravity equations (31) and (32) (when both a and{3 
are nonzero) can be considered as 20 second-order equations 
in independent variables gab' :7i, !!it ab' (The fully contracted 
Bianchi identity appears as a constraint below.) In harmonic 
coordinates, 

d -- !g" gab.cd + Hab = :7i ab + !gab :7i , 

g<d!!itab.ed +j(mVm~ -1):7i,ab 
- f. ed 

- :7i ed?/- g (gef,ab + gab,ef - gae,/b - gfb,ae) 

- ~(!!it abgefg<dgef,cd) + Jab = 0 , 

g<d:7i .cd - m~:7i = 0 

(34) 

(35) 

(36) 

[Jab represents lower order terms in (35).] Equations (34)
(36) are analyzed by viewing :7i and !!it ab as unknowns, not 
necessarily equal to the curvature of gab' Unless constraints 
on initial data discussed below are in fact satisfied, !!it ab and 
:7i ofa solution of (34)-(36) will not satisfy Bianchi's identi
ties, and the true Ricci curvatures Rab and R calculated from 
the metric gab of the solution will be entirely different. Hence 
the use of script symbols in (34)-(36) to distinguish them 
from the true curvature. 
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Again, the system is not diagonal, but the set of integers 

(S(34)ab' S(35Iab' S(36)) = (2,3,2) , 

(t(glab' t(.9tlab' t(eW)) = (0,1,0) 

(37) 

(38) 

satisfies the test detailed in the previous section, implying 
that equations (34) and (36) and variables gab and:7i must be 
differentiated and added to the system. Thus a hyperbolic set 
equivalent to (34)-(36) is (34) and (36) together with 

ged!!itab.cd + j(mVm~ - l)Va,b 

- !!it cdgcf~e(hefa,b + habeJ - haef,b - hjba,e) 

- !!!it abgefgedhefe,d + Jab = 0 , (39) 

gedVa,cd + ged,a Vc,d - m~ Va = 0 , (40) 

!gcdhabe,ed + !ged,ehabe,d + Kabe 

- !!itab,e - !gab,e:7i - !$ab :7i,e = 0, (41) 

where Kabe is first order in gab and habe , and the initial data 
for Va and habe is not specified freely at all, but so that, in the 
resulting solution (in analogy to the Sec. III discussion), 

Va = :7i,a , 

habc = gab,c . 

(42) 

(43) 

While appropriate (to the theorem) initial data does 
uniquely specify a solution of(34)-(36) in a neighborhood of 
S, new constraints on the new variables :7i, !!it ab beyond 
those on gab for general relativity must be satisfied to obtain 
a solution ofthe higher derivative gravity equations with :7i 
and !!it ab equal to curvature of gab' Let 

Llab = Gab - !!it ab + !$ab:7i , (44) 

where Gab is the true Einstein curvature associated with gab 
of a solution of (34)-(36) (Llab is the difference between Gab 
and what should be Gab)' then similar manipulations to those 
that produced (14) on pa here [out of(34) and (35)] imply 
instead 

loCdFa +pa = .,.abLl c 
26 ,cd <5 b;c (45) 

and 

gCd(Llab;b),ed +(j+m~/3m~)[ -LlacFe,ec _lj'e,Jd,da] 

+ ~G ed [ - gaeFe,de + gaeFe,ed + geeFe,da - gcdFe,ea ] 

- ~ cd [gceFe,da + gdeFe,ca - gcdFe,ea] + La = 0 , 
(46) 

where La represents terms of first order or less, homogen
eous in either Fa or Lla b;b' The now familiar procedure pro
duces a diagonal hyperbolic system out of (45), (46) by ap
pending the derivative of(45) as a new equation and treating 
Fa,e as a new "independent" variable, Thus, if the initial data 
satisfies 

Fa=o, (47) 

Fa=O, (48) 

Lla b;b = 0, (49) 

(Ll a b;b)' = 0 (50) 

on S, then Fa and Lla b;b are zero everywhere in the solution, 
and the detailed form of the equation "Lla bb equals zero" is 
the fully contracted Bianchi identity on :7i' and !!it ab' Of 
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course, the Gauss and Codacci constraints (6), (7) [where the 
left-hand sides (Gab) are calculated from :7t and if? ab data, 
while the right-hand sides are calculated from metric data] 
must still be satisfied on the initial surface. Equations (49) 
and (SO) are the new constraints on the data. If all the con
straints are satisfied, the solution of (34)-(36) is a solution of 
the higher derivative gravity equations, in harmonic coordi
nates, with 

R=:7t. 

(51) 

(52) 

The last task is verification that the constraint system 
[the constraints for general relativity when Rab not zero plus 
(49), (SO)] on the initial surface is consistent. Again, the Fa 
equation (48) follows from the field equations "in harmonic 
coordinates," and (6), (7), (47) on the initial surface. Again, 
the Fa constraint (47) can be used to fix gOa algebraically. 
Then, formally, (6), (7), (49), (SO) are coupled together, re
quiring simultaneous solution. For use ofthe Cauchy-Kova
levskaya theorem, 15 considering analytic solutions generat
ed by analytic data, the characteristic determinant of the 
system is a product of 2, one for the Gauss-Codacci equa
tions (well known and well behaved), the other for the "Bian
chi constraints." It is most convenient to regard if? 00 a~ the 
nondynamic component of if? ab (and eliminate it and if? 00 

from all expressions by enforcing trace-freenes~) and then to 
decompose the space-space parts of if? ab and if? ab on the 
initial surface into 3-trace and 3-trace-free parts: 

3 
{j-

sff = gY :7t y{j , (53) 

3 

sff a{3 = if? a{3 - jga{3sff , (54) 

(55) 

• 3 

:iJ a{3 = if? a{3 - jg a{3!!lJ • (56) 

Then the undotted Bianchi constraint (49) serves merely to 
specify ~ Oa and !!lJ algebraically in terms of :7t, ill, sff, 

sff a{3' !!lJ a{3' if? Oa' The "Bianchi-dot" constraint (SO) be
comes a system off our second-order equations, which can be 
regarded as fixing sff and if? Oa on the initial surface (given 
data at a point, analytically) leaving :7t, ill, sff a{3' !!lJ a{3 free. 
The characteristic determinant of these four equations 
(which is then multiplied by the other determinant) is non
singular so the grand characteristic determinant is nonsin
gular, and the system of constraints is consistent. Higher 
derivative gravity does possess a well-posed initial value 
problem. 

The satisfaction of all constraints leaves free all the 
same initial data functions seen in general relativity plus two 
scalar fields (corresponding to the "massive scalar field" R ) 
and two trace-free symmetric 3-tensors (five free "functions" 
each) corresponding to if? ab' Five degrees of freedom are 
associated with a massive spin-2 field, so if? ab retains some 
appearance of a massive spin-2 field in the full nonlinear 
theory, as it does in the linearized theory. 

To recapitulate, higher derivative gravity does possess a 
well-posed initial value problem. The initial data is gab' :7t, 
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if? ab and their time (coordinate) derivatives on an initial sur
face, satisfying the following (surface) constraints: the Gauss 
and Codacci equations (6), (7) (with Gab calculated from the 
data for :7t and if? ab)' the harmonic coordinate condition 
(47), and the "Bianchi constraints" (49), (SO). Given the data, 
there exists a unique solution of the higher derivative gravity 
equations in a neighborhood of the initial surface. The solu
tion evolves causally and is as stable to perturbations of the 
initial data as general relativity is. 
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It is proven that, for a certain class of hyperbolic systems (a class which includes Einstein's 
equation), sufficiently small initial data on a bounded patch of initial surface generates a solution 
nonsingular in the region determined by that initial data. This theorem is virtually a corollary of 
the boost theorem. Various consequences and possible generalizations are discussed. 
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1. INTRODUCTION 

Christodoulou and O'Murchadha I have recently prov
en what is called the boost theorem. The theorem has the 
following general structure. Consider, in Minkowski space
time, a system of second-order hyperbolic equations which 
falls within a certain, rather broad, class of such equations. 
Consider sufficiently smooth initial data for this system, 
specified at t = ° in the Minkowski space-time. This initial 
data can be evolved to a solution of the hyperbolic system 
which remains nonsingular for at least a certain distance into 
the past and future from the initial surface. The boost 
theorem now asserts that, provided the initial data is suffi
ciently well-behaved asymptotically, this "certain distance" 
through which nonsingular evolution is possible is such that 
the region of smooth evolution includes boosts of the original 
initial-data surface. That is, the farther out on the initial 
surface one begins, the longer in time one must wait before 
encountering a singularity. 

The class of hyperbolic systems to which this theorem 
applies includes, in particular, Einstein's equation (suitably 
formulated in a certain gauge), both in the source-zero case 
and in the presence of certain "hyperbolic" sources. 

We here introduce a reformulation of the boost 
theorem. It asserts essentially that, given in a bounded re
gion smooth initial data sufficiently close to the zero data, 
then this initial data must so evolve to be nonsingular in the 
entire domain of dependence of that region. That is, the solu
tion must remain nonsingular insofar as it is determined by 
the given initial data. This "local nonsingularity theorem" 
is, by an elementary argument, a consequence of the original 
boost theorem. 

The local theorem has a number of attractive features. 
First, it is somewhat simpler to state, for it avoids the neces
sity of maintaining control over global behavior. The state
ment in the case ofEinsten's equation is particularly natural, 
for one avoids reference to boosts, which of necessity are 
with respect to a flat background metric related to the space
time metric by gauge conditions. Further, from the local 
nonsingularity theorem one can, by a simple geometrical ar
gument, recover the original boost theorem. Thus, in effect, 
the boost theorem is separated into its "local, analytical" 
part (represented by the local version) and its "global, geo
metrical" part (represented by the argument which leads 
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from the local to the global). This appears to be a natural 
separation. For example, there are, as it turns out, numerous 
ways to "globalize" the local nonsingularity theorem. There 
result variants of the boost theorem, in which there is modi
fied both the required asymptotic behavior of the initial data 
and, correspondingly, the assertion as to how far into the 
future nonsingular evolution must be possible. Up to certain 
limits, any choice of the latter can be achieved by some 
choice of the former. The local nonsingularity theorem can 
be further simplified in the case of Einstein's equation, essen
tially as a consequence of the fact that the fields in this case 
have physical dimension. Finally, the local theorem sug
gests, as conjectures, a number of generalizations. 

The nonsingularity theorem complements the well
known singularity theorems2 for general relativity. 

In Sec. 2, we summarize the statement of the boost 
theorem. In Sec. 3, we introduce the local nonsingularity 
theorem for the general hyperbolic system. We prove it, re
late it back to the boost theorem, and discuss the resulting 
variants of the boost theorem. In Sec. 4, we consider the case 
of Einstein's equation. This differs from the general case in 
that the fields have physical dimension, which one may ex
ploit, and in the critical role played by gauge. Several gener
alizations are conjectured in this section as well as in the 
conclusion. 

2. THE BOOST THEOREM 

We summarize the boost theorem. The details, includ
ing proofs and related results, may be found in Ref. 1. 

Fix four-dimensional Minkowski space-time, with its 
flat metric 'TJab and derivative operator Va. Consider, on this 
space-time, a hyperbolic equation of the form 

t'b= (u,Vu)Va Vbu =/3(u,Vu) (1) 

on the function u. Here, t'b(U,VU) and/3(u,Vu) are given 
functions smooth in their arguments. The former is required 
to be of Lorentz signature for all (u, Vu), and such that 
t'b(O,O) = 'TJab. Further,/3 (u,Vu) is required to "vanish when 
its arguments vanish" in the following stronger sense: 
/3 (u,Vu) must be bounded by a smooth multiple of lulPIVul q

, 

wherep and q are nonnegative integers withp + q>2. Note, 
e.g., that/3 at least quadratic in either argument will do. Note 
also that these conditions ensure that u = ° is always a solu
tion of (1). 

Denote by S the hyperplane t = ° in this space-time. 
Consider on S smooth initial data, (uo,uo), for Eq. (1). The 
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boost theorem asserts that small initial data can be evolved, 
via (1), far into the future. We must specify what "small" and 
"far" are to mean. 

Measure the "size and asymptotic behavior" of data (uo, 
uo) by means of the number 

II(uo,uoJI1 2 = stl(1 + ry+ll(Du, ... Da,uo)(Du' .•. Da,uo) 

+ stl(1 + rr+ 8 + I(Da, ... Da,uo)(Da' ... Da,uo)· 

(2) 

Here, hub is the l]-induced metric on S (used to raise and 
lower indices), Du is the corresponding (flat) derivative oper
ator on S, and r is h distance from some fixed origin in S. 
Further, 8 is a certain number in the interval ( - ~ ,1) de
pending only on the form of the /3 in (1), and then only on its 
behavior near u = 0 and V u = O. (In the most common case, 
with/3 at least quadratic in Vu, 8 can be chosen as close as 
one wishes to the lower end of this range.) Thus, II(uo,uo)11 2 

looks to the values of Uo and its first five spatial derivatives, 
as well as Uo and its first four spatial derivatives. In order that 
this norm be finite, these values must vanish asymptotically 
sufficiently quickly with r that each of the 11 integrals in (2) 
converges. Note that the higher derivatives are required to 
vanish more quickly than the lower. In order that the norm 
be small, these values must be small "on the average." The 
"1 + r" in (2) is so chosen to approach r for large r (and thus 
impose the correct asymptotic conditions on the data), and 
yet be bounded below for small r (and thus accommodate the 
terms in which the power to which it is raised is negative). 
We remark that, as a consequence of the Sobelev inequality, 3 

the norm (2) bounds the numerical values, at points of S, of Uo 
and its first three spatial derivatves and Uo and its first two. 

Initial data (uo' uo) can, of course, be involved to obtain 
a solution ofEq. (1). But, since the equation can be nonlinear, 
the evolution will in general terminate at singularities. A 
solution u of (1) will be said to admit boost 0 [E(O, 1)] if it is 
defined and nonsingular at least in the region 

(2<0(1 +r) (3) 

of the Minkowski space-time. That is, the solution is re
quired to be nonsingular in a region which includes the ini
tial surface S, and also all boosts of S, up to speeds not ex
ceeding 0, about its origin. 

The boost theorem I now asserts: Given any OE(O, I), 
there exists a number E > 0 such that any data with 
II(uo,uo)11 2 < eevolves to a solution of (1 ) admitting boost O. It 
is further asserted that one can, again by demanding that the 
norm (2) on the data be small, ensure that the values of the 
solution u and of its gradient V u u will be small at all points of 
the region (3). 

That some such result should hold-at least for some 
choice of the norm on the initial data-is perhaps not alto
gether surprising. The zero data evolves to the zero solution, 
which, of course, has no singularities. By a judicious choice 
of norm, one can require that data be close-in an intricate a 
sense as one wishes-to the zero data. One might expect 
thereby to be able to guarantee that the corresponding solu
tion will remain small through a long time evolution-and in 
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particular that it will remain nonsingular in a region includ
ing boosts of the initial surface. The key feature of the boost 
theorem is that it provides a certain explicit expression, (2), 
for the necessary "closeness" of the initial data to zero. 

The theorem also applies with the single function u 
above replaced by m functions, ut, ... ,um

, and with Eg. (1) 
replaced by m equations, one on each of the ui 

• The y"b'S and 
/3 's, of course, can now be different in the different equations, 
and those in the ith equation can depend on the other u j and 
their gradients. The initial data now consist of the values and 
first time derivatives, on S, of all the ui

• The norm (2) is 
modified to be the sum of the corresponding norms for each 
of the ui

• The theorem also applies to dimensions other than 
four [signature ( -, +, +, ... , + )]. It is only necessary to 
modify the norm (2): For dimension n, increase the upper 
limits in the sums in (2) by (n - 4)12 (rounded downward), 
and decrease 8 by (n - 4)/2. The theorem also holds under 
somewhat weaker smootheness conditions on the initial 
data. Finally, the conclusion of the second part of the 
theorem (smallness of the resulting solution u) is actually 
much stronger than indicated above. We have only stated 
the conclusion we shall need. 

To apply the theorem to the case of Einstein's equation, 
say with vanishing sources, one introduces a harmonic coor
dinate system, and chooses for the u's the components of the 
difference between the space-time metric and the flat metric 
adapted to that coordinate system. Then Einstein's equation 
splits into two sets of equations, one a hyperbolic system of 
the form (1), and the other a system of constraint equations 
on the initial data. Temporarily ignoring the constraints, one 
applies the boost theorem to the hyperbolic system. In this 
case, 8 may be chosen arbitrarily close to -~, the lower end 
of its range. Further, the upper limits in the sums in (2) may 
in this case be reduced from 5 and 4 to 4 and 3, respectively. 
[This is a consequence ofthe particular form Einstein's equa
tion takes, in more detail, of the fact that here y"b(U, Vu) does 
not depend on Vu.] One thus concludes that data for the 
hyperbolic system (whether or not the constraints are satis
fied) can be evolved to admit large boosts-provided only 
that the norm of the data is sufficiently small. This conclu
sion therefore holds in particular when the constraints are 
satisfied, i.e., for the full Einstein equation. Note that the 
boosts through which evolution is guaranteed are those with 
respect to the flat background metric, and not the curved 
space-time metric (for which "boost" would anyway be dif
ficult to define). This fact is not a serious defect, however, for 
the second part of the boost theorem allows one to ensure 
that the space-time and background metrics will be within 
any preassigned amount at each point, merely by requiring 
that the norm on the orignal data be sufficiently small. 
Boosts for the background metric will then be "approxi
mately boosts" for the space-time metric. Finally, there can, 
of course, be included with Einstein's equation sources sub
ject to suitable hyperbolic equations. 

3. THE LOCAL NONSINGULARITY THEOREM 

The boost theorem itself is certainly a type of "nonsin
gularity theorem." We here obtain a theorem which cap-
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tures the "local" aspects of the boost theorem, omitting, e.g., 
its references to asymptotic structure and boosts. 

Consider again the hyperbolic equation (1) in Min
kowski space-time. Fix a compact, 3-submanifold with 
boundary C of the initial surface S (t = 0). For example, C 
might be a closed 3-ball in S. Consider again smooth initial 
data (uo' uo) for Eq. (1), but now given only on the region C. 
Choose any extension of this data from C to all of S, and take 
the maximum evolution of the resulting data on S. Finally, 
take the domain of dependence4 of C, using the metric 
y"b(U,VU), in this maximal evolution. We say that the data 
(uo,uo) given originally on C has nonsingular evolution if this 
domain of dependence is compact in the Minkowski space
time. The idea of this definition is the following. With re
spect to the flat metric 1Jab in Minkowski space-time, the 
domain of dependence of the compact region C will, of 
course, be compact. With respect to metric y"b (u,Vu) in the 
maximum evolution, the domain of dependence can fail to be 
compact only if it "terminates," in the past or the future 
from C, at a singularity of u. (Noncompactness would arise 
because such singular points must be omitted from the maxi
mal evolution.) But, since these singular points are abutted 
by the r-domain of dependence of C, their occurrence is al
ready a consequence of the data, (uo,uo), given originally in 
C. Indeed, one checks that the definition is independent of 
the choice of extension ofthe data from C to all of S. In short, 
initial data on C has nonsingular evolution if there arises no 
singularity predicted entirely by that data. 

Again fix region C and initial data (uo, uo) on C as above. 
We define the norm of the data by 

{ (uo,uo) J 2 = ± d 2(s + 8)1 (D a, .. ·D a, uo)(D a' .. ·D a,uo) 
s=o C 

+ ± d 2(s+0+ III (Da, ... Da,uo)(Da' ... Da,uo), (4) 
s=o C 

where d is the diameter of C, the maximum distance between 
any two of its points. This will be recognized as the same 
norm as (2), except that the integrals are only over C (i.e., 
only where Uo and Uo are defined), and the "1 + r" is re
placed by "d 2." The expression (4), in contrast to (2), has a 
definite dimension. 

We now state the local nonsingularity theorem: 
Theorem 1: Fix compact C as above. Then there exists 

E> 0 such that any data (uo, uo) on Cwith norm (4) less than E 

has nonsingular evolution. 
Proof Let, for contradiction, (u;, u;)(i = 1, 2, ... ) be data 

on C, each with singular evolution, and with! (Ui' u;) f-o. 
Assume that each (Ui' ui ) has support in the interior of C. '" 
This is no loss of generality, for, fixing any compact region C 
containing C in its interior, there exists5 a number A (> I)", 
such that any initial data on C can be extended to data on C 
with (i) the support of the extended data in the interior of C 
and (ii) the norm (4) of the extended data not exceeding A 
times the norm of the original data. Further, choosing a sub
sequence if necessary, we may assume that! (Ui' u;) J 2..;e - i 

for all i. 
Fix a point p of C, and also a sequence of points Yi of S 

whose distances from the origin are given by 
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(5) 

Denote by C; that region of S obtained by translating C in S 
until its pointp is located at pointy;. The C; are thus copies 
of C. They will not overlap, for the Y; "go to infinity quickly 
enough," by (5). Finally, denote by (uo, uo) the smooth initial 
data on S determined as follows: At points outside of all the 
C;, UO = Uo = 0, and, at points of C;, (uo, uo) is the originally 
given data (Ui> u;) (translated, similarly, so its support is 
inC;). 

We next bound the norm (2) of(uo, uo). First note that (2) 
can be represented as a sum of contributions from the C;, for 
Uo = Uo = 0 elsewhere. The distance, r, of any point of C; 
from the origin must be between I y; I - d and I y; I + d, and 
so from (5) we have 

d 2 [d -2 + (i _ If]..; I + r";d 2[d -2 + (i + In (6) 

But (6) bounds the "1 + r" of (2) by the "d 2" of (4). We 
conclude that the contribution of region C; to (2) is bounded 
by /(i)! (u i , u;)j2, where/is some positive function whose 
values increase no faster than a power of i. Hence, 

(7) 

is finite. 
So, omitting a finite number of initial Ci in the con

struction of(uo, uo), we may cause II (uo, uo)112 to be as small as 
we wish. Do so, and apply the boost theorem, to conclude: 
There exists a solution of u off I) (i) having (u o, uo) as its initial 
data, (ii) admitting boost (J for some (J, and (iii) having u and 
Vu less than a predetermined amount. Now the region (3) 
certainly includes, for all sufficiently large i, the 1J-domain of 
dependence of C; (for these domains of dependence extend 
into the past and future by time not exceeding d). So, by (iii), 
this region also includes the r(u, Vu)-domains of dependence. 
We conclude that, for all sufficiently large i, (u;, Ui) on C has 
nonsingular evolution. This contradiction establishes the 
theorem. 

Thus, all sufficiently small initial data on a fixed com
pact region C must have nonsingular evolution. Note that 
the proof is entirely elementary, and makes use of rather less 
than the full force of the boost theorem. Note also that the 
conclusion of Theorem I (although not the value of E) is 
independent of the detailed form of the norm (4). This form, 
suggested by dimensional considerations, was selected for 
later convenience. 

How does the "required degree of smallness of the ini
tial data"-the E given by the theorem-depend on the 
choice of the region C? We first remark that, for C with 
highly contorted boundary, the E must in general be small. 
This effect arises because, for such a C, the A in the first 
paragraph of the proof (the factor by which the norm of the 
data must be increased to extend it) becomes large.5 But this 
is essentially an "edge effect." There is a simple way of avoid
ing it, and thus of dealing only with the dependence of E on 
"size." Consider, on region C, not arbitrary initial data, but 
rather only data with support in the interior of C. Then the 
second sentence of the proof is unnecessary, and one imme
diately obtains an E depending only on the diameter d of C, 
not on its shape. Call this function E(d). Alternatively, in-
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stead of restricting the support of the data, one could restrict 
the region to be a member of a family of regions all dilations 
of each other (i.e., all of the same shape, but different sizes). 
Then, again, the required E would depend only on the diame
ter d. However, one easily convinces oneself that the result
ing l(d ) is bounded above and below by multiples (which 
depend on the shape of the regions in the family) of the E(d) 
above. Thus, the dependence of E on size reduces to the study 
of one function of one variable, E(d). The behavior of E(d ) for 
small d is of rather less interest, for, since the support of the 
data must lie in the interior of its region, one may always 
regard initial data as lying in a larger region, and thus us the 
norm and E of that larger region. For large d, the behavior of 
E(d) is quite simple: It must be bounded below. 

Theorem 2: There exist positive numbers do and Eo such 
that E(d );;;'Eo for d;;;.do, 

The proof follows closely that of Theorem 1. Fix any do. 
Suppose, for contradiction, that we have data (Ui> ui ) (i = 1, 
2, ... ) with support in the interior of region Ci of diameter 
di ;;;.do, all with singular evolution and with [( u i' U i) )2-+0. 
Again locate these regions on S, but choose for the locations 
Yi' instead of(S), I Yi I = idi. (It may additionally be necessary 
to choose a subsequence to avoid overlapping of the regions.) 
There again results smooth data (uo, uo) on S. With (6) re
placed by 

d~[(i-i)2l<I +r<dHd o-
2+(i+ If], (8) 

we again conclude that II(uo' uo)112 is finite. Apply the boost 
theorem. Again the 1J-domain of dependence of all but a 
finite number of the Ci is in the region (3), and so again we 
obtain a contradiction. 

Theorems I and 2 taken together constitute what we 
wish to regard as the local contents of the boost theorem. 
Indeed, this view is supported by the observation that one 
can, by a simple geometrical argument from these two local 
theorems, essentially recover the original boost theorem. 
The argument, which basically reverses the proof of 
Theorem 1, is the following. Fix number OE(O, 1). Consider 
on the hypersurface S data (uo, uo) with finite norm (2). 
Choose any point Y of S, and denote by C the closed ball in S 
with center Y and diameter d given by 

d 2=402(1 + lyW. (9) 

Then the distance r of any point of C from the origin is 
between IYI - d /2 and I yl + d /2. So, we have 

[(I-0)2/402]d 2<1 +r<[(1 + o 2)10 2]d 2. (10) 

Again using (10) to relate the norms (2) and (4), we conclude 
that 

[(uo, uoW<cll(uo, uo)112. (11) 

Here, the norm on the right is that of(2), the norm on the left 
is that of (4) using the data restricted to C, and c is a constant 
(depending on 0 ). Now invoke Theorems 1 and 2. It follows 
that, for II(uo, uo)112 sufficiently small, the data restricted to 
C, for every C constructed as above, has nonsingular evolu
tion. In Minkowski space-time, the union of the domains of 
dependence of the C's is, by (9), precisely the region (3). But 
small initial data on C evolves to a solution u in the domain of 
dependence of C with u and V u small, and hence with 
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y"'b(U, Vu) near 1Jab. Hence, for II(uo, uo)112 sufficiently small, 
the corresponding solution admits boost O. 

Note that the argument above recovers only the "boost 
part" of the boost theorem. The fact that small data on C 
produces a solution in the domain of dependence of C with 
y"'b (u, Vu) near the 1Jab is actually used in the argument. This 
feature is in a sense an unavoidabe consequence of the fact 
that the boost theorem refers to boosts with respect to the flat 
background metric 1Jab rather than the physical metric 
y"'b(U, Vu), for which "boost" would anyway be difficult to 
define. 

An interesting feature of the present local version is that 
there are numerous ways to "globalize" Theorems 1 and 2, 
yielding numerous variants of the boost theorem. By 
strengthening the norm (2) [increasing the functions 
(1 + r)S + /j which appear], one can increase the size of the 
region (3) over which smooth evolution is guaranteed. In the 
other direction, weaker norms suffice for smaller regions. 
The simplest such variant is the following: 

Theorem 3: Let (u o, uo) be initial data on S with norm 

sti(Da, ... Da,uo)(D a' ... D a,uo) 

+ sti(Da, ... Da,uo)(Da' ... Da,uo) 

( 12) 

finite. Then the corresponding solution of (1) admits some 
time translation. To prove this, repeat the argument above, 
replacing (9) by d = 2to and (10) by d /2to< 1 <d /2to. 

In fact, the class of theorems one obtains in this way is 
very large indeed. Let 2 be any open region in Minkowski 
space-time in which the initial hypersurface S is a Cauchy 
surface,4 and whose closure, 1', in the conformal comple
tion6 of Minkowski space-time does not intersect null infin
ity f ±. Then, we claim, there exists a norm of the form (2) 
such that any initial data (uo, un), if sufficiently small in this 
norm, must evolve to a solution which is smooth and nonsin
gular everywhere in 2. (The boost theorem and Theorem 3 
are special cases for particlar choices of 2 ). To see this, first 
replace (9), the expression for the diameter d of a ball in terms 
of its locationy, by a new expression such that (i) the union of 
the domains of dependence of the balls includes l' and (ii) 
I yl - d /2--+00 as I yl--+oo. (It is here that we need that l' not 
intersect f ±-.) Letfbe a function such thatf(r) exceeds 
max(d/j ,d 1 + {) , ... , d 5 + Ii), where the maximum is over all the 
d's which occur for all those balls which include any point a 
distance r from the origin in S. This maximum exists, since, 
by (ii), it is over a collection of balls having their centers in a 
compact region of S. Finally, the appropriate norm is (2), but 
with the powers of (1 + r) everywhere replaced by fIr). For 
many 2 's, more delicate arguments can yield more delicate 
norms. 

Of particular interest would be some result to the effect 
that, for sufficiently small initial data on S, the region of 
smooth evolution reaches null infinity, for such a result 
would allow us to study radiation fields. This case was expli
citly excluded in the argument above, by the condition that 2 
not meet f ±. [Note, similarly, that the left side of (10) van
ishes when 0 = 1.] Might there, however, be a more subtle 
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argument involving Theorems 1 and 2, using a norm possi
bly radically different from that of (2), which does work in 
this case? It is perhaps instructive to see why this is unlikely. 
Fix initial data (uo, uo), small in some norm, on S, and let the 
region ~ above be such that there is some point P in I and 
f ± . Let C be any closed ball in S in the interior of I - ( P )ffi'. 
Now consider any collection of closed balls in S, the union of 
whose domains of dependence includes~. Then there must 
be within this collection balls which include C and have arbi
trarily large diameter d. Consider the norm (4) for the initial 
data restricted to these balls. The integrals over C will in 
particular include integrals over the fixed C, and so, as d 
becomes large, the norm will in general become infinite. 
Thus, we will in general be unable to conclude from Theo
rems 1 and 2 that the data, restricted to the balls in this 
collection, have nonsingular evolution. One checks that this 
argument will fail only if the data (uo, uo) vanish everywhere 
in I -(p)ffi'. In short, one can show nonsingular evolution to 
null infinity only in the trivial case in which the zero data is 
responsible for that evolution. 

Finally, we remark that this section is easily generalized 
to include systems of hyperbolic equations [rather than the 
single equation (1)] and to dimensions other than four. 

4. EINSTEIN'S EQUATION 

The previous section applies equally well, of course, 
when the hyperbolic system is Einstein's equation. However, 
as we shall see shortly, further simplifications are possible in 
this case. To make the discussion concrete, we deal only with 
the source-zero equation. The results may be generalized to 
include sources, themselves subject to suitable hyperbolic 
equations. 

Let Cbe a compact 3-submanifold with boundary of the 
3-manifold R3. An initial-data set on C consists of a pair 
(q ab' P ab of symmetric tensor fields on C, the former positive
definite, satisfying the usual constraint equations 7 of general 
relativity. The key feature which simplifies the treatment of 
Einstein's equation is its scaling symmetry. Let il be any 
positive number. Then the initial-data set (q~b' P~b) 
= (il 2qab , ilPab) also satisfies the constraint equations. 
Further, the two sets of initial data evolve to solutions of 
Einstein's equation differing only by the constant factor il 2. 

In particular, either both have nonsingular evolution, or 
neither do. This scaling freedom is, of course, not exclusive 
to Einstein's equation. Indeed, it merely reflects the fact that 
qab andpab' as physical fields, have physical dimensions. 

Now fix some flat, positive-definite metrichab on C. We 
define the norm of initial-data set (qab' Pab) by 

!(qab,PabW 

= stodzS-3L[Da .... Da,(qab -hab)] 

X [Da,···Db,(qcd _hCd)]ha,b' ... ha,h'hachbd (13) 

+ st/ 2s- ZL[ Da, ... Da,Pab] [Db, ... Db'pCd] 

xh a,b' ... h aAh aCh bd. 

Here, Dais the h-derivative operator, and d the h-diameter 
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of C. Comparison of (13) with (4) reveals a few minor 
changes. First, (13) has been expressed in more geometrical 
form. Second, the upper limits of the sums have been re
duced from 5 and 4 to 4 and 3, respectively. As remarked in 
Sec. 2, this reduction is available because of the particular 
form taken by Einstein's evolution equations. Third, the 
number 8 in (4) has now been set equal to -~. Application of 
the general considerations of Sec. 2 would yield 8> -~, but 
as close as one wishes to this lower limit. The present choice, 
as we shall see, is made possible by the scaling symmetry. An 
important feature of this norm is that it is scale-invariant 
("dimensionless"), provided we scale the flat metric by 
h ~b = il 2 hab . (The" - 3" in the d exponent in the first sum 
scales the h-volume element in the integrals.) 

We now state the local nonsingularity theorems for Ein
stein's equation. 

Theorem 4: Given region C and flat hab as above, there 
exists E> 0 such that any initial data set (qab' Pab) on C with 
norm (13) less than E has nonsingular evolution. 

Theorem 5: There exists Eo > 0 such that, whenever Cis 
an h-ball (of any diameter), E = Eo suffices in Theorem 4. 

Theorem 4 is just Theorem 1 restated in the present 
context, while Theorem 5 follows immediately from 
Theorem 4, using the scale symmetry and the fact that the 
norm (13) is scale-invariant. Of course, a result analogous to 
Theorem 5 holds for any fixed "shape" of C, varying only the 
"size." Note that we never used Theorem 2. 

In this sense, then, a small initial-data set for Einstein's 
equation must have nonsingular evolution. It is curious that, 
in contrast to the general case, the dependence on size of the 
region is so simple for Einstein's equation. Indeed, Theorem 
5 guarantees the existence of a "universal" pure number Eo, 

the smallest such that any initial data on a ball must have 
nonsingular evolution provided its norm (13) is less than Eo. 

What is the value of this number? It would seem to be diffi
cult to obtain a good estimate. A lower limit may result from 
tracing through the original proofl of the boost theorem. 
Upper limits may be obtained by means of examples. Con
sider, for instance, the Kasner solutions.8 The metric, in a 
suitable coordinate system, is 

(14) 

where PI' P2' and P3 are numbers whose sum, as well as the 
sum of whose squares, is 1. Denote by C the spacelike 3-
submanifold with boundary given by 

t = to, 

t~P'(l - Plfx2 + t~P'(1 - pz)Y + t~P'(1 - P3)ZZ2<3t~. 

(15) 

It is not difficult to check that the domain of dependence of C 
reaches "the singularity at t = 0." So, the induced initial 
data on C must have singular evolution. The data is given, in 
this coordinate system, as follows: The components of qab 
are diag(t ~P', t ~P2, t ~P'), and those of Pab' 2t 0- I diag(Plt ~P', 
P2t ~P2, P3t ~P2). Let hab be the flat metric on C with compo
nents diag(t ~P'( 1 - Plf, t ~P'( 1 - Pz)Z, t ~P'( 1 - P3n so C is an 
h-ball of diameter 2v'Jto. It is now easy to compute the norm 
(13), for only the first term in each sum contributes: 
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For the case PI = PZ = j, P3 = - j, for example, this norm 
has value 305 9951T1512::::: 1878. We conclude, therefore, 
that the number £0 cannot exceed this value. Clearly, one 
could substantially reduce this upper limit by more careful 
analyses of this and other examples. 

There are at least three unnatural features of the local 
nonsingularity theorem for general relativity. We briefly dis
cuss these features. 

The norm (13) involves, in addition to the initial data, a 
fixed flat background metric hab on C-a metric that, of 
course, has no physical significance. It would be more natu
ral to use a norm involving only physical fields. We indicate 
a possible line of attack on this issue. Fix C, a 3-manifold 
with boundary, topologically a 3-ball. On initial data 
(q ab' P ab) on C, introduce the following norm: 

! (qab' Pab)l'z 
= maxac(dZR - 8)z + maxac (d1Tab - 2nal>)(d~b _ 2nab) 

+ stod2S +J)Da: .. Da,R ab 1 [Da' ... Da'R ab ] (17) 

+ stod2S-2L[Da: .. Da,Pabl [Da' ... Dapab]. 

Here, ac is the boundary of C, d is such that 1Td Z is the q-area 
of ac, nab is the induced metric and 1Tab the extrinsic curva
ture of ac, R is the scalar curvature of nab' Dais the deriva
tive operator defined by qab' Rab is the Ricci tensor of qab' 
and indices are raised and lowered with q ab' The key features 
of this norm are that it involves no flat background metric 
and that is is invariant under scaling. 

The norm (17) vanishes if an only ifR = 8ld z, 
1Tab = 2nab ld, Rab = 0, andpab = O. That is, the norm van
ishes if and only if P ab vanishes and q ab is flat and such that C 
is a q-ball. We claim further that the norm (13) bounds (17): 
Given £' > 0 there exists £ > 0 such that ((q ab' P ab W.;;;£ im
plies! (qab,Pab)}'z,;;;£,. To see this, note3 that, for the first 
sum in (13) small, qab - hab' as well as its first two deriva
tives, must be small at points of C, whence the first two terms 
in (17) are small. Then the first sum in (13) bounds the first in 
(17), and the second the second. But the more interesting 
question is the converse. It is true that, given by £ > 0, there 
exists£' > Osuch that, whenever! (qab' Pab) l/z';;;£I' then there 
exists flat metric hab on C such that C is an h-ball and 
! (qab' Pab) J 2.;;;£? A positive answer would mean that one may 
replace norm (13) by the "intrinsic" norm (17). It seems a 
reasonable conjecture that the answer is yes. Roughly speak
ing, the first term in (17) small implies that the q-induced 
metric on ac is close to that of a sphere, while the second 
term small then implies the existence of a flat hab near ac 
whose value and derivative on ac are close to those of q ab' 
We thus achieve the required boundary conditions. Finally, 
the first sum in (17) small implies that the Ricci tensor of q ab 
is small at points of C, i.e., that qab is "nearly flat." So, one 
might expect a flat hab on C close toqab in the sense of (13). It 
would be of interest to prove this conjecture, preferably for 
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some less awkward replacement for (17). 
The second feature, also involving the character of the 

norm (13), is closely related to the first. There exists of course 
initial data (q ab' P ab) on C which is for flat space-time, but is 
such that qab is far from flat and Pab is far from zero. Such 
initial data may be obtained by taking a spacelike embed
ding-not in a hyperplane--of C in Minkowski space-time, 
and then evaluating the induced data. Now, for such data the 
norm (13) can be large, for it vanishes if and only if qab = hab 
and Pab = O. Thus, we would be unable to conclude from 
Theorem 4 that such data has nonsingular evolution, despite 
the fact that its evolution (a flat space-time) is obviously 
nonsingular. In short, it would perhaps be more natural for 
the norm (13) to measure distance, not from the trivial data 
(hab' 0), but rather from "the nearest data with flat evolu
tion." We suggest, as one possible line for constructing such 
a norm, use of Witten's energy integral. 9 This integral is sug
gested by the fact that it vanishes for any data with flat evolu
tion. But one would first have to modify the boundary condi
tions on the spinor potential, to accommodate the fact that 
our data, confined to a compact region C, are not asymptoti
cally flat. Further, the integral itself would have to be modi
fied, for as it stands it does not control the higher derivatives 
of the initial data which appear in (13). A norm along these 
lines, could it be found, might also serve as the "less awk
ward replacement" for (17). 

The third unnatural feature involves the derivation 
from Theorem 4 of the original boost theorem and its gener
alizations. This derivation was carried out in Sec. 3 for the 
case of the general hyperbolic system. That argument made 
use of the fact that small initial data evolves to a small solu
tion. Now this general framework is applied to Einstein's 
equation by working in a harmonic coordinate system. Thus, 
the corresponding fact in the Einstein case would read: By 
requiring that the norm (13) on initial data (qab ,Pab on Cbe 
small, one can guarantee that, at every point, the compo
nents of the space-time metric gab' in a harmonic coordinate 
system, will be near diag( - 1, + 1, + 1, + 1), and that the 
coordinate derivatives of these compounds will be small. 
This formulation is awkward, for it involves a coordinate 
system without physical significance. Of course, the final 
result-the generalized boost theorem-in the Einstein case 
manifests a similar awkwardness, for it makes reference to 
an unphysical flat background metric. But this seems to be 
unavoidable, for the region in which nonsingular evolution is 
to be guaranteed must be specified prior to the space-time 
metric. In short, while it seems difficult to improve the state
ment of the final result, one might hope to improve what 
goes into that result, i.e., to find a more physical version of 
"small initial data in C for Einstein's equation yields a nearly 
flat space-time metric. " 

Fix compact 3-manifold with boundary, C, and flat 
metric hab on C. Denote by f the set of all smooth initial 
data (q ab' P ab)' satisfying the constraint equations, on C. The 
norm (13) defines neighborhoods of the point (hOb' 0) of f. 
Consider the 4-manifold M = C X R, and fix once and for all 

+ 
positive-definite metric gab on M. Denote by Y the collec-
tion of all smooth source-zero solutions gab of Einstein's 
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equation on M, with respect to which the domain of depen
dence of C is compact. Let the topology on Y be that in
duced by the distance function 

d (gab ,g~b) = lub( gab - g~b) 
M 

+ + 
X(gcd _g;d)gacgbd 

(18) 

+ + 
where V a is the derivative defined by gab' Now, one might 
think of representing "the evolution of data" as a mapping 
from J to Y, whence "small data evolves to a nearly flat 
metric" would be expressed as continuity of this map near 
(hab' 0) in J. But this does not work. In the absence of gauge 
conditions, a given set of initial data does not even produce a 
unique space-time metric gab in M. Thus, we obtain no map, 
and so in particular cannot require its continuity. 

An elegant way to say what one wants to say was sug
gested to me by Rafael Sorkin. Consider the mapping; from 
Y to J obtained by merely evaluating the data on C. This 
mapping is well defined. We are interested, not in continuity 
of the map;, but rather in "continuity of its (nonexistent) 
inverse." We may express this by requiring that the mapping 
; be open in an appropriate region. 

Theorem 6: Let gabEY with; (gab) = (hab , Old, and 
let Ube a neighborhood of gab' Then; [U] is a neighborhood 
of(hab'O). 

This statement merely restates the second part of the 
boost theorem in the Einstein case. Thus, by choosing the 
mapping to be from the solutions to the data, rather than the 
other way, one avoids the problem of gauge. 

5. CONCLUSION 

. To summarize, we have shown that, for certain hyper
bolIc systems, initial data given on a compact spacelike patch 
must evolve to a solution nonsingular insofar as determined 
by that data, provided the initial data is sufficiently small as 
measured by a certain norm. The class of hyperbolic systems 
to which this applies includes Einstein's equation. 

One might seek to generalize these results in any of a 
number of directions. We suggest a few possibilities below. 

The norm (4) on initial data (uo, lio) in the general case 
invo~ves Uo and its first five spatial derivatives, as well as lio 
and Its first four. Is control of such high derivatives really 
necessary to ensure nonsingular evolution? In the original 
boost theorem, I the data was not assumed to be smooth, and 
so a strong norm was needed in part merely to impose on the 
data sufficient smoothness that some evolution exist. But 
suppose one assumes, as here, that the data is already smooth 
(e =). Might it then be possible to use a weaker version of the 
norm (4), in which the last few terms in the sums are omitted? 

An example will illustrate this remark. Consider in 
Minkowski space-time the equation 

",abVa rhu = 2(1 + u)-I",abvauVbu. (19) 
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Let C be the unit ball centered at the origin in the initial 
hypersurface S (t = 0). Then Theorem 1 guarantees that data 
on C with norm (4) sufficiently small must have nonsingular 
evolution. Will a weaker norm do? The answer in this exam
ple is yes. In fact, (19) is just the wave equation on the func
tion v = (1 + u) - I. Thus, singularities in u from evolution 
under (19) are just zeros in v from evolution under the wave 
equation. The solution v is given in terms of its initial data on 
Sby 

(20) 

where avg is the average over the sphere given by the inter
section of S and the light cone of (t, x, y,z) and na is the unit 
outward normal in S to this sphere. Thus, an acceptable 
norm on (uo, liol must hold Vo sufficiently close to one and VVo 
and Vo sufficiently close to zero that the v given by (20) is 
bounded away from zero. This is accomplished \0 by the 
norm (4) with the last three terms in each sum omitted, i.e., 
by the norm which involves only Uo and its first two spatial 
derivatives, and lio and its first. No further terms may be 
omitted. II 

Thus, in at least one example, some higher-derivative 
terms in the norm (4) may be omitted. What would be of 
interest is, not weaker norms for special equations-and par
ticularly not for such artificial equations-but rather a gen
eral result to the effect that a weaker norm suffices for all 
equations of the form (1), or else an example to show that no 
weaker norm works in general. 

A similar question arises, of course, for the norm (13) 
for Einstein's equation. Now one has the added feature
perhaps making proofs easier, and certainly making exam
ples more difficult-that the initial data must also satisfy the 
constraint equations. 

The local nonsingularity theorem states that initial data 
must have nonsingular evolution ifit is near the trivial data. 
A natural generalization is that initial data must have non
singular evolution if it is near any initial data with nonsingu
lar evolution. Such an assertion may be formulated as fol
lows. Fix C, a compact 3-submanifold with boundary of R 3, 

with its flat metric hab . Denote by J the collection of all 
smooth initial data, (uo, lio), for (1) on C. Impose on J the 
norm topology from (4), i.e., that which arises from 
! (u o - lib, Uo - lib) J 2 as the distance between points (uo' lio) 
and (ub, lib). In general some points of J, i.e., some sets of 
initial data, will have nonsingular evolution; others singular. 
Theorem 1 in this language asserts that those with nonsingu
lar evolution include a neighborhood of the point (0, 0). The 
natural generalization is: 

Conjecture 7: The set of points of J with nonsingular 
evolution is open. 

Note, for instance, that Conjecture 7 is true for the case 
of the hyperbolic equation (19). 

One could in particular formulate this question for Ein
stein's equation. Then J is the collection of smooth initial 
data (q ab' P ab) on C satisfying the constraint equations, the 
topology on J is the norm topology from (13), and the asser
tion is again Conjecture 7. In the general case, Conjecture 7 
replaces Theorem 1, but does not include the additional in
formation contained in Theorem 2, i.e., that the degree of 
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smallness required on initial data for nons in gular evolution 
is "uniform" in the size of the region C. For Einstein's equa
tion, Conjecture 7 replaces Theorem 4. But in this case the 
corresponding "uniformity," given by Theorem 5, is an im
mediate consequence, by virtue of the scaling symmetry. 
Thus, in contrast to the general case, Conjecture 7 captures 
essentially the entire "local content" of the boost theorem 
for Einstein's equation. 

There are several other interesting features of Conjec
ture 7 for Einstein's equation. First note that, whereas the 
actual distances, defined by the norm (13), between points of 
f depend on the flat background metric hab , the resulting 
topology on f does not. In fact, this topology is unchanged 
for hab any smooth positive-definite metric, flat or not. 
Thus, this topological version avoids entirely the artificial 
dependence on a flat background metric noted in Sec. 4. In 
addition, there now arises the possiblity offurther generaliz
ing Conjecture 7 by letting C be any compact 3-manifold 
possibly with boundary-not necessarily one embedded in 
R3. So, for example, C could be a 3-sphere. Conjecture 7 
implies that initial dta (qab' Pab) has nonsingular evolution if 
it is sufficiently close to any initial data having flat evolution. 
Thus, this topological version would circumvent the second 
unnatural feature, noted in Sec. 4, ofthe local nonsingularity 
theorem for general relativity. 

Finally, we remark that one may generalize Theorem 6 
and combine it with Conjecture 7. 

Conjecture 8: The mapping ;:Y --+ f is open. 
(A mapping is open if the image under it of any open set 

is open.) 
This generalizes Theorem 6 because it requires that the 
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mapping; be open everywhere, not just near certain flat 
solutions. It also includes Conjecture 7 as a special case, for it 
requires in particular that; [Y] beopeninf, while; [Y] be 
precisely the points of f with nonsingular evolution. In 
short, Conjecture 8-an extremely simple statement
seems to carry out all the information about the local nonsin
gularity behavior of Einstein's equation. A proof would be of 
interest. 
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A 20-term recursion relation is derived that describes exactly the occupation statistics for 
indistinguishable dumbbells (which occupy two nearest neighbor sites) distributed on a 2 X 2 X N 
lattice space. On the basis of this recursion, the normalization, expectation, dispersion, and 
continuous representation of the statistics are also developed. When the lattice space is completely 
filled, the recursion relationship reduces to four terms, permitting a calculation of the 
orientational degeneracy of a completely filled 2 X 2 X N lattice space. 

PACS numbers: 05.50. + q, 02.50. + s 

I. INTRODUCTION 

The problem of determining the occupational degener
acy for indistinguishable dumbbells distributed on a lattice 
space has its genesis in the statistical treatment of phenom
ena such as the adsorption and crystallization of diatomic 
molecules, the properties of binary alloys and the role of 
hydrogen bonding in elastomers and the action of muscle 
tissue. 

The underlying difficulty in treating such systems is 
that there is statistical correlation in the sense that if a site is 
occupied then at least one of its nearest neighbor sites must 
be occupied. Thus, there is not a distribution of occupied 
sites but rather a distribution of pairs of occupied sites. Here, 
a dumbbell particle is one that occupies two linearly conti
guous sites. As is generally true for statistical problems of 
this nature, exact solutions have been found for the one
dimensional case l only. Exact solutions for lattice spaces of 
higher dimensionality have been obtained for very special 
cases only, i.e., a completely filled two-dimensional rectan
gular lattice space using Pfaffians2

•
3 and the transfer matrix 

method.4 Consequently, either the spaces have been restrict
ed5

,6 or approximation methods have been utilized7,8 to solve 
this problem. 

In the present paper we are concerned with the occupa
tion statistics for indistinguishable, noninteracting dumb
bells distributed on a nonsaturated, quasi-three-dimensional 
rectangular lattice space: a 2 X 2 X N array, in which most of 
the lattice sites have four nearest neighbors (see Fig. 1). The 
method presented here yields an exact recursion relation for 
the unsaturated, quasi-three-dimensional rectangular lattice 
space. To the best of our knowledge neither the Pfaffian nor 
the transfer matrix methods can be utilized to yields an exact 
solution in this case. 9 

II. RECURSION RELATIONS FOR A[q,N] 

In the present section we derive a recursion relation for 
A [q,N], the number of unique arrangements of q indistin-

alThe research reported here has been supported, in part, by the Air Force 
Office of Scientific Research under Grant AFOSR 81-0192. 

guishable dumbbells on a 2 X 2 X N lattice space. We parti
tion the 2 X 2 X N lattice into N blocks in which each block 
consists offoursites. Five arrays, a(N ),/3 (N), y(N), 8(N), and 
E(N), are defined by the removal of zero through three sites 
from the Nth partition (see Fig. 2). 

Thus, we call the quantities A [q,N], B [q,N], C [q,N], 
D [q,N],andE [q,N], the numbers of all unique arrangements 
of q indistinguishable dumbbels on the lattices, a(N), /3 (N), 
y(N), 8(N), E(N), respectively. 

We now determine certain subsets of which A [q,N], 
B [q,N], C [q,N], D [q,N], and E [q,N] are composed, by 
examining the states of occupation of the compartments in 
the Nth partition of the arrays, a(N), ... , E(N), respectively. 
There are a total of 34 configurations involving the occupa
tion (or vacancy) of theN th partition ofthea(N) array. How
ever, due to reflective and rotational symmetries there are 
only ten independent arrays (see Fig. 3). The numerical coef
ficient beneath each drawing indicates the degeneracy of the 
depicted arrangement. For example, the third drawing from 
the top on the left-hand side of Fig. 3 shows the situation 
when three of the compartments are vacant and one occu
pied by a dumbbell that extends into the adjacent compart
ment in the (N - 1 )th partition. The remaining (q - I) 
dumbbells can then be distributed on a /3 (N - 1) array in 
B [q - 1,N - 1] independent ways. Because the dumbbell 
that occupies compartments in the Nth and (N - I )th parti
tions can be placed in four equivalent positions, there are 
4B [q - 1,N - 1] arrangements possible for this configura
tion. 

By considering the ten arrangements shown in Fig. 3, 

FIG. 1. A 2X2XN rectangular lattice space. 

1859 J. Math. Phys. 24 (7), July 1983 0022-2488/83/071859-07$02.50 © 1983 American Institute of Physics 1859 



                                                                                                                                    

a (N) 

,B (N) 

y(N) 

8 (N) 

FIG. 2. The five lattice arrays required for the determination of the recur
sion relation satisfied by A [q,Nj. 

we may write for the decomposition of A [q,N], 

A [q,N] =A [q,N - 1] + 4A [q - I,N - 1] 

+ 4B [q - I,N - 1] + 2A [q - 2,N - 1] 
+ 8B [q - 2,N - 1] + 4C [q - 2,N - 1] 

+2D[q-2,N-l]+4C[q-3,N-l] 

+ 4E [q - 3,N - 1] + A [q - 4,N - 2]. (la) 

From the similar treatment of the arrays in Fig. 2, we 
write 

B [q,N] = A [q,N - 1] + 2A [q - I,N - 1] 
+ 3B [q - I,N - 1] + 2B [q - 2,N - 1] 

+ 2C[q - 2,N - 1] + D [q - 2,N - 1] 
+ E[q - 3,N - 1], (lb) 

C[q,N] =A [q,N -1] +A [q - I,N - 1] 
+ 2B [q - I,N - 1] + C[q - 2,N - I],(lc) 

D[q,N] =A [q,N - 1] + 2B [q - I,N - 1] 
+D[q - 2,N - 1], (ld) 

E [q,N] = A [q,N - 1] + B [q - I,N - 1]. (Ie) 

Equations (la)-(le) can be solved for A [q,N] in terms of 
other A 'sby first eliminating Eusing Eq. (Ie); next we use Eq. 
(ld) to eliminate B; C is then eliminated utilizing the equa
tion that results from the foregoing operations on Eq. (ld). 
The two remaining equations contain A 's and D 's only and 
can be solved for the A 's by substituting the reindexed D 's 
into one of the equations from the other. These procedures 
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1;~'N-ll 
~

~ 
:-~ .. ) 

.: .~.~ .. 2A [q-2, N-1] 

~, .. ~I . _. ~ '/ 
; -' v 

L;:~: 4C [q-2, N-lj 

FIG. 3. This figure shows the ten independent arrays into which the set 
A [q,Nj can be decomposed. 

yield 

A [q,N] =A [q,N - 1] + 7A [q - I,N - 1] 

+ 6A [q - 2,N - 1] + A [q - I,N - 2] 
+ 6A [q - 2,N - 2] + 6A [q - 3,N - 2] 
- 7A [q - 4,N - 2] - 2A [q - 3,N - 3] 
- lOA [q - 4,N - 3] - 26A [q - 5,N - 3] 

- 8A [q - 6,N - 3] + A [q - 5,N - 4] 

+ 2A [q - 6,N - 4] + 6A [q - 7,N - 4] 
+ 9A [q - 8,N - 4] + A [q - 8,N - 5] 
- A [q - 9,N - 5] + 2A [q - lO,N - 5] 
-A [q - 12,N - 6]. (2) 

Equation (2) is thus the recursion we seek for A [q,N]. 
We will use it to develop the occupation statistics for dumb
bells on a 2 X 2 X N lattice space. 

Phares et al. 10-13 have solved recursions of the type giv
en in Eq. (2) using a combinatorics function technique that 
yields solutions of multidimensional, multi term difference 
equations. 

III. GENERATING FUNCTIONS 

We first form the polynominals 

2N 

fN(X) = I A [q,N jxq
• (3) 

q~O 

Utilizing the recursion derived in the previous section [Eq. 
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(2)], Eq. (3) yields 

fN +6 (x) = [I + 7x + 6x2]fN+S(X) 

+ x[ 1+ 6x + 6x2 
- 7x3

] fN +4 (x) 

- 2x3
[ 1+ 5x + 13x2 + 4x3

] fN+3(X) 

+x5 [1 + 2x + 6x2 + 9x3]fN+2(X) 

+x8 [1-x+2x2]fN+l(X)-X l2jN(X). (4) 

Equation (4), together with initial conditions for fo(x) 
throughfs(x) gleaned from Table I will yield the numerical 
values for A [q,N], N> 5 displayed in Table I. 

To obtain G (x,y), the so-called bivariant generating 
function, defined by 

00 

G (x,y)- r fN(XlYN, 
N=O 

(5) 

we impose the initial conditions onfN(x) (see Table I) and 
obtain (see Appendix A) 

G(x,y)=H(x,y)lP -y[1 +7x+6x2
] 

- y 2x[1 + 6x + 6x2 
- 7x3

] 

+ 2lx3 [1 + 5x + 13x2 + 4x3
] 

- y4x S[1 + 2x + 6x2 + 9x3] 

- y5x8[1- X + 2x2] + y6x12j, (6) 

where H (x,y) is a polynominal of tenth degree in x and fourth 
degree iny. 

IV. NORMALIZATION 

In this section we determine for large values of N, the 
numerical values of 

2N 
.d N = rA [q,N], (7) 

q=O 

the normalization of the statistics characterized by the re
cursion relationship given in Eq. (2). The recursion relation
ship for.d N is obtained from the generating function [Eqs. (3) 
and (4)with x=I]: 

.d N+6 = 14.J N + S + 6.d N+4 - 46.d N+3 
+ 18.J N + 2 +2.d N + 1 -.d N • 

With the initial conditions (see Table J) 

.do = I, .d 2 = 108, 41 4 = 21 497, 

.d 1 = 7, .d 3 = 1511, .d 5 = 305184, 

(8) 

(9) 

the generating function for.d N is given by Eq. (6) withx=l, 
i.e., 

where the kj 's are constants and the R j 's are the reciprocals 
of the roots of the denominator; and whereH[I,y]=l - 7y 
+ 4y2 + 3y 3 - y4 (see Appendix A), that is, the Rj 's are the 

roots ofz6 
- 14r - 6z4 + 46z3 - 18~ - 2z + 1. From 

Descartes' rule of signs we see that there are at most four 
positive real roots and two negative real roots and no imagi-
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nary roots. The roots are determined to be 

RI = 14.200 740 57, R4 = 0.270 655757, 

R2 = 1.379071 809, R5 = - 0.225576045, 

R3 = 0.410 838846, R6 = - 2.035 730940. 

(11 ) 

Consequently, an equivalent expression for the generat
ing function for the ..::1 N 's may be written as 

6 k. 00 6 

I ) = I I (kjR f)yN, (12) 
j~ II - Rjy N~Oj~O 

or 
6 

..::1N=IkjRf. (13) 
j~1 

Because the values of R2, ... , R6 are less than R I, we may 
write 

lim ..::1 N = klR f. (14) 
N~oo 

As y-R 1- I only the first term in Eq. (10) is significant so 
that 

11m 
. { 1 - 7y + 4y2 + 3y3 _ y4 

y-.R 1- I 1 - 14y - 6y2 + 46y3 _ 18y4 _ 2y5 + y6 

- 1 :~J' } = O. (15) 

Utilizing L'Hospital's rule we determine K t , 

R i(R i - 7R ~ + 4R i + 3R I - 1) 
kl = ---.::...--=----~--~------

14R i + 12R i - 138R ~ + 72R i + lOR I - 6 
~0.528 471535. (16) 

Thus 

..::1N~(0.528 471535)(14.200 740 57)N. (17) 

For N = 5, Eq. (17) yields 305 194.4. This is to be compared 
with a value of 305 184 (see Table I), giving an error of ap
proximately 0.003%. 

v. EXPECTATION, DISPERSION, AND CONTINUOUS 
REPRESENTATION 

In this section we begin by calculating «() ) N' the expec
tation value of the occupation of a 2 X 2 X N lattice space, 

«()N-2(q)NI4N= (q)NI2N, (18) 

where 
2N 2N 

(q)N= IqA [q,N]I IA [q,N], 
q~O q~O 

or 

( 19) 

We utilize Eq. (2) and assume the law of large numbers 
(see, e.g., Ref. 14), that for sufficiently large N 

«()N~«()N-I'''~«()oo; (20) 

then Eq. (19) yields (see Appendix B) 

1 [ 19Ri +3Ri -224R~ + 131Ri + 19R I -12] «() N = -2 = 0.639 594004. 
14R i + 12R i - 138R ~ + 72R i + lOR I - 6 

(21) 

Thus, if we assume the validity of the central limit 
theorem, the maximum number of arrangements occurs 
when the lattice space is approximately 64% filled. Figure 4 
shows A [q,5] as a function of q. In this case, the maximum 
occurs at q = 6 or «()5 = 0.60. 

0' 
o 

«() 2) N' the dispersion in () for a 2 X 2 X N lattice space, 

2 3 4 5 6 7 8 9 10 
q-

FIG. 4. A [q,5] is shown as a function of q. The maximum value of A occurs 
atq = 60r (8), = 0.60. 
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I 
defined by 

«()2)N = (q2)NI4N 2
, 

where 

1 2N 
(q2) N - I q2A [q,N] 

..:1Nq~O 

yields (see Appendix C) 

(22) 

01= [ «() 2) N - «()~] = 0,076 248 755 N -I, (23) 

where again forlarge values of N we have assumed Eq, (20) to 
be valid, 

We see that for large values of N, A [q,N] can be repre
sented as Gaussian distribution 

A [(),N] = Amax exp( - [() - «() N] 21201 j, 

where 

(24) 

A = klR '~ = 0.381 75549 (14.200 740 57)N 
max (81TNo1)1/2 Pi 

as determined by the normalization. 
Figure 5 shows a comparison of A [(),5], as calculated 

according to Eq. (2) (with appropriate initial conditions), 
with A [(),5] as determined by Eq. (24). 
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CD 

o 
! J I , 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

e --------. 
FIG. 5. The dots show A [8,5) calculated according to the basic recursion 
relation, Eq.(2), with appropriate initial conditions. The continuous curve is 
A [8,5), as given by Eq. (24). 

VI. ORIENTATIONAL DEGENERACY FOR SATURATED 
LATTICE SPACES 

We note that when q> 2N no arrangements are possi
ble. If, however, q = 2N, i.e., ifthe lattice space is completely 

I 

AN = 3A N_ I + 3A N_ 2 -AN_ 3 

0 = 3AN_ I - 9A N_ 2 - 9A N_ 3 + 3A N_ 4 

0 -AN_ 2 + 3A N_ 3 + 3A N_ 4 

0 -AN_ 3 + 3A N_ 4 

AN = 6A N_ I -7AN_ 2 -8AN_ 3 + 9AN_ 4 

It is interesting to note that Eq. (28), itself, can be con
structed from 

AN = 4A N_ I -AN_ 2 (29) 

by adding Eq. (29) to itself reindexed: 

AN_ I = 4AN_ 2 -AN_ 3 • 

But Eq. (29) does not yield the saturation degeneracy 
numbers given in the first diagonal of Table I unless an addi
tional term of2( - I)N is appended to it, i.e., 

AN = 4AN_ I -AN_ 2 + 2( - It. (30) 

Utilizing Eq. (28), we may write l5 

AN = cS N (31) 

so that 

S3 - 3S 2 
- 3S + 1 = 0 (32) 

or 

(S + l)(S 2 - 4S + 1) = O. 

Then 

AN = C I [2 + v1]N + c2 [2 - v1]N + c3 [ - 1 ]N. (33) 

Employing the initial conditions (see the saturation di
agonal in Table I) 

Ao = 1, Al = 2, A2 = 9, (34) 

1863 J. Math. Phys., Vol. 24, No.7, July 1983 

filled, Eq. (2) reduces to 

AN = 6AN_ I -7AN_ 2 - 8AN_ 3 

+ 9AN_ 4 + lA N_ 5 -AN_ 6 , (25) 

where AN has been written for A [2N,N]. 
Equation (25) is not the simplest recursion that can be 

written, as can be seen from the following argument: If we 
require the Nth partition of the a(N )-array (see Fig. 2) to be 
completely filled, a condition which is necessary if the entire 
space is to be occupied, then 

A [q,N] = lA [q - 2,N - 1] + 4C[q - 3,N - 1] 
+A [q - 4,N - 2] (26) 

and 

C[q,N] =A [q - I,N -1] + C[q - 2,N - 1]; (27) 

that is, there can be no E, D, or E arrangements. 
Equation (26) can be solved for C [q,N] which, when 

reindexed, can be substituted for the C 's in Eq. (27) to yield 
(after setting q = 2N, the condition for a saturated lattice) a 
recursion relationship for AN' i.e., 

AN =3AN_ I +3AN_ 2 -AN_ 3 • (28) 

By reindexing Eq. (28), we can construct Eq. (25): add 

-AN_ 5 

+ 3AN_ 5 -AN_ 6 

+lAN- 5 -AN- 6 

I 
we obtain values for cl , C2 , C3 so that Eq. (33) becomes 

AN = W2 + v1t + I - 2( - I)N + I + (2 - v1t + I l 
= W2 + v1)(N+ 1)/2 + (_ 1)N(2 - v1)IN+ 1)l2l2. (35) 

As N--+oo, we see from Eq. (35) that the so-called "mo
lecular freedom" takes on the value [2 + 311ZplZ, in agree
ment with previously published numerical results. 16 

VII. CONCLUSION 

A 19-term recursion relation has been derived that 
yields exactly the occupational degeneracy for indistinguish
able dumbbells distributed on a 2 X 2 X N lattice space. (Here 
we have assumed that the dumbbells have identical ends; if 
the ends are different then an additional factor of 2q must be 
included in the foregoing results.) 

On the basis of such a recursion we have calculated the 
generating functions, normalization, expectation, and vari
ance of the associated statistics. A continuous representation 
for the occupational degeneracy is also presented, as is the 
orientational degeneracy for a completely filled lattice space. 
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APPENDIX A 

Equation (5) becomes 

00 5 00 

G (x,y) = I IN(XV = I IN (XlYN + I IN(XlYN 
N~O N~O N~6 

5 00 

= I IN (XlYN + I IN +6 (XlYN+ 6. (AI) 
N~O N~O 

Using the recursion forlN +6 (x), Eq. (4), we may write 

5 00 

G(x,y) = I IN (xV + y[1 + 7x + 6x2
] IIN+5(XV+5 

N~O N~O 

00 

+ y2x[1 + 6x + 6x2 -7x3] IIN+4(xlYN+4 

N~O 

00 

- 2y 3X3[ 1 + 5x + 13x2 + 4x3
] I IN + 3 (xlYN+ 3 

N~O 

00 

+ y4x 5[1 + 2x + 6x2 + 9x3
] IIN+2(XV+ 2 
N~O 

00 

+ySx 8[1_x+2x2] IIN+ 1 (xlYN+ 1 

N~O 

00 

- y6x 12 I IN (xV· (A2) 
N~O 

Thus 

G (x,y){ 1 - y[1 + 7x + 6x2] 

- y2x[1 + 6x + 6x2 - 7x3
] 

+ 2y3x 3[1 + 5x + 13x2 + 4x3
] 

- y4x 5[1 + 2x + 6x2 + 9x3
] - y5x 8[1 - X + 2x2] 

5 

+ y6x 12J = IIN(XV 
N~O 

4 

- y[ 1 + 7x + 6x2] I IN(XlYN 
N~O 

3 

- y2x[1 + 6x + 6x2 - 7x3] IIN(XlYN 
N~O 

2 

+ 2y 3x3 [1 + 5x + 13x2 + 4x3] I IN(XlYN 
N~O 

1 

- y4x5 [1 + 2x + 6x2 + 9x3
] I IN(XlYN 
N~O 

where (from Table I) 

1864 

falx) = 1, 

Il(X) = 1 + 4x + 2x2
, 

12(X) = 1 + 12x + 42x2 + 44x3 + 9x4
, 

13(X) = 1 + 20x + 142x2 + 44Ox3 

+ 588x4 + 288x5 + 32x6
, (A4) 

h(x) = 1 + 28x + 306x2 + 1672x3 + 4863x4 

+ 7416x5 + 5470x6 + 1620x7 + 12lx8
, 

Is(x) = 1 + 36x + 534x2 + 4248x3 + 19 774x4 

+ 55 200xs + 91 200x6 + 84 984x7 

+ 40 553x8 + 8204x9 + 450x lO
• 
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G (x,y) may then be written as Eq. (6), where H (x,y) is the rhs 
ofEq. (A3). 

To find H(I,y) in Eq. (10), we see from the right-hand 
column of Table I, Eq. (A3), and Eq. (A4) that 

(A5) 

APPENDIXB 

From Eq. (19), 

2N 
(q)N =2NJ1 N«()N = IqA [q,N]. (Bl) 

q~O 

Utilizing the recursion for A [q,N], Eq. (2), we may write 

2N 
2NJ1 N«()N = I qA [q,N - 1] 

q~O 

2N 
+ 7 I qA [q - I,N - 1] 

q~O 

2N 
+ 6 I qA [q - 2,N - 1] 

q~O 

2N 
+ I qA [q - I,N - 2] 

q~O 

2N 
+ 6 I qA [q - 2,N - 2] 

q~O 

2N 
+6 IqA [q-3,N-2] 

q~O 

2N 
- 7 I qA [q - 4,N - 2] 

l~O 

2N 
- 2 I qA [q - 3,N - 3] 

q~O 

2N 
- 10 I qA [q - 4,N - 3] 

q~O 

2N 
- 26 I qA [q - 5,N - 3] 

q~O 

2N 
- 8 I qA [q - 6,N - 3] 

q~O 

2N 
+ IqA [q-5,N-4] 

q~O 

2N 
+ 2 I qA [q - 6,N - 4 ] 

q~O 

2N 
+ 6 I qA [q - 7,N - 4 ] 

q~O 

2N 
+ 9 I qA [q - 8,N - 4] 

q~O 

2N 
+ I qA [q - 8,N - 5] 

q~O 

2N 
- IqA [q-9,N-5] 

q~O 

2N 
+ 2 I qA [q - 1O,N - 5] 

q~O 

2N 
- I qA [q - 12,N - 6]. 

q~O 

J. L. Hock and R. B. McQuistan 
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However, 

2)A [q - j,N - k] 
q 

= .2)q + j)A [q,N - k] 
q 

= IqA [q,N - k] + jIA [q,N - k] 
q q 

= 2 [N - k ] Ll N __ k (0 ) N _ k + jLl N - k , 

so that Eq. (B2) becomes 

2NLl N(0) N = 2(N - l)LlN_I (0) N-I 

+ 14(N - 1)Ll N _ I (0 ) N _ I + 7 Ll N - I 

+ 12(N - 1)Ll N _ I (0 ) N _ I + 12Ll N - I 

+2(N-2)LlN_2(0)N_2 +LlN_ 2 
+ 12(N-2)LlN_2(0)N_2 + 12LlN_ 2 
+ 12(N-2)LlN_ 2(0)N_2 + 18LlN_ 2 
- 14(N - 2)LlN-2 (0 )N-2 - 28LlN_ 2 
- 4(N - 3)Ll N _ 3 (0 ) N _ 3 - 6Ll N _ 3 

- 20(N - 3)Ll N _ 3 (0 ) N _ 3 - 40Ll N - 3 

- 52(N - 3)Ll N _ 3 (0 ) N _ 3 - 130Ll N - 3 

- 16(N - 3)Ll N _ 3 (0 ) N _ 3 - 48Ll N - 3 

+ 2(N - 4)Ll N_ 4 (0 )N-4 + 5Ll N_ 4 
+4(N-4)LlN_ 4(0)N_4 + 12LlN_ 4 

+ 6(N - 4)LlN-4 (0) N- 4 + 42LlN_ 4 
+ 18(N-4)LlN_4(0)N_4 + 72Ll N_ 4 

+ 2(N - 5)Ll N _ 5 (0 ) N _ 5 + 8Ll N - 5 

- 2(N - 5)LlN_ 5 (0) N-5 - 9Ll N_ 5 

(B3) 

+ 4(N - 5)LlN_ 5 (0 )N-5 + 20Ll N_ 5 
-2(N-6)LlN_6(0)N_6 -12Ll N_ 6· (B4) 

~ (02)N - (O)~ =a/N 

Utilizing Eq. (20), we see that 

2N (0 ) N! - Ll N + 14Ll N _ I + 6Ll N - 2 

-46LlN_ 3 + 18Ll N_ 4 +2LlN_ 5 -Ll N - 6 J 

+2(0)N! -14Ll N_ I -12LlN_ 2 

+ 138LlN_ 3 -72LlN_4 -lOLl N_ 5 +6Ll N- 6 J 

+ 11 9Ll N _ I + 3Ll N _ 2 - 224Ll N - 3 

+ 131Ll N_ 4 + 19L1 N_ 5 + 12Ll N_ 6 J =0. (B5) 

The coefficient of2N (0) N vanishes because ofEq. (8). Thus, 
assuming LlN = klR f [see Eq. (17)], we obtain Eq. (21). 

APPENDIXC 

From Eq. (22), we write 
2N 

(q2)N =4N 2LlN(02)N = Iq2~ [q,N]. (e1) 
q~O 

Substituting Eq. (2) for A [q,N], letting 

(02)N=a/N+(0)~, (e2) 

and considering a typical term of the resulting expression, 

Iq2A [q - j,N - k ] 
q 

= I(q + jfA [q,N - k] 
q 

= Iq2A [q,N - k ] + 2jIqA [q,N - k ] 
q q 

+lIA [q,N-k] 
q 

= 4(N - k )2 Ll N _ k { a + (0 ) ~ _ k } 
(N-k) 

+ 4j(N - k )LlN- k (0) N- k + lLl N_ k' (e3) 

we obtain 

=- (0) 
1 { 2 [ 14R ~ + 24R i - 414R ~ + 288R ~ + 50R I - 36 ] 

N = 14R ~ + 12R i - 138R f + 72R ~ + lOR I - 6 

_ (0) [19R~ +6Ri -672Rf +524R~ +95R I -72] 

= 14R ~ + 12R i - 138R f + 72R ~ + lOR I - 6 

+~ [ 31R ~ - 33Ri -1116R ~ +967Ri + 183R I - 144 ]}, 

4 14R ~ + 12R i - 138R f + 72R ~ + lOR I - 6 
thus yielding Eq. (23). 
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Field theory models in the scattering picturea) 

M. O. Farrukh 
Department of Physics. Faculty of Sciences. Lebanese University. Hadeth. Beirut. Lebanon 
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We propose general schemes for constructing quantum field theory models in the scattering 
picture. Our models include two types: those which are related to classical pure potential theories 
and those which are related to conventional quantum field theories. We also discuss the problem 
of symmetry breaking, and show how to avoid ultraviolet divergencies. 

PACS numbers: 1l.l0.Cd, 11.30.Qc, 11.20.Dj, 11.30.Qc 

I. INTRODUCTION 

In a previous paperl we have shown that a field theory 
in the scattering picture can be formulated in terms of a 
potential density JY(x), which satisfies the conditions of 

(1) Hermiticity: JY1(x) = JY(x) , 

(2) Poincare covariance: 
UtA, a)JY(x)U-l(A, a) = JY(Ax + a). 

The S matrix of the theory has the following expansion: 

S= I + ntl (- w f dX I f dx2··· f dXn In(x l , X2, .. ·, xn) 

xJY(xdJY(xz)'" dY'(xn)' (1) 

where t I n (XI' Xl'"'' x n); n E A/'* l is a sequence offunctions 
called the covariant causality functions. They are construct
ed as follows: 

Let n E JY* be a positive integer, and denote by rn the 
set of all permutations on the numbers (1,2, ... , n). Letp Ern 
and denote by v( p) the number of pairs of consecutive 
numbers which come in P in order. The characteristic func
tion Cp is defined as follows: 

Cp = ( - It -I - vipi[n - 1 - v(p)]![ v(p)]!, (2) 

using which we define the phase generating function 

= I Cp Tf(Xp1 - XP2 )Tf(Xp2 - Xp3 ) ... Tf(Xpn _ , - XPn) , 
pErf! 

(3) 

where Tf(x) = e (xO)e (X2), and e is the Heaviside step func
tion. If j<n, j E jV'*, then the partitioning function Pn.) is 
defined as follows: 

where the summation is carried over all the numbers 
np n l , ... , n) EjY* such that n l + nz + ... + n) = n. Final
ly, the covariant causality function I n is defined as 

n 1 
In(x l , X2' .. ·, xn) = I -Pn )(X I, Xz,· .. , xn)' (5) 

)~d! . 

In particular, JI(x) = 1 and Jz(x, y) = ! [ll(x - y) - Tf( Y 

"Work supported by the Lebanese university council. 

- X) + 1]. The S matrix thus constructed is unitary and 
Poincare-invariant. Any other symmetry required to be po
sessed by the S matrix should be imposed on the potential 
density JY(x). 

In the previous paper I we have required JY(x) to be 
local, in the sense that it should be a linear combination of 
densities of the form 

fi'J(X) = f dYI f dyz··· JdYn R: cJ>(YI)cJ>(Yz)'" cJ>(Yn): 

X..:ln(X;YI'YZ, ... ,Yn) (6) 

in case of a neutral scalar field. The distribution..:l n is of the 
form 

(7) 

The vertex function .3 n may be expressed in terms of a func
tion F (z) which is analytic in a region containing the whole 
real line. There exists a number m E ff, m <n12 such that 

.3n(PI,PZ,· .. ,Pn) 

=F((PI +P2+"'+Pn-m -Pn-m+1 -"'-Pn)l) 
+ distinct permutations. (8) 

The above concept oflocality needs to be generalized to 
cases of other elementary fields Also, there is some ambigu
ity in the form of the vertex function given in (8). 

This paper is devoted to the solution of this problem. 
Our main results can be summarized as follows: Whatever 
the fields present in the model are, one has to construct a 
bilinear form 8?J( YI' Yz) and a multilinear form 
1( YI' Y2,'" Yn), n>2, such that: 

(1) The two forms 8?J and 1 are covariant scalars: 

UtA, a)8?J(YI,Yz)U-I(A, a) = 8?J(AYI + a,Ayz + a), 

UtA, a)1(YI'Y2, ... ,Yn)U-I(A, a) 

= .d'(AYI + a, ... , AYn + a) . (9) 

(2) Any symmetry possessed by JY(x) should be pos
sessed by the forms 8?J and 1 independently. 

(3) The vertex function.3 n + 2 has the form 

.3n+ 2(PI,P2'''',Pn+2) =F(Ct/i -Pn+ I -Pn+2 y), 
(to) 

and the distribution ..:l n + 2 is deduced from (to) using (7). 
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(4) The potential density JY(x) is given by 

JY(x) = I dy, I dyz··· I dYn+2 R: 

x..ff(y" h,···,Yn )g(f( Yn + I' Yn + z): 

x..1 n+ Z(X;Y"Yz, ... ,Yn+2)' (11) 

The multilinear form..ff establishes the relation with 
conventional theories. If n = 2, then we have a pure poten
tial theory-with no analog in conventional quantum field 
theory. If n > 2, then the form..ff is related to the interaction 
Hamiltonian of conventional quantum field theory as fol
lows: 

JYint (x) = g: ..ff(x, x, ... , x): , 

where g is the coupling constant. 

(12) 

II. CLASSICAL THEORIES 

By a classical theory we mean a pure potential theory 
with a classical analogue. 

Assume that the potential energy of two particles of 
charges q, and q210cated at'l and rz, respectively, is 
q,qd(lr, - r2 1), wheref: 3P~ -+ 3P is a function such that 
SO'rlf(r)1 dr< + 00. Define now 

F(z) = 81T L'" f(r)M(!z?)? dr, z<;O, (13) 

where 
00 xn 

M(x)= I --
n ~O (2n + I)! 

(14) 

and assume that F(z) defined by (13) for z<;O has an analytic 
extension for allz > O. Ifi(k) = fd 3r f(r)e ~ jk'ris the Fourier 
transform off(r), then it follows from (13) that 

i(k) =! F( - 4k 2). (15) 

Define now the vertex function 

J (PI,PZ,P3,P4) = F((p, + pz - P3 - P4)Z) (16) 

and assume that l/J (x) and lJI (x) are the free fields of particles 
of masses m I and m1 and charges q, and qz, respectively. 

Consider now the bilinear form 

g(f(x,y) = mlqll/Jt(x)l/J(y) + mzqzlJlt(x)lJI(y) (17) 

and define the potential density 

JY(x) = J dy,dhdY3dY4 R :g(f(YI'YZ)g(f(Y3,Y4): 

X..1 (x; YI,YZ,YJ, Y4) , (18) 

where..1 (X;YI'Yl'Y3'Y4) is formed from (16) by means of(7). 
One can easily verify that JY(x) is a covariant self-adjoint 
density. 

It is not difficult to verify that the operator 
V = f JY(O, x) d 3X has exactly the same behavior as the clas
sical potential in the nonrelativistic limit as c -+ 00. 

The two bilinear forms in (18) need not be identical, 
because, if we assume that like particles do not interact, then 
(18) should be replaced by 

JY(x) = J dy ldy1dY3dY4 R:l/J t( ytll/J (h)lJI t( Y3)lJI( Y4): 

X g..1 (X;YI,h'Y3'Y4)' (19) 
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whereg = 2m lm1qlq2' 
In view of the preceding discussion, we conclude that a 

relativistic pure potential theory has a vertex function given 
by (16) and a potential density given by 

JY(x) = I dy ldYzdY3dY4 R:g(f I( Y" Y2)g(f 2( Y3' Y4): 

X ..1 (x; YI,YZ'Y3' Y4) , (20) 

where g(fj (i = 1,2) is a bilinear form satisfying 

g(frtx,y) = g(f j(y' x), 
(21) 

UtA, a)g(fj(x,y)U~'(A, a) = g(f j(Ax + a, Ay + a) 

III. NONCLASSICAL THEORIES 

By a nonclassical theory we mean a theory which allows 
for creation and annihilation of particles. Hence, it is not a 
pure potential theory. 

In conventional quantum field theory, the interaction 
Hamiltonian which allows creation and annihilation of par
ticles has the form (12). If the vertex function in (7) is the 
coupling constantg, then (12) can be put into the form 

JYint(x) = J dy,dYl···dYn: 

X..ff( YI' YZ,oo., Yn ):..1 n (x; YI' YZ,oo., Yn) , 
n 

where ..1 n =g II 8(4)(X-Yj)' 
i= 1 

(22) 

One may expect that we can construct the correspond
ing scattering picture potential density by inserting the R 
product and modifying the..1 n distribution in (22). A deeper 
look reveals the fact that this is the wrong way of dealing 
with the problem. In quantum electrodynamicsz and pseu
do scalar pion-nucleon coupling theory, 3 the interaction Ha
miltonian is a trilinear form, which is set equal to zero by the 
R product. Other theories, such as the theory of weak inter
actions4 and the famous l/J 4 theory of self-interaction of a 
neutral scalar field3 are made by the R product pure poten
tial theories. Whatever the number of the field variables in 
the interaction Hamiltonian is, the R product drops some of 
the term. Hence, some of the physical information is lost. 
Thus, to save all terms, we must multiply the interaction 
Hamiltonian by a factor before taking the R product. This 
factor should allow for the following requirements to be ful
filled: 

(1) All terms in the original Hamiltonian should be pre
served. 

(2) The new factor should neither add any new interac
tion nor destroy any of the symmetries of the original Hamil
tonian. 

To satisfy the first requirement, we recall that the R 
product drops vacuum fiuctation and self-energy terms. To 
preserve these terms, we need at most either two creation or 
two annihilation operators. Hence, if we multiply the inter
action Hamiltonian by a bilinear form in all the field varia
bles used, we can satsify the first requirement. 

To show that the second requirement is satisfied, con
sider the following example of the Lagrangian of a scalar 
neutral fieldS: 
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2'(x) = ! JI" 4> (x)JI"4> (x) -! m24> 2(X) - P(4) (x)), (23t 

where P (4) (x)) is a polynomial of an even degree with a posi
tive leading coefficient. The termA4> 2(X) is a mass shift term. 
Hence it does not add any new interaction. Also, since it is 
proportional to a term in the Lagrangian, it possesses all the 
symmetries of the Lagrangian. 

The weak point in this deduction is that the termA4> 2(X) 
does not add any new interaction when it is added to and not 
multiplied by P(4) (x)). However, one may argue that apart 
from divergencies,: P (4) (x)):andR : 4> 2(X)P(4> (x)): represent 
qualitatively the same theory. Thus, the second requirement 
is, in a sense, also satisfied. 

Now, in general, the potential density should have the 
form (11). Comparing the vertex function (16) with its corre
sponding potential density (18), it seems to be very plausible 
that (10) is the vertex function of the potential density (11). 

As an example, the interaction Hamiltonian of conven
tional quantum electrodynamics2 is 

(24) 

where IJI (x) is a Dirac spinor and A I" (x) is the electromagnetic 
field. The corresponding scattering picture potential density 
is 

Jf"(x) = f dy\dY2dY3dY4dyS R:W(Ydr l"lJI(Y2)AI"(Y3) 

X [aW( Y4)1JI( Ys) + bA 1"( Y4)A1" (ys)]: 

XLi (X;Y\'Y2'Y3,Y4,YS)' (25) 

and the vertex function is 

.J (P\,P2,P3,P4'PS) = F((pi + P2 + P3 - P4 - Ps)2), 
(26) 

where a and b are real numbers and F (z) is a real function of z, 
which is analytic in a region containing the whole real line. 
The numbers a and b, and the function F have still to be 
determined. 

IV. SYMMETRY BREAKING 

In the literature, the problem of approximate symme
tries is treated in two ways: The first way is to break the 
symmetry by adding nonsymmetric terms to the Hamilton
ian, such as, for example, the inclusion of medium strong, 
electromagnetic and weak interaction terms which violate 
SU(3) symmetry, in the Hamiltonian ofhadrons,6 supposed 
to contain a very strong SU(3)-invariant term from which the 
main contribution to the interaction comes. The mass differ
ences among the hadrons forming an SU(3) multiplet can be 
accounted for from calculations of self-energies. This meth
od cannot be applied within the framework of the scattering 
picture formalism, because of the presence of the R product 
which eliminates self energies. 

The second way is to allow the symmetry to break spon
taneously7 by having a degenerate vacuum. This method, 
also, cannot be applied within the framework of the scatter
ing picture formalism, because, the underlying Hilbert space 
has, by construction, a unique vacuum. 

We shall treat the two aspects of the problem of ap
proximate symmetries independently. On one hand, we al-
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low for the presence of terms which violate the symmetry 
assumed to be approximately possessed by the potential den
sity, such as, for example, the presence of an electromagnetic 
term which violates isospin invariance in a potential density 
containing an isospin-invariant strong-interaction term. On 
the other hand, we vary the masses of the particles forming a 
multiplet to make them identical with the physical values, 
which means that the assumed symmetry preserving term 
does not really preserve that symmetry. The effect of this 
mass variation on the potential density is treated as follows. 

Suppose that (lJIi ; i = 1,2, ... , n I are different states of 
the same field in some internal space and that F (lJIi ) is an 
invariant under rotation in that internal space. Suppose also 
that the assumed mass of the IJI field is m. When this symme
try is slightly broken, each component lJIi will have a differ
ent mass mi' Thus, we have lJIi ~ 'Pi in the substitution 
m ~ mi' One may expect that we replace F (lJIi ) by F ('Pi ), 
which violates the considered symmetry. However, in the 
limit as m i ~ m, i = 1,2, ... , n, we have 

F((m;lm)A'P;)~F(lJIi)' foranyAE!!J? 

We show in what follows that the choice of A depends 
on the normalization of the field IJI. So, if we normalize IJI 
suitably, we can make A = O. 

Going back to (17), we find that if the interaction is 
symmetric with respect to the interchange 4> +-+ IJI, then 
gl = g2 = g, and (17) becomes 

.%'(x,y) = g[ml4>t(x)4>(y) + m2IJ1 t(x)(y)] (27) 

Now, since 4> and IJI are scalar fields, they have the expan
sions 

4> (x) = f ~;: [a(p)e-iPX + bt(p)eiPX ] , 
P 

lJI(x) = ~[c(p)e - ;px + dt(p)e'PX] . f tf3 . . 

2Ep 
(28) 

If we define u(p) = vIp) = [in and write 

4>o(x) = f ~;: [a(p)u(p)e- iPX + bt(p)v(p)eipX ] , 
P 

lJIo(x) = f (/3p [c(p)u(p)e- iPX + dt(p)v(p)eiPX ] , (29) 
2Ep 

then (27) becomes 

.%'(x,y) = g[ 4>i;(x)4>o(Y) + 1JIi;(x)lJIo(Y)] . (30) 

Now, a general spinor field has the form 

f (/3 . 
lJI(x) = ~[aA(p)uA(p)e-'PX 

2Ep 
+ b tA (P)VA (p)e iPX ] (31) 

So, by normalizing the u and v functions to have the unit of 

[in, an expansion like (30) results upon breaking the symme
try, and hence F (lJIj ) ~ F ('Pj ), with A = O. 

As an example, the isospin covariant pion field is 

k = - 1,0,1, (32) 
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where 

~k = ( - 1)I- j l5j , _ k' j, k = - 1,0,1. 

Also, the isospin covariant nucleon field is 

J d3 , 
Ift;(x) = 2: [n;,,,(p)u"(p)e-'PX 

P 

+ BijiiU,,, (p)v" (p)e;PX] , 

where 

B - ( ')112 - i£ "- _ 1 1 
ij - - I uij' l,j - 2' 2' 

The u and v functions are normalized such that 

u,,(p)u"'(p) = - v'''(p)v,dp) = 2moi' 

where 

U,,(p) = [u"(p)PA, ?(p) = [v,,(p)]tA , 

A = diag(I,I, - 1, - 1). 

We define the conjugate nucleon field as 

~i(X) = [lfti(xWA , 

Define now the isospin invariant trilinear form 

1(x,y, z) = ~;(x)r~(y)<I>k(Z)(! ilWlk) , 

where 

r= -iG: ~) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

and 12 = diag(I,I), and q il!jlk ) is the Clebsch-Gordan co
efficient with values8 

(HlHlO) = - <! - !I! - PO) = l/yj 

q - !I!P - 1) = - (HI! - P 1) = - M (40) 

We now break the isospin symmetry and define: 
_(1) The proton field Iftp(x) = 1ft1/2(x) with ~p(x) 

= 1ft1/2(X); 
(2) The neutron field Iftn (x) = 1ft_I dx) with ~p (x) 

= ~-1/2(X); 
(3) The neutral pion field <I> (x) = <l>o(x); 
(4) The charged pion field e (x) = <l>1(X) with e t(x) 

= - <I>_I(X). 
Taking into account the normalization of the <l>k and 1ft; 

fields shown in (32) and (36), and assuming that the neutral 
pion mass is the mass of the isospin invariant pion field, we 
get from (39) and (40), upon breaking the isospin symmetry, 
the following trilinear form: 

1(x,y, z) = (l/yj)[~p(x)rlftp(y)<I> (z) 

- ~n (x)rlftn (y)<I> (z)] 

- (2m".± /3m".o)1/2 [~n(x)rlftp(y)et(z) 

+ ~p(x)rlftn(y)e(z)] . (41) 

V. MEROMORPHIC POTENTIALS 

By a meromorphic potential we mean a potential/(r) 
such that its transform F(z) given by (13) is a meromorphic 
function with no singularities other than poles of finite or
ders in the finite plane. 

Let/(r) = r"-le-We-iOJ', with n E./V,Jl E &f!~, 
anw E &f!, Applying (13) to this form, we get 
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.I C 2k + I [ 2( . ) r - 2kJe 
F(z) = 321T.2n.n!. k n + I Jl + IOJ 

[4(Jl + iOJ)2 - z]n+ I 
(42) 

Hence, F (z) is a meromorphic function with a pole of order 
n + 1 at z = 4( Jl + iOJf. These poles may lie anywhere on 
the complex plane except on the nonpositive part of the real 
line. This restriction can be eliminated by taking the limit 
Jl-O+. 

Now, if JlOJ = 0, then F(z) would have a real pole; thus 
F(z) cannot be analytic on the whole real line as required by 
the theory. Hence, if we want to use a meromorphic poten
tial, then we should have Jl > ° and OJ =f 0. Thus, neither the 
Coulomb potential (n = 0, Jl = 0+, OJ = 0) nor the Yukawa 
potential (n = 0, Jl > 0, OJ = 0) can be used in a convergent 
theory. 

VI. ULTRAVIOLET DIVERGENCIES 

As proved in the previous paper, I if we could avoid 
divergencies in the second order of perturbation, then all the 
terms of the perturbation series would be finite. The second 
term in the series (1) has the form 

S2 = - J dx J dy J2(x, y)J¥'(x)H(y) , (43) 

where 

J2(x,y) = H1J(x - y) -1J(Y - x) + 1)] . 

One can easily prove that 

1J(x) = lim 817' p. J eipxd4 

E--.o+ [(pO _ i€)2 _ p2]2 

Now, setting 

J¥'(x) = J K(p)eiIPx dp, 

where the integration in (46) is carried over some phase 
space, we get 

(44) 

(45) 

(46) 

The first two terms of (47) are similar, while the third one is 
always convergent. Hence, we study the convergence of the 
first term. 

In Feynman graph terminology, 9 to an internal line rep
resenting the exchange of a massive particle of spin s we have 
a factor 

l[3p /lIp), /lIp) = uA (p)u,dp)_p2S. (48) 
2Ep 

Ifwe have n internal lines of total spins = SI + S2 + ... + Sn' 

and taking into consideration the factor 
l/[(pO - i€)2 - p2]2, we have the following estimate of the 
scattering amplitude: 
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f d 3P I ... d 3Pn III(PI)®···®IIn(Pn) 

2Epi 2EPn [( pO - it)2 - p2 F 

XF(p"2)F(p'2)~ f p2n+ 2s- 51F(p2W dp. (49) 

The convergence of (49) requires that, for large values of p, 
F (p2) ~ lIpn + s - 2 H, t> O. In other words, iffor large val
ues of z, F (z) ~ liz K, then the convergence of the theory 
implies that for any Feynman graph of n internal lines of 
massive particles of total spin s, we must have 

K> ! (n + s) - 1 . (50) 

Ifwe have a massless particle in the theory, then some 
restrictions are imposed on its projection matrix II (p). In the 
irreducible 2) + 1 and the reducible 2(2) + l) representa
tions of fields, the limit m ---+ 0 for massless particles 10 has no 
effect on the high energy behavior of the projection matrices. 
Other representations need some care. For example, II for 
the spin-l 4-vector massive Proca field we have II (p) ~ p2 as 
expected, while for the spin-l 4-vector massless Maxwell 
field we have II (p) ~ 1. Thus, the spin of the photon should 
be counted as zero in applying formula (50), if we use the 4-
vector representation. 

As an application, consider the potential density of 
quantum electrodynamics given in (25). Since we have five 
field variables, the maximum number of internal lines is 
n = 3. If these internal lines are Dirac spinors, thens = 3/2. 
This is the maximum value of s, because, as we have just said, 
a photon in this representation does not contribute to s in 
(50). Thus, K>! (n + s) - 1 = i. Ifwe require F(z) to be 
meromorphic, then the minimum value of K is K = 2. 

VII. CONCLUSION AND DISCUSSION 

The schemes outlined in the previous sections allow us 
to construct convergent quantum field theory models in a 
simple way. A scalar multilinear form is either written di
rectly or deduced from classical Lagrangian field theory. 
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This form is then multiplied by a bilinear form of all the 
fields used in the model. The R product is taken, and the 
result is smeared, using a distribution whose Fourier trans
form is a function analytic over the whole real line. The re
quirement that all terms of perturbation be finite imposes an 
asymptotic limit on this function. If we require this function 
to be meromorphic, then the whole problem reduces to de
termining a finite set of parameters. As an example, we have 
seen that if we use a meromorphic function for electrody
namics, then F(z)~ lIz2 for large values of z. The simplest 
such form is 

(51) 

Hence, all what is left is to determine four parameters: a and 
b appearing in (25), and Ii and M appearing in (51). 

Also, we mention that our schemes allow for models of 
covariant potential theory, a thing which cannot be done in 
conventional quantum field theory. 
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Splitting of the connection in gauge theories with broken symmetry 
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We obtain a fully geometric analog of the Higgs mechanism whereby a symmetry-breaking Higgs 
field is used to impart mass to gauge fields. We do this by showing that under fairly general 
hypotheses a symmetry-breaking Higgs field rP on a "principal bundle with connection" (P,w) 
allows the decomposition of the connection w into a pair (W' ,7) where w' is a connection on P that 
reduces to a rP-subbundle of P and where 7 is a tensorial field on P. The gauge fields that remain 
massless are identified with the components of w' while the gauge fields that acquire mass are 
identified with the components of 7. This decomposition of the connection is exploited in the case 
where the group of the bundle is the conformal group which scales some fixed metric of arbitrary 
signature. The geometry of such a bundle with connection generalizes Weyl geometry and 
provides a bundle setting for conformal gauge theories. We then show that the Weinberg-Salam 
electroweak theory can be recast as a conformal gauge theory. A primary feature of our conformal 
version of the Weinberg-Salam theory is that it provides a geometrical interpretation of the 
surviving component of the Higgs scalar field as an infinitesimal conformal factor. 

PACS numbers: 11.15- q, 02.40. - k 

I. INTRODUCTION 

It is now well known that gauge theories can be formu
lated as geometrical theories using the mathematical theory 
of connections on principal fiber bundles. 1-3 In the geometri
zation of gauge theory the two fundamental fields, the gauge 
fields (potentials) and the particle fields, are identified with 
geometrical objects defined on an appropriate bundle mani
fold. Specifically, gauge fields are identified with the I-form 
components of a connection on the bundle and particle fields 
are identified with vector-valued functions on the bundle 
manifold that transform tensorially under different repre
sentations of the gauge group. 

In this paper we investigate certain aspects of the geo
metrical interplay between particle and gauge fields in spon
taneously broken gauge theories. Specifically this paper ad
dresses the following two questions: (I) Can the 
symmetry-breaking Higgs field in spontaneously broken 
gauge theories be geometrized, that is be replaced by some 
geometrical object,4 and (II) How does one distinguish, geo
metrically, the massless and massive vector bosons in spon
taneously broken gauge theories? 

We present an answer to (I) based on "generalized" con
formal geometry that exploits the implicit metrical substruc
ture ofU(n)-type5 gauge theories. In particular we will show 
that the component of the Higgs field that survives symme
try breakdown can be geometrized in terms of an infinitesi
mal conformal factor. Regarding question (II) we stress a 
fundamental theorem6 on the decomposition of a connection 
into an induced connection and a tensoriall-form on a sub
bundle. We are led to conjecture that massless and massive 
vector bosons be identified with the I-form components of 
the induced connection and the tensorial form, respectively. 
As a specific application of these ideas we reformulate the 
Weinberg-Salam electroweak theory as a "generalized" 
conformal theory. 

Let us begin by recalling a well known local construc
tion of a symmetry-breaking Higgs field. For a local discus-

sion there is no loss in generality in assuming that our princi
pal bundle is trivial. Thus temporarily we let P = M X G 
where M denotes the four-dimensional spacetime base mani
fold and G denotes an n-dimensional gauge Lie group. We 
consider a representation of the gauge group on a vector 
space Vand denote the action of G on Vby g·v for all gEG and 
VEV. 

A (generalized) Higgs field on P is any map7 rP:P-V 
such that rP ((a,g)) = g- l·rP ((a,e)) where e is the identity in G. 
Such a Higgs field will be a "symmetry-breaking" Higgs 
field if it selects out a symmetry subgroupHkG and a corre
sponding subbundle Q = M XH. (See Sec. 2 for a more pre
cise definition of Higgs field and symmetry-breaking.) In this 
local setting it is obvious how to construct a symmetry
breaking field. Choose a "gauge" in P, that is a section 
x-sIx) = (x,a(x))EM X G, together with any vector SoEV. 
Then one may define a Higgs field rP:P-Vby 

rP (x,a(x).g) = g- I·SO' (1.1) 

The Higgs field defined in this way is symmetry-breaking 
because over each xEM it selects out the subgroup G so' the 
so-called isotropy subgroup, which is the set of all gEG such 
that g·So = So· The map rP thus reduces P to the subbundle 
Q = M XGso rP -I(SO)' 

Now although Higgs fields exist in general (any map 
rP:P-V satisfying the transformation law stated above will 
do) symmetry-breaking Higgs fields do not. It is natural to 
investigate the extent to which a general Higgs field may be 
modified or decomposed in terms of symmetry-breaking 
fields and we turn now to this question, but restrict the dis
cussion to Higgs fields that locally take the form8 

rP ((x,a(x)·g)) = g-I.n (x)(f(x)So). (1.2) 

Here the notation is as in (1.1) above with the inclusion of an 
arbitrary smooth group-valued function n and an arbitrary 
smooth positive-valued functionfM- +R. 

Now it can happen that the gauge group G contains + R 
as a subgroup that acts on Vby scalar multiplication. In this 
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case we can "rechoose the gauge" so as to absorb the factor 
fIx) in (1.2). By a further gauge transformation using n (X)EG 
we can give ¢ the constant value So. In this case the Higgs 
field defined by (1.2) above is symmetry-breaking. (See 
Theorem 3.1 below.) On the other hand, if G does not contain 
+R as a subgroup then it is clear from (1.2) that there is no 
possibility of rechoosing the gauge so that ¢ has everywhere 
the constant value So' The field ¢ will therefore not be a 
symmetry-breaking field in this case. 

One approach to this problem follows from the observa
tion that for each !'E+R and suitablefM_ +R, the level sur
facef-l(r) will be a submanifold N r of M. Over each such 
submanifold the field defined by (1.2) will be a symmetry
breaking Higgs field. This "decomposition" approach is 
treated in detail in Sec. 3. 

An alternative remedy for this situation would be to 
enlarge the principal bundle P = M X G to a new bundle 
P = M X (G X +R) and to extend the action of G on V to an 
action ofG X +R on Vin such a way that the factorf(x) in 
(1.2) above can be absorbed by an -t-R-valued gauge transfor
mation. Then the extension of ¢ to Pis a symmetry-breaking 
Higgs field. This method is clearly artificial unless the en
larged bundle and/or the extended field has a natural phys
ical or perhaps geometrical meaning. Now if Vis equipped 
with a metricp:V X V_C (as is the case in U(n)-type5 gauge 
theories) then we may assume without loss of generality that 
So in (1.2) above has unit length: p(So,So) = 1. Thus in the 
gauge s in which ¢ takes the form ¢ (S(x)) = f(x)·so we have 

that H(x) is the "length of ¢ (S(x))," that is p(¢ (S(x)), 
¢ (S(x))) = fIx). Alternatively one may choose to interpret¢ as 
a unit vector with respect to a conformally rescaled metricp 
defined by 

Px(u,v) = (11 f(x))P(u,v). 

In this way we are led to relate a Higgs field of the type (1.2) 
to a symmetry-breaking Higgs field and a conformal struc
ture on an +R-enlarged bundle. In the case that G = U(n) 
thenG X +R = U(n)X +Risthe conformal group CU(n) and 
P will be referred to as a conformal bundle. In order to apply 
these ideas to gauge theories we review and develop in Sec. 2 
the necessary background material on fiber metric and con
formal structure Higgs fields on a principal bundle P (M,G ). 
The bundle P may be an arbitrary principal bundle provided 
only that the group G contain an appropriate copy of +R as a 
subgroup. 

Suppose now that on a principal bundle P(M,G) one is 
given a symmetry-breaking Higgs field ¢:P_ V that reduces 
P to a subbundle Q (M,G so) (for example, ¢ may be a confor
mal structure Higgs field and Q a conformal subbundle). It is 
natural to ask if a connection w on P also reduces to a connec
tion on Q. It is known6

•
9 that if ¢ is a symmetry-breaking 

Higgs field then w reduces to a subbundle defined by ¢ if and 
only if D¢ = 0, where D¢ is the exterior covariant derivative 
of ¢ with respect tow. More generally, suppose one is given a 
symmetrY-breaking Higgs field ¢ along with a connection w 
on P where the connection does not necessarily reduce to 
Q = Q (M,H) = Q -I(SO)' In this case we consider the ques
tion: In what sense and when is a connection naturally in
duced on Q by (u? Here by "naturally induced" we mean that 
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at a minimum we require the "induced" connection to be the 
reduced connection when D¢ = O. 

In language more closely related to physical theories 
this question can be rephrased as follows. Let ea , a = 1,2, ... ,n 
be a basis of the n-dimensional Lie algebra 9 of G. Let these 
vectors be arranged so that the first p of them el, ... ,ep form a 
basis for the subalgebra ~ of H C G. In a local gauge the con
nection can hence be written as 

p n 

A = ~ A~ea dx'"+ ~ Ba e dxP .L r .L po , (1.3) 
a~l a~p+l 

where theA ~ dxP and B ~ dxP are real-valued I-forms. The 
question now is how to select from A a piece that will repre
sent a connection on the subbundle Q (M,H). Clearly the part 
~: = 1 A ~ eo dx'" is an obvious candidate inasmuch as a con
nection for Q (M,H) must take its values in ~. However, the 
splitting off of a ~-valued part as in (1.3) is noninvariant in 
general because of the gauge transformation law 

A = Ad(g-l)A +g-ldg. 

Note however that if the vectors ep + l, ... ,en span a comple
ment we off) in 9 that is invariant by H, that is Ad(H)we = we, 
then the splitting off of a ~-valued piece of A will be invariant. 
There is such a I-form ~: = 1 A ~ ea dxP at each point of M 
and the set of all I-forms that arise in this way from a given 
connection will then piece together to define a connection on 
Q (M,H). In general we have the theorem6 that if there is a 
complement we of'f) in 9 that is Ad-invariant by H, then the 
restriction of the ~-component of every connection on 
P (M,G ) to Q (M,H) is a connection on Q (M,H). 

This theorem and its consequences imply that if a sym
metrY-breaking Higgs field ¢ reduces P(M,G) to Q(M,H) 
then, under suitable hypotheses, there is a one-to-one corre
spondence between connections w on P and pairs (wo, 7 0) 

where Wo is a connection on Q and 70 is a tensorial I-form on 
Q. In case D¢ = 0, Wo is just the reduction of w to Q and 
70=0. In general, however, the connection w does not re
duce to Q and, in this general case, a remnant Wo of w still 
survives as a connection on Q, while the additional tensorial 
field 70 emerges representing the degrees of freedom lost 
when one passes from w to Wo on Q. See Sec. 4 for the details 
of this decomposition of the connection. 

To illustrate the role of Wo and 70 we present in Sec. 5 a 
bundle version of "generalized" conformal geometry. The 
conformal geometry is "generalized" in that it is defined on a 
subbundle of an arbitrary GI(n,K ) bundle over spacetime and 
is not restricted to subbundles of the frame bundle LM of the 
base manifold M. We will see that when the theory is special
ized to a bundle version ofWeyl geometry the tensorial field 
70 turns out to be essentially the Weyl vector. 10 

We bring these ideas together in sec. 6 where we present 
as an application a conformal CU(2) geometrical model of 
the electroweak theory of Weinberg and Salam. In the model 
Wo is identified with the gauge field A representing the mass
less photon field while the different components of the ten
sorial field 70 are identified with the massive vector bosons 
W ± andZ. 

One might expect that a "SU(2)XU(I)-bundle-with
connection" would provide a proper framework for the 
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Weinberg-Salam theory. This rather obvious description is 
of course possible but seems to give no new physical or math
ematical insights. We have chosen instead to link the Wein
berg-Salam theory to the geometry of connections on a prin
cipal bundle whose structure group is the conformal group 
CU(2) = IR + X U(2) associated with the usual metric on a 
two-dimensional complex vector space (;2. We will see that 
the geometry of such a bundle-with-connection is entirely 
parallel to a fiber bundle version ofWeyl geometry. A conse
quence of our geometric description of the Weinberg-Salam 
model is that it gives geometrical significance to the single 
surviving component 17 of the Higgs scalar field (see for ex
ample Ref. 11). Indeed we shall show that the Higgs scalar 
field may be geometrized in that 17 may be identified as an 
infinitesimal conformal factor in our model. 

II. NOTATION AND GENERAL BACKGROUND 

In this section we iterate some of the general facts neces
sary to the subsequent development and establish the nota
tional conventions to be utilized throughout the paper. We 
also include a few theorems which are generalizations of 
theorems about metrical and conformal structures on sub
bundles offrame bundles. Some of the proofs of these gener
alizations are modifications of known results. We have rel
egated all the proofs of this section to Appendix A. The 
general arena for our results is that of a principal fiber bundle 
with connection. Generally P (M,G) will denote a principal 
fiber bundle with bundle space P, base space M, and struc
ture group G. We reserve the symbol1T for the projection of P 
onto M and often do not explicitly remind the reader of its 
definition. Among other things we have as one our goals to 
study the interaction between Higgs fields and gauge fields. 
In the present context gauge fields are realized as the local 
gauge components of a connection I-form on P and Higgs 
fields find expression as tensorial O-forms on P (see precise 
definitions below). 

Basically we utilize Kobayashi and Nomizu6 as our 
standard source for basic facts and notational conventions 
regarding fiber bundles and connections. 

Recall that a map s from an open subset U of Minto P 
such that 1T(S,(X)) = x for every XEU is called a local section of 
P (M,G). We will refer to s as a local gauge in P. If w is any 
connection I-form on Pwe say thats*w is agaugefield on U. 
Moreover if ! ea J is a basis of the Lie algebra 9 of G and 
s*w = A aea then A a = A ~ dxfL are the gauge potentials of w. 

The following well-known theorem may be found in 
Kobayashi and Nomizu. 6 It will be utilized heavily in Sec. 4. 
We will refer to this theorem as the Fundamental Theorem 
and we will say that a subbundle Q (M,H) of a principal bun
dle P (M,G) satisfies the Fundamental hypothesis if 

(I) there is a subspace 9JC of the Lie algebra 9 of G such 
that 9 = ~ Ell 9JC where ~ is the Lie algebra of Hand 

(2) for every hER, Ad(h )(9JC) = 9JC. 
Fundamental Theorem 2.1: Let P (M,G ) be a principal 

bundle and assume that Q (M,H) is a subbundle of P (M,G) 
which satisfies the Fundamental hypothesis. If w is a connec
tion on P then w~ I TQ is a connection on Q and Wm I TQ is a 
tensorial I-form 7 on Q with values in 9JC (here, of course, w~ 
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and Will are the components of w relative to the decomposi
tion 9 = ~ Ell 9JC). 

The subbundle Q to which w is restricted may arise in 
many ways. One way is to use the result6 that a bundle 
P(M,G) has a reduction to a subgroup H~G iff the bundle 
associated to the action of G on G / H has a global section. 

Recall that if the structure group G of a principal bun
dle P (M,G ) acts on the left of a manifold F then a fiber bundle 
E = E (M,F) can be constructed which depends on the action 
of G on F. This bundle is called the associated bundle. The 
members of E are equivalence classes of pairs (uJ)EP xF 
where (u l,fd-(U2,f2) iffu2 = ulg andf2 = g-IJ, for some 
gEG. The equivalence class is denoted by [u,f] for 
(u,f)EP XF. It is well known2.6 that there is a one-to-one 
correspondence between sections of E (M,G ) and maps 
</J:P-F having the property that for uEP, gEG 

</J (ug) = g-I.</J (u). 

Kobayshi and Nomizu6 call such a map a tensorial O-form7 

and Trautman9 refers to </J a a (generalized) Higgsfield. We 
will follow Trautman's convention but hasten to point out 
that to obtain a bundle version of the Higgs' mechanism one 
must restrict attention to symmetry-breaking Higgsfields. 
We say that a Higgs field </J is a symmetry-breaking Higgs 
field if it maps all of P onto a single orbit G·S of G on F (the 
orbit G·S of G through SEE is the set of all elements g·S for 
gEG ). We shall restrict our attention to Higgs fields </J having 
their values in a vector space, thus if we say </J:P-Fis a Higgs 
field it is understood that F is a vector space. 

It was pointed out in the introduction that one way of 
modifying general Higgs fields to obtain symmetry-breaking 
Higgs fields is to introduce a generalized conformal struc
ture. We now briefly lay the framework for a more thorough 
discussion of such structures. 

Let P (M,G ) be an arbitrary principal bundle and let G 
act on the left of a vector space V. Let! rl,r2, ... ,rn J denote a 
fixed but arbitrary basis of V. We utilize this basis through
out the paper and will refer to it as the standard basis of V. In 
Sec. 5 it will be assumed that G acts linearly and faithfully on 
Vand thus that G may be identified with a subgroup of 
Gl(n,K)wheren = dim V (hereKis the scalar field of Vand 
may be either IR or q. In particular gEG is identified with 
(gb a)EGl(n,K ) where 

g.ra=g~rb· 

Even though G is a subgroup of Gl(n,K) it does not fol
low that P can be identified as a subbundle of the bundle LM 
of frames of M. Since any set of transition functions of P 
necessarily has its values in G~ Gl(n,K) it follows that there 
is a Gl(n,K ) bundle P which contains P as a subbundle. Gen
erally P is not isomorphic to the bundle of frames LM, how
ever, as it may not admit a soldering form. 9

•
12 On the other 

hand we can show that P is isomorphic to the bundle of all 
frames (x,!e j J) wherexEM and where! e j J is a basis of some 
appropriately chosen vector space Ex over x. More precise
ly, if E is any vector bundle over M then the set of pairs 
(x,! e j J) with xEM and! e j J a basis of Ex is a principal fiber 
bundle over M. We call this bundle the bundle offrames of E 
and we denote it by Y E. In the special case when E = TM 
we have YE = YTM = LM. 

R. O. Fulp and L. K. Norris 1873 



                                                                                                                                    

Theorem 2.2: Let P(M,G) be a principal bundle whose 
group G acts linearly and faithfully on the left of a vector 
space V. Then P (M,G ) can be identified as a subbundle of the 
bundle offrames.'7 E of the vector bundle E = E (M,G ) asso
ciated with the action of G on V. 

Now assume that a fixed metric p is given on Vand that 
it has arbitrary signature m<,n. We say that a fiber metric r 
on E is a p-fiber metric on E if at each point xoEM there exist 
local sections X,,x2, ... ,xn of E defined on some neighbor
hood U of Xo such that for every XE U 

rx(Xi(x),xj(x)) = p(ri>rj ). 

This is a minor modification of the definition of a fiber metric 
as found in Kobayashi and Nomizu6 but has value when the 
bundle E is the bundle associated to the action of some rela
tively small subgroup of GI(n,K). For example, if one has an 
SO(2) subbundle of the bundle offrames LMo of Minkowski 
space Mo then there exits fiber metrics r on the bundle E 
associated to an action ofSO(2) on R4 such that it is impossi
ble to gauge transform the metric r so that its gauge compon
ents are the components of the Minkowski metric 1J. On the 
other hand this would not preclude the possibility that in an 
appropriate gauge the components of r are precisely p(ri ,rj ) 
for some constant metric p on R4. 

If &l (V) is the vector space of all bilinear maps from V 
into K we define an action of G on &l ( V) by 

(g·b )(v,w) = b (g-'v,g-'w), 

for gEG, bE&l ( V), and V,WE V. We say that T is a metric Higgs 
field onPif Tis a Higgs field from Pinto &l(V) such that T(U) 
is a metric on V for each uEP. We refer to T as a p-metric 
Higgs field on P if T maps P onto a single G orbit of PE&l ( V). 
The following theorem is a minor modification of a similar 
well known theorem pertaining to metrics on G-subbundles 
of LMbut is presented here (without proof) for use in Sec. 5. 

Theorem 2.3: If P (M,G ) is a principal bundle and Tis ap
metric Higgs field on P then it induces a unique p-fiber met
ric on the bundle E associated with P and the action of G on 
&l(V). Moreover there existp-fiber metrics on E which do 
not arisefromp-metric Higgs fields onP, but ifG = GI(n,K) 
then every p-fiber metric is induced by a unique p-metric 
Higgs field. 

Remark 1: A proof of Theorem 2.3 utilizes the fact that 
if ¢J:P-W is an arbitrary vector-valued Higgs field which 
maps onto a single orbit G·s of the action of G on W then 

Q.p = [uEPI¢J(u)=sl 

is a subbundle of P with structure group the isotropy sub
group G s of G (gEG s iff g·S = s). This fact is emphasized by 
Trautman9 and will be utilized throughout this paper. 

Remark 2: IfF is the Gl(n,K) bundle (referred to above) 
which contains Pas a subbundle then it is true that a givenp
fiber metric on the bundle associated to P and H arises from a 
p-metric Higgs field on a subbundle ofF which contains P. 
The group of this bundle is the smallest Lie subgroup of 
GI(n,K ) which contains G and the values of all those GI(n,K)
valued functions which carry p-gauges ofF onto gauges of P. 

We proceed to discuss conformal structures on P and E. 
We say that two bilinear (sesquilinear when K = q maps 
b"b2 on V are (conformally) equivalent if there is a positive 
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constant c such that b2 = cb l • The set of all maps equivalent 
to b is denoted by [b ] and the set of all [b ] for bE&l (V) is 
denoted &l*(V). Since &l(V) is a vector space &l*(V) is a 
manifold since it is the set of all rays in a vector space. 

Notice that G acts on &l *( V) via g·[b] = [g·b] for gEG, 
bE&l (V). To say that Tis a conformal Higgsfield onPmeans r 
is a smooth Higgs field from Ponto &l *(V) such that for each 
uEP, r(u) is an equivalence class of metrics on V. Here when 
we say that r is smooth we mean that each point of Pis 
contained in an open set U on which there is defined a map 
T:U-&l(V) such thatr(u) = [T(U)] for each UEU. Ap-con/or
mal Higgsfield is a conformal Higgs field r such that r maps 
P onto a G-orbit of r.o]. The proof of the following remark is 
easy and is left to the reader. 

Remark 3: If uoEP and r is a conformal Higgs field on P 
then there is a neighborhood U of 1T(Uo) in M and a smooth 
&l (V )-valued Higgs field T on 1T - '( U) = P IU such that 
r(u) = [T(U)] for every uEP I U. Wereferto1T-'( U)asa bundle 
neighborhood of uo. 

When we say that y is a conformal structure on Ewe 
mean that y is a map on M such that y x is a conformal 
equivalence class of metrics on Ex' It is required that y be 
smooth. Thus each point of M is contained in some open 
subset U of M on which there is defined a fiber metric r of 
E I U such that Yx = [rx] for each XEU. 

The conformal structure y is a p-conformal structure if 
each point of M is contained in the domain U of a p-fiber 
metric ron E I U such that Yx = [rx] for each XEU. 

Theorem 2.4: If P (M,G ) is a principal bundle and 
r:P_&l *(V) is a p-conformal Higgs field then r induces a 
unique p-conformal structure on the bundle E associated to 
the usual action of G on V. In general there exist p-conformal 
structures on E which do not arise from ap-conformal Higgs 
field but in case G = GI(n,K) every p-conformal structure on 
E is induced by a unique such field. 

We now introduce the symmetry groups associated 
with the conformal structures discussed above. Let UIp) de
note the set ofallgEGI(n,K ) such thatp(g·v,g·w) = p(v,w) for 
all V,WE Vand let CUIp) denote the set of gEGI(n,K) such that 
for some c> 0 p(g.v, g.w) = cp(v,w) for all V,WE V. Observe 
that since p has arbitrary signature, U Ip) is not the usual 
unitary group although we sometimes refer to it in this way. 
Indeed, generally UIp) is not compact. Also observe that 
gECUIp) iff g = ch for some c> 0 and hEUIp). Thus 
CUIp)~ UIp) X +R. Moreover there exists a "standard" ba
sis [r"r2, ... ,rn ) of V such that the matrix ofp, Jij p(rJj)' is 
diagonal with only elements of[ 1, - 1) on its principal diag
onal. We shall assume that the basis has been chosen so that 
this is so. Observe that AEUIp) iff 

AJA t =J. 

Here A t denotes the transpose of A when K = R and is the 
conjugate transpose of A when K = C. 

Remark 1: Observe that just as for the metric Higgs 
field, one has that a bundle P (M,G) reduces to a GnCUIp) 
subbundle iff P admits a p-conformal Higgs field. On the 
other hand bundle reduction is generally not equivalent to 
the existence of a p-conformal structure on E. It is clear that 
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the existence of a bundle reduction does always imply the 
existence of a p-conformal structure on E. 

Remark 2: Generally one should not expect the exis
tence of a p-conformal Higgs field on a principal bundle 
P (M,G). For example it is well known 13 that in order for a 
Lorentzian metric to exist on a compact manifold M the 
Euler class of the tangent bundle of M must vanish. It fol
lows from our next theorem that no 7]-conformal structure 
can then exist on a compact manifold whose tangent bundle 
has a non vanishing Euler class. 

Theorem 2.S: If P (M,G ) is a principal bundle and 
G C;; GI(n,K ) contains all positive multiples of the identity of 
GI(n,K) then P admits ap-conformal Higgs field iffit admits 
ap-metric Higgs field. 

Corollary 2.6: The bundle E associated to P has a p
conformal structure if and only if it has a p-fiber metric. 

This concludes our effort to recast various known facts 
into the framework needed in the subsequent development. 

III. SYMMETRY-BREAKING HIGGS FIELDS 

As remarked in the introduction, symmetry-breaking 
Higgs fields do not exist in general. There are typically topo
logical obstructions to their existence and we refer to the 
reader to the paper by Isham 14 for a detailed account of these 
obstructions. In this section we characterize those Higgs 
fields that are symmetry-breaking and we use this result to 
show that general Higgs fields are actually symmetry-break
ing over submanifolds of the base space. In addition we 
prove a theorem which shows that under suitable hypotheses 
any two Higgs fields that map to the same orbit in a vector 
space are the same Higgs field up to a bundle automorphism. 

As we stated in the introduction local symmetry-break
ing Higgs fields are easily constructed. If s: U-P is any local 
gauge in P we define ¢J u:(p 1 U)_ V as follows. Let 5E V and 
choose any smooth function fl:U-G. Let ¢Ju be defined by 

¢Ju((x)g) = g-Ifl (x)S. 

Then ¢Ju is a symmetry-breaking Higgs field on P 1 U. Ifwe 
definesbys(x) = s(x)fl (x) we see that sis anew gaugeinPand 
on this gauge ¢Ju(S(x)) = 5 for allx. The question arises: how 
can one use local symmetry-breaking Higgs fields to obtain 
global ones? We can choose an open cover [ Ua J of M such 
that for each a, Ua is the domain of a local gauge Sa: Ua-P 
of P. Also, as above we can define a symmetry-breaking 
Higgs field ¢Ja :(P 1 Ua)-Vwhich has some constant value 
5aEV on Sa' It is now trivial to show that there is a global 
Higgs field ¢J on P such that 

¢J1(PlUa)=¢Ja' 

iff 

513 = gap{x)-ISa 

for all XEUanUp wheregap:UanUp-G is the gauge trans
formation which carries the gauge Sa to the gauge sp: 

sp{x) = Sa (x)gaP(x). 

Minor modification of this argument yields a proof of the 
following theorem. 

Theorem 3.1: A Higgs field ¢J defined on a principal 
bundle P (M,G) is a symmetry-breaking Higgs field if and 

1875 J. Math. Phys., Vol. 24, No.7, July 1983 

only if there is a family [( Ua ,Sa) J of local gauges of P such 
that M is covered by the domains [ U a J of the gauges and ¢J is 
constant on each gauge sa' 

Since the existence of general Higgs fields poses no diffi
culty and since the existence of global symmetry-breaking 
Higgs fields imposes topological restrictions one could ask 
whether or not general Higgs fields admit a "decomposi
tion" in terms of symmetry-breaking ones. We will see that 
under relatively general hypotheses it is possible to write M 
as 

M = UIUU2U"·UUsu~, 

where ~ is a set of measure zero and where each Ui admits a 
foliation ~ i such that for every leaf L of ~ i the restriction 
of ¢J to P IL is a symmetry-breaking Higgs field. We proceed 
to prove this theorem but we first establish some details nec
essary to the decomposition of M. 

Generally the action of G on a vector space V does not 
foliate V. This is basically due to the singular nature of the 
mapping from G X Vinto V defined by (g,x)-g·x. This type 
of singularity is fairly well understood however, 15 and utiliz
ing standard techniques we can decompose Vas follows. 

Let n I denote the dimension of an orbit of G in Vof 
maximal dimension and define VI by 

VI = u[ tJl tJ is an orbit of G such that dim tJ = n l J. 
One can now define a family of subsets [ Vi J of Vand integers 
[n i J inductively so that the following conditions are satis
fied: 

(1) n I> n2 > ... > ns and for each 1 <;;i<;;s, ni is the largest 
integer which is the dimension of an orbit of G not lying in 
Vlu V2u ... u Vi _ I (for each i it can be shown that if an orbit 
intersects VIU"'UVi _ I then it is actually a subset of 
Vlu ... uV;_ I)' 

(2) for 1 <;;i<;;s, Vi is the union of the family of orbits ofG 
in V - uj: : ~ such that all the orbits of the family have 
dimension n i . 

(3)V= U v,. 
;= 1 

One may then prove that each Vi is open and that 
~ = V - u:~ I Vi has measure zero in V. We call thisdecom
position the singular decomposition of Vand we refer to ~ as 
the residual set ofthe decomposition. We delete the details of 
the proof that such a decomposition exists preferring to refer 
to Ref. 15 where similar decompositions are made. 

It is perhaps worthwhile to compare this method of de
composing V to another method introduced by Michel and 
Radicati. 16 If XE V then the stratum of V through XE V is the 
set S (x) of alIYE V such that the isotropy subgroup of G deter
mined by Y is a conjugate of the isotropy subgroup Gx deter
mined by x. Two points on the same orbit have conjugate 
isotropy subgroups, thus each stratum is the union of a fam
ily of orbits. Any two orbits in a stratum have the same di
mension, thus for XE Vi one has S (x) C;; ViU~, It follows that 
the set of interior points of a stratum is a subset of a single V, 
but the boundary points may lie in the residual set~. Gener
ally the decomposition of V into strata is a finer decomposi
tion than the singular decomposition (see Appendix B for a 
typical example). We utilize the singular decomposition be-
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cause we are interested in finding the largest bundles of the 
form P I U on which a given Higgs field may be decomposed 
into symmetry-breaking Higgs fields over submanifolds of 
U. 

Lemma 3.2: If G is a Lie group which acts on the left of a 
vector space Vand if V = .2'u Vlu ... u Vs is the singular decom
position of V relative to this action then for each 1 <,i <,s there 
is a foliation 'Yi of Vi whose leaves are precisely the set of 
components of the orbits of G in v,. 

We relegate the proof to Appendix A. 
Recall l7 that the action of a Lie group G on a manifold F 

is called a regular action if each point xEF is contained in an 
open subset Ux ~F such that for every orbit tJ of Gin F, 
tJ nUx is a connected (regular) sub manifold of Ux ' For exam
ple, if G is compact then every action of G is regular. Also the 
usual action of the Lorentz group on R4 is regular. 

Theorem 3.3: Assume that P (M,G ) is a principal bundle, 
that G acts regularly on V and that V = .2'uV1u···uV, is the 
singular decomposition of V relative to the action of G. Let 
rP:P--+Vbe a Higgs field and let Ui = 1T(rP -1(Vi)),.2'M 
= 1T(rP -1(.2' I). Then 

(I) M =.2' MUUIU"'UUs where each U i is open in M and 
.2' M is residual in M, 

(2) the Higgs field rP maps the bundle P I Ui onto the open 
submanifold Vi of Vand Vi is foliated by orbits of G, 

(3) there exists a unique smooth mapping/; from Ui into 
the possibly non-Hausdorff manifold V;lG such that if 17i 
: Vi-V,IG is the map which sends x to the oribt of x then 

Moreover, if the map/; has constant rank then there is a 
foliation v&- i of Ui such that if L is any leaf of U2t i then rP maps 
P IL onto a single orbit ofG; consequently rP I(P IL) is a sym
metry-breaking Higgs field. 

Again we defer the proof to Appendix A. 
Remark J: Let P (M,G ) be a principal bundle whose 

structure group G is compact and assume that G acts on the 
left of a vector space V. If rP is a constant rank Higgs field 
which maps P into the interior of a single stratum S of the 
action of G on V then S admits a foliation Y and by our 
theorem it follows that M admits a foliation JI such that 
rP I(P IL) is symmetry-breaking for each leaf L of JI. 

Remark 2: Theorem 3.3 above shows that it is possible 
to decompose M into the union of a finite number of open 
sets along with a residual set of measure zero such that each 
open set is foliated in such a way that rP is symmetry-break
ing in the part of the bundle over each leaf. The basic as
sumption which allows us to do this is that each/; has con
stant rank. This is only an assumption of convenience since if 
this were not true it is known that under fairly general hy
potheses each Ui can be decomposed further so that on each 
piece of the decomposition/; would have constant rank. 
Thus Ui would decompose into a union of a finite number of 
open sets along with a measure zero residual set in such a 
way that the rank of/; is constant on each open set. Thus the 
theorem holds quite generally. 

We have discussed the problems of existence of symme
try-breaking Higgs fields and their relationship to general 
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Higgs fields. Our next theorem provides some insight re
garding the uniqueness of such fields. 

Theorem 3.4: Let P (M,G ) be a principal bundle and let G 
act on the left of a vector space V. Assume that rP and t/J are 
symmetry-breaking Higgs fields which map onto the same 
orbit G·s of G. Ifthere is a normal subgroup N of G such that 
G is a semidirect product G = N®Gs of N and the isotropy 
subgroup G 5 of S then there is an equivariant automorphism 
y:P-P such that t/J°Y = rP. 

Again we defer the proof to Appendix A. This theorem 
will be utilized in our discussion of conformal geometry in 
Sec. 5. It also may be applied successfully to Higgs fields 
defined on the affine frame bundle AM which has been 
shown 12 to be the bundle relevant to a fiber bundle descrip
tion of the metric affine theories of gravitation due to Hehl 
and others. 18 

IV. SPLITTING THE CONNECTION 

It is well known that having a symmetry-breaking 
Higgs field on a principal bundle P (M,G) is equivalent to the 
possibility of reducing the bundle P to a subbundle Q (M,H) 
whose structure group H is a subgroup of G. In much of the 
physics literature on bundles any connection won the bundle 
Pis either required to reduce to Qor the possibility of having 
a connection induced on Q by w is ignored. On the other 
hand it is certainly well known that in spontaneously broken 
gauge theories certain components of the original gauge field 
survive as the components of a new gauge field and of course 
this new gauge field should be a connection on an appropri
ate subbundle of the original bundle. The Fundamental 
theorem gives us a method for dealing with this problem as it 
allows us to split a connection w on P into a pair (wo, To) where 
Wo is a new connection on Q and To is a tensorial form on Q 
provided that the Fundamental hypothesis is satisfied. In 
this section we are interested in some special implications of 
this result. 

Let G be a Lie group and H a subgroup of G. We say that 
N is a complement of H in G provided N is a normal subgroup 
of G such that G = N®H is a semi-direct product of Nand H. 

Theorem 4.1: Assume that P (M,G ) is a principal bundle, 
thatQ (M,H ) is a subbundleofP (M,G ) andthatNisacomple
ment of H in G. Then there is a bijective correspondence 
between the set of all connections on P and the set of all 
ordered pairs (Wo,To) where Wo is a connection on Q and To is 
an n-valued tensorial I-form on Q. 

Proof The correspondence referred to in Theorem 4.1 is 
obtained as follows: given a connection w on P the corre
sponding pair (wo' To) is defined by 

Wo = WI) I TQ, 

To = Wl1 I TQ. 

Conversely if (wo, To) is given then the connection w which 
gives (Wo,To) under this correspondence can be recovered via 
the formula 

w(X) = wo(diT(X)) + To(diT(X)) - dfl(X - diT(X )1, (4.11 

where X is any vector tangent to P at points of Q and where 
the property R ;w = Ad(g- Ilw will recover its values at oth
er points of P. Here fl is the map from P to N such that for 
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each uEP, p(u) is the unique element of N such that up(u) is in 
Q. Moreover ir:P-+Q is defined by ir(u) = up(u). The full 
details of the proof are similar to the corresponding theorem 
about connections on the affine frame bundle AM (see Ref. 

~. . 
Generally if cu is a connection on a principal bundle P 

and Q is a subbundle of P then cu does not reduce to Q. Under 
the Fundamental hypothesis, however, we do know that 
there is a unique connection cu' on P such that 

(1) cu' reduces to Q, 
(2) cu' agrees with cu~ 1 TQ on Q. 

It is clear that cu reduces to Q iff cu = cu' and that this is true iff 
the tensorial form CUn 1 TQ vanishes. 

Theorem 4.2: Let P (M,G ) be a principal bundle and 
Q (M,H) a subbundle which satisfies the Fundamental hy
pothesis. Let cu be a connection of P and let cu' be the unique 
connection on P which reduces to cu~ 1 TQ on Q. 

(1) If 7 = cu - cu' is the difference form then 7 is unique
ly determined by 71 TQ. Moreover 7~ 1 TQ is a difference form 
on Q and cu reduces to Q iff 7~ 1 TQ = O. 

(2) If G acts on a vector space Vand t/>: P-+ V is a Higgs 
field which breaks the symmetry of P to Q then 

Dt/> = (cu - cult/>· (4.2) 

Moreover, 7'lJ/ 1 TQ is uniquely determined by Dt/>. 
Remark: In writing equation (4.2) we tacitly assumed 

the existence of an action of the Lie algebra 9 on V. In fact if 
AEg and VE V, then A·v is defined by 

A·v =!!.... [exp (tA )·v] I ' 
dt 1=0 

where we identify Tv V with V for each VE V. 
Proof of the Theorem: The proof of (1) is straightforward 

and is left to the reader. Actually (2) is also easy as generally 
we have Dt/> = dt/> + cu·t/> and D 't/> = dt/> + cu'.t/>. But cu' re
duces to Q so that D 't/> = 0 and consequently 
Dt/> = (cu - cult/>. This proves the first assertion of (2). Since 
t/>:P-+ Vis a symmetry-breaking Higgs field we know that for 
someSEV,t/> -I(S) = QandH = Gs is the isotropy subgroup 
of S. Thus if A is in the Lie algebra 9 ofG thenA belongs to the 
subalgebra f) iff A·S = O. Thus 7~'S = O. But Dt/> = 7.t/> and 
consequently for UEQ and XETu Q, 

Dut/> (X) = 7u(X).t/> (u) = 7u(X)·S = (7w/)u'S, 

Note, however, that if A,BEIJR and A·S = B·S then 
A - BEf)nlJR = (0). Thus there is at most one CEIJR such that 
Du t/> (X) = C.S· Consequently 7w/ 1 TQ is uniquely deter-
mined by Dt/> 1 TQ. • 

Corollary: Assume that P (M,G ) is a principal bundle 
and that Q (M,H) is a subbundle of Pwhich satisfies the Fun
damental hypothesis and which arises from a symmetry
breaking Higgs field t/>:P-+ v. Then every connection cu on P 
arises as follows: 

(1) choose an arbitrary connection CUo on Q, 
(2) choose an arbitrary IJR-valued horizontal equivariant 

I-form 70 on Q, 
(3) require that CUI) 1 TQ = CUo and that Dt/> 1 TQ = 70, 
Remark: We will see later in the paper that the compon

ents of 7 play the role of physical fields. In the case that Pis 
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the conformal bundle t/> may be taken to be real-valued and 
the form (7 R 1 TQ ) = (CUR 1 TQ ) uniquely determines the Weyl 
vector usually associated with the electromagnetic field in 
Weyl geometry. We will also see later how to formulate the 
traditional Weinberg-Salam model of the electroweak inter
action in geometrical language and upon doing so we will 
find that the gauge components of (7w/ 1 TQ) = (cuwll TQ) are 
precisely the fields W ± ,z. In both of these examples we 
have asserted that (7WI I TQ) = (cuw/ 1 TQ). This is always true 
in the presence of our Fundamental hypothesis since on 
Q = t/> -I(S) we have f)·S = 0 and 7WI 'S = (7~ + 7w/ )·S 
= 7'S = (cu - cu}S = (cu~ + CUWI )·S - cu'·S = cuw/'S and on 
TQ this equation implies 7 WI 1 TQ = CU'lJ/ 1 TQ. 

We now develop some notation to be utilized in the final 
theorem of this section. Let P (M,G ) denote a principal fiber 
bundle and assume that G acts linearly on the left of a vector 
space V. Let cu be a connection on P and let S denote some 
fixed element of V. Assume that G 5 has some fixed comple
ment N in G and let 9 = f) Ell n where f) is the Lie algebra of 
H = Gs' For every Higgs field t/>:P-+Vwhich maps onto the 
orbit G·S let cu '" denote the connection on P which reduces to 
cu~ 1 TQ on Q and let 7", denote the n-valued tensorial differ
ence form cu -cu", on P. It is of interest to know how a 
change in the Higgs field t/> affects the pair (cu ""7,,,) deter
mined by t/> and the connection cu. In particular assume that 
t/!:P-+ V is another Higgs field which maps onto the same 
orbit G·s. Then cu'" and cu'" agree with cu but on different 
subbundles of P. They are different connections but we shall 
see that in local gauges they transform as if their gauge com
ponents were the gauge components of a single connection. 

Theorem 4.3: Assume that t/> and t/! are Higgs fields from 
a principal bundle P (M,G ) into a vector space V such that 
both t/! and t/> map into the same orbit G·S for SEV. Assume 
that the isotropy subgroup G s of S has a complement N in G 
and that cu is a connection on P. Then there exist local gauges 
s'" in Q", and s'" in Q", and a mapping n from dom s",ndom s'" 
into N such that 

(1) s", *cu", = s", *cu", = Ad(n-I)(s:(cu",)) + dL n -Iodn 
(2) S,P*7", = S'" *7", - dR n -Iodn. 

Proof It is easy to show that there exist gauges s'" in Q", 
and s'" in Q", such that s~ (x) = s'" (x)n(x) -I for some N-valued 
function on dom s'" ndom s",. If H = G s has Lie algebra f1 and 
N has Lie algebra n it follows from the definitions of cu'" and 
cu'" that 

s'" *cu", = s'" *cu~, 

s'" *cu", = S'" *cu l) . 

Moreover, since cu is a connection we have 

(4.3) 

Let P", :P-+N, p", :P-+N be the unique functions defined by 
requiring that uP", (U)EQ", and Up",(U)EQ", for each uEP. Also 
let 1T", :P-Q", , 1T ",:P-+Q", be defined by 1T",(U) = UP", (u), 1T ",(u) 
= up",(u). Since s'" is a gauge in Q", we have that dxs",(X) is 

tangent to Q", for each xEM and XETxM. But 1T", IQ", is the 
identity; thus d1T", (dxs",(X)) = dxs", (X). It follows from 
these facts and Eq. (4.1) of the proof of Theorem 4.1 that 
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(s", *cu)(X) = cu",(ds",(X)) + 7",(ds",(X)) 

= (S", *cu", + s'" *7",)(X) 

with a similar equation involving cu'" and 7",. Substituting 
these equations in (4.3) above we obtain 

s", *cu", + S¢. *7", = Ad(n)(s", *cu",) 

+ Ad(n)(s", *7",) + dLn odn- I. (4.4) 

Each term in Eq. (4.4) can easily be identified as having all of 
its values either in n or in f) except for Ad(n) (s", *cu",). We will 
show that Ad(n) (s", *cu",) = s'" *cu",. To see this recall that 
Ad(n) = de Un where Un (x) = nxn- I for each xEG. Let 
1T:N XH-Hbe the map 1T(n,h) = h and observe that ifG is 
identified with N XH then 1T(un(n l ,hIl) = hi for arbitrary 
n,n lEN and h IEB. It follows that d1Todu n = d (id H) and thus 
that 

(de Un )(v,w) = w 

for arbitrary vETeN, wETeH. It follows that Ad(n)(b ) = b for 
every bEf) and that Ad(n) (s", *cu",) = s'" *cu",. By (4.4) we have 

s",*cu", =s",*cu", = Ad(n-I)(s¢,*cu,p) + (dLn -Iodn) 

s'" *7", = Ad(n)(s,p *7,p) + dLn odn- I. 

Now 7", is by definition the difference form cu - cu'" and con
sequently is tensorial. Thus Ad(n) (s", *7",) = S'" *7", and the 
last equation above becomes 

S",*7", =S",*7,p -dRn -Iodn. 

V. GENERALIZED CONFORMAL GEOMETRIES 

In this section we are concerned primarily with the "in
teraction" betweenp-conformal Higgs fields on a bundle and 
a connection on a bundle. In particular we formulate a ver
sion ofWeyl theory on a very general class of principal fiber 
bundles. Indeed, throughout this section P (M,G ) will denote 
a principal bundle whose group G acts linearly and faithfully 
on an n-dimensional vector space Vin such a way that the set 
of all positive multiples of the identity of GI(n,K ) is a subset 
ofG (see Sec. 2 for notation). We also assume V hasametricp 
and since + IR ~ G acts on p via s·p = s-2p it follows that the 
subalgebra IR of the Lie algebra 9 of G acts on p by 
t·p = (- 2tJp. 

We now prove a preliminary result which does not de
pend on the interplay between connections and conformal 
structures but which gives us an easy method for dealing 
with conformal scaling techniques to be utilized in Sec. 6. 
We first develop further notation. 

Observe that every element g of G, regarded as a matrix 
in GI(n,K ), has a unique decomposition g = ea where e > 0 
and I det a I = 1. Indeed the equation g = ea implies 
det g = en (det a) and thus e = Idet gilln. On the other hand 
if we define e by e = Idet gilln and a by a = e-Ig then it 
followsthatg = eawheree > o and Idet al = 1. LetH denote 
the set of all aEG such that I det a I = 1. Clearly H is a sub
group of G and G is isomorphic to + IR X H via the map 
g-(Idet(g) I lin, Idet(g)l- ling). The natural action of G on its 
coset space + IR = G / H may be identified as 
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g·r = rldet(g) I lin for r> 0, gEG. (5.1) 

Now if 7 is ap-metric Higgs field on Pi- belonging to the 
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fixed p-conformal Higgs field r then, for each uEP there ex
ists a unique r(u) > 0 such that 7(U) = l/J (uJp. Define 
l/J (u) = r(u)-1/2 so that 7(U) = l/J (u).p for each u. For 
aEBnU(p) and uEPT , l/J (ua).p = 7(ua) = a- I'7(u) 
= l/J (u).(a-I.p) = l/J (u).p and l/J (ua) = l/J (u). Thus l/J is invar

iant under action of elements of HnU (P). On the other hand, 
for r> 0 and uEPT , l/J (ur).p = 7(ur) = r- I'7(u) = (r-Il/J (u)).p 
and l/J (ur) = r-Il/J (u) = r-I.l/J (u). 

Thus l/J is a Higgs field if + IR is acted on by elements of G 
as in (5.1) above. Conversely, if l/J:G- +IR is a Higgs field and 
if we define 7(U) = l/J (U)-2p it is easy to reverse the steps 
above and show that 7 is a p-metric Higgs field on PT' Thus 
we have: 

Theorem 5.1: Let the structure group G of the principal 
bundle P (M,G) contain all positive multiples of the identity. 
If r is a p-conformal Higgs field on P then there is a bijection 
between the set of all p-metric Higgs field on PT which be
long to r and the set of all +IR-valued Higgs fields on PT' The 
p-metric Higgs field 7 and the + IR-valued Higgs field l/J corre
spond to one another under the bijection if and only if 

7(U) = l/J (u).p = l/J (U)-2p. 

At this point we introduce a connection cu on our bundle 
P. We have already seen in Sec. 2 that having ap-conformal 
structure r:p-+.%' *(V) on P is equivalent to having a 
CV(p)nG subbundle r-I(Lo]) of P. It is of interest to know 
when the connection cu reduces to this subbundle. It is 
known that cu reduces to PT : = r-I(Lo]) iff Dr = O. Our next 
theorem shows that generally this provides us with a I-form 
f1 on Pwhich will imply the existence ofa "Weyl vector" for 
this theory. 

Theorem 5.2: Let r be a p-conformal Higgs field on P 
and letPT denote the GnCV(P) subbundler-I(Lo]) of P. Ifcu is 
a connection on P then cu reduces to Pi- iff Dr = O. Moreover 
if 7 is a metric Higgs field such that flu) = [7(U)] for all uEP 
then cu reduces to Pi- iff 

D7 =f17 

for some I-form f1 on P. 
Proof The proof of the first statement is well known6

•
9 

and consequently is omitted. To prove the second statement 
firstlet7]:.%' (V)-.%' *(V)bedefinedby7](b ) = [b]. Recall that 
as a manifold.%' *( V) is diffeomorphic with the unit sphere in 
.%'(V) with antipodal points identified. Thus if we wish to 
compute db 7] at bE.%'(V) then we may choose a coordinate 
patch at 7](b )E.%' *( V) so that in these coordinates 7] is given by 
1j(b) = (l/Ilb lI)bwherellb II is the length of bE.%' (V) relative to 
some fixed positive definite inner product on the finite-di
mensional space .%'(V). But (db7])(k) = (l/lib lI)k - (b.k/ 
lib 113)b and consequently db 7](k) = 0 iff k is a multiple of b. 
Here db 1j denotes the usual Frechet derivative ofthe map 1j 
from the finite dimensional vector space.%' (V) to itself. Note, 
however, that if flu) = [r(u)] then r = 7]07 and 

Dr = d7]0D7. 

Thus if XETuP then (Dru )(X) = 0 iff (D7u )(X) is a multiple 
of 7(U). But if D7 u (X) = f1(X )r(u) for some number f1(X) then 

f1(X) = Du 7(X)·r(u) 
r(U)'7(U) 
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and conversely. ThusUl reduces top .. iff Dr = ILrforsome 1-
formlL onP. • 

Remark: If there is a I-form IL on P such that Dr = ILr 
then it follows from the fact that both Dr and rare tensorial 
forms 7 that IL is invariant under the action of G. Since IL is 
also necessarily horizontal it follows that IL = 1T* A. for some 
I-form A. on M. 

Theorem 5.3: Let r:P-go(V) be ap-metric Higgs field 
and Ul a connection on P such that Dr = ILr for some real 1-
form IL. The following statements are equivalent: 

(1) there is a smooth functionlL:P-R such thatlL = dv 
(thus IL is exact), 

(2) there is a function v: P_R such that D (e - V r ) = 0 
(3) there is a function v:P-R such that if 

J(u) = e - v1U1T(u) then Ul reduces to r-I(r.p) for each r> O. 
Proof Note that for any smooth function v:P-R 

D(e-Vr) =d(e-Vr) + Ul·(e-Vr) 

= e - V [(Dr - (dv)r]. 

Thus D (e - Vr ) = 0 if and only if Dr = (dv)r. Since there is at 
most one I-form IL such that Dr = ILr we see that IL is exact 
with IL = dv iff D (e - v r) = O. It is well known6

•
9 that 

D (e - Vr) = 0 iff Ul reduces to any "level surface" of e - Vr. • 
The following corollary is a trivial but important conse

quence of the theorem. 
Corollary 5.4: Let r:P_go ( V) be a p-metric Higgs field 

and Ul a connection on P such that Dr = (dv)r for some 
smooth function v:P-R. If lP:P-P is defined by 
lP (u) = u.e - v1ul then 

(1) lP is an equivariant automorphism of P, 
(2) lP carries the GnCU(p) subbundle PT : = r-IUp]) 

onto itself, 
(3) lPcarries the GnU(p) subbundlesP,: = r-I(r.p)r> 0, 

onto other GnU(p) subbundles lP (P,) of PT , 

(4) Ul reduces to PT but generally does not reduce to the 
various P" r> O. On the other hand, Ul does reduce to the 
subbundles lP (P,), r> O. 

Remark: The automorphism lP "changes scale" at each 
xEM in such a way that the P, are "pushed into" subbundles 
on which Ul reduces. 

Generally, in case r:P_go ( V) is any metric Higgs field 
on P and Ul is any connection such that Dr = ILr for some 1-
form IL on P it follows from the Remark preceding Theorem 
5.3 that IL = 1T* A. for some unique I-form A. on M. It is cus
tomary to refer to A. as the Weyl vector of the pair (Ul,r) in 
spite of the obvious I-form character of A.. 

Theorem 5.5: Let P be a principal bundle whose struc
ture group G satisfies: +R~ G~CU(p). If r is ap-metric 
Higgs field such that r = ¢ -2p for some +R-valued Higgs 
field ¢ then for any connection Ul on P the Weyl vector A. of 
(Ul,r) satisfies the following conditions: 

(1) D¢ = ( - 2)(1T*A. )¢, 

(2) UlR = ( - 1I2)(1T*A. ) - 7 ' 
(3)Dr= (- 2)[UlR + ~] r. 
Remark: Recall that UlR is the R-component of the con

nection Ul. Indeed, if H = GnU (P) then G = + R X Hand 
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9 = ~ Ell R. Thus Ul = Ull) + UlR . Moreover, since the action of 
H on go (V) leavesp invariant we know that the action of~ on 
p is zero. In particular, 

Ull).r = Ull) .(¢ -2p) = ¢ -2(UlI) .p) = O. 

Proof of the Theorem: All three statements are easy con
sequences of the equation: 

ILr = Dr = ( - 2¢ -3)(d¢)P + Ul.(¢ -2p) 

= ( - 2)¢ -3(d¢ + UlR¢)P 

= ( - 2)¢ -'(d¢ + UlR¢)r 

= (_ 2) (D:) r. • 
The final theorem of this section shows that our exten

sion of the concept ofa Weyl-vector to appropriate "confor
mal bundles" satisfies the usual transformation laws expect
ed in a more classical treatment of the subject. In particular, 
how does the Weyl-vector change when one varies thep
metric Higgs field within a given p-conformal Higgs field? 

Theorem 5.6: Let P (M,G ) be a principal bundle with 
+R ~ G, let Ul be a connection on P, and let r be a p-confor
mal Higgs field on P. If r I and r 2 are p-metric Higgs fields in 
r with corresponding W ey I-vectors A. ] ,A. 2 then there is a 
function s:M-+R such that 

A.I = A.2 - ~d (Ins)· 

Thus the two Weyl-vectors differ by a "gradient." 
Proof Choose +R-valued Higgs fields ¢1'¢2 such that 

r l = ¢I -2p, r2 = ¢2 -2p on Pr' Let 0 = ¢1¢2 -Ion Pr and 
recall from Theorem 5.5 that 

D¢, = ( - 2)(1T*A.d¢" 

D¢2 = ( - 2)(1T*A. 2)¢2· 
Since 0 is invariant under GnCU(p) it follows that 0 = 1T*S 
forsomes:M- +R. We claim that A. I = A.2 - ~d (Ins). To see 
this observe that ¢] = 0¢2 and 

D¢, = OD¢2 + ¢2dO. 

Thus ( - 2)(1T*A. I)0¢2 = ( - 2)(1T*A.2)0¢2 + ¢2dO and 
1T*A.] = 1T*A.2 - !dO /0. • 

Weyl geometry is a consequence ofWeyl's efforts to 
develop a unified field theory of gravitation and electromag
netism. '9 In Weyl's original theory the Weyl covariant vec
tor A. on the base manifold was identified with the electro
magnetic vector potential, and its "curl" dA. was identified 
with the Maxwell field tensor. We shall see in Remark 2 
below that in a bundle version ofWeyl's theory it is UlR rath
er than 1T*(A. ) that one should choose to "represent" the elec
tromagnetic vector potential. 

First we briefly clarify what is needed for a bundle for
mulation ofWeyl theory. The appropriate principal bundle 
is the frame bundle LM of a four-dimensional manifold M. 
One should be given a "conformal structure" on M which in 
the present context is given by a conformal Higgs field r: 
LM __ go *(R4

). It is assumed, of course, that the Higgs field r 
maps all of LM onto the orbit of [1]] where 1] is the usual 
(constant) Minkowski metric on R4. Weyl theory does not fix 
the metric within the given conformal structure thus the spe
cific metric Higgs field r:LM_go(JR4

) is left free to vary 
within the fixed class r. We see that r breaks the symmetry of 
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LM to give us a subbundle COM with structure group 
O( 1,3) X + lEt One also needs a connection W on LM and the 
dynamics of W must reduce to COM so that D1' = O. Any 
such connection W then decomposes as in the remark follow
ing Theorem 5.5: 

W = Wo + WR . 

Here Wo has its values in the Lie algebra 0(1,3) of 0(1,3) and 
WR is real-valued. 

Although the latter paragraph imposes significant re
strictions on P, w, and 7 one does not yet have traditional 
Weyl theory. Ifit is required that W be torsion-free then Weyl 
theory emerges. Thus we have l2 : 

Remark J: If P (M,GI(4,R)) is a principal bundle over a 
four-dimensional manifold M then in order that P be a bun
dle model ofWeyl geometry one must have: 

(1) a connection W on P, 
(2) a symmetry-breaking conformal Higgs field 7 on P 

such that D1' = 0, 
(3) a soldering form eon P such that De = O. 
The remainder of this section will be devoted to a proof 

of the following remark. 
Remark 2: If W = Wo + WR decomposes as above then 

the curvature fl of W also admits a decomposition as 
fl = flo + flR where flo is 0(1,3) valued, flR is real-valued 
and flR = dwR. If A is the Weyl vector ofthe pair (W,7) where 
7 is a metric Higgs field such that 7 = [7] then it is true that 
flR = d ( - 21T*A )butA clearly depends on the metrical sub
structure of 7 whereas WR does not. This suggests that WR 

should play the role of the vector potential rather than 
1T*( - U). 

We now establish the assertions made in Remark 2. 
Using the definition fl = dw + 1I2[w,w] of the curva

ture fl of W together with the commutation properties 
[ Wo,wR] = [WR ,wR] = 0 it is easy to show that fl itself can 
be decomposed as 

fl = flo + flR , 

where 

flo=dwo + 1I2[wo,wo] and flR = dwR · 

Now let A denote the Weyl vector of the pair (W,7). Then 
according to Theorem 5.5 we may write WR 

= - 21T*(A ) - d¢J /¢J for some +R-valued Higgs field ¢J. 
Hence the +R-part of fl may be expressed as 

flR = dW R = d ( - 21T*A - ~) = - 21T*(dA). 

flR is thus a horizontal invariant two-form on COM. If we do 
a "conformal change" from 7 to 7, then according to 
Theorem 5.6 A changes to I = A +!d (In 5) for some +R
valued function S on M. Clearly dI = dA and thus flR 
= - 21T*(dA ) = - 21T*(dI). • 

VI. WEINBERG-SALAM THEORY AS A CONFORMAL 
GAUGE THEORY 

The purpose of this section is to give a geometric model 
of the Weinberg-Salam theory of the electroweak interac
tion. Normally the Weinberg-Salam model is presented II as 
a Lagrangian field theory whose Lagrangian is invariant un-
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der the Lie group of matrices SU(2) X U( 1). Our presentation 
shall focus on a principal Gl(2,q fiber-bundle-with-connec
tion along with attendant Higgs fields. One of these Higgs 
fields will serve to define a conformal structure on the bundle 
as in the previous section while the other plays the same role 
as the usual scalar Higgs fields in the Lagrangian model. 

A strict analogy with the Weinberg-Salam model 
would lead one to expect the geometrical arena to be a princi
pal SU(2)XU(I) bundle with connection. We have chosen to 
utilize a Gl(2,q bundle for two reasons. 

First we wish to establish an analogy with the fiber bun
dle version of gravitational theories,9.12 and these theories 
are generally modeled on the frame bundle of a spacetime M. 
By choosing a full GI(2,q bundle P we are assured by 
Theorem 2.2 that P may be identified as a bundle offrames of 
the bundle associated to Pand the usual action ofGl(2,q on 
(;2. At this point we can, as in gravitational theories, let a 
metric choose a U(2) subbundle. A suitably normalized sca
lar Higgs field may then be used to reduce this U(2) subbun
dIe to an electromagnetic U( I) bundle as in the traditional 
Weinberg-Salam model. 20 

A second reason for choosing a bundle whose group 
contains U(2) is that in doing so we allow the presence of a 
conformal structure which will enable us to give geometric 
meaning to the surviving component of the scalar Higgs field 
which in the usual model describes a scalar particle. 

Throughout the remainder of this section we will as
sume given the following data: 

(I) a spacetime manifold M along with a Lorentzian 
metricg, 

(2) a Gl(2,q principal fiber bundle P over M, 
(3) a connection won P, 
(4) a conformal Higgs field 7 on P which reduces the 

connection W (D1' = 0) and which maps onto the orbit of the 
class fp]E.%l*(C2) wherep is the usual metric on C2: 
p(z,w) = ZIW I + Z2W2' 

(5) a class of scalar Higgs fields 1/1:P-C? which are as
sumed to be nontrivial symmetry-breaking Higgs fields. 

The usual Weinberg-Salam model concerns itself with 
u(2) = su(2) + u( I) valued gauge fields as well as scalar Higgs 
fields such as 1/1 above. Our first task is to show how to use the 
conformal structure to choose possible candidates for an ap
propriate U(2)-subbundle of P on which w reduces. The com
ponents of the reduced connection w will then play the role 
of the gauge fields which occur in the usual model. 

Since we have assumed that D1' = 0 we know that if 
0':P_.%l(C2

) is any metric Higgs field such that 1'(u) = [O'(u)] 
for all uEP, then 

DO' = f1 a O' 

for some I-formf1a on P. The following observation is a 
consequence of Corollary 5.4. 

Observation 1: If 0' is a metric Higgs field on P such that 
f1a = dv (T for some function Va :P_R then the function 

<P (u) = u.e - V,oju, 

is an automorphism of P which carries P,.: = 1'- I (fp]) onto 
P,. and which carries P,:O'-I(r.p) onto a U(2)-subbundle 
<P (P,) on which w reduces. In particular, anyone of the sub-
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bundles (/) (Pr), r> ° along with the reduced connection 
wi(/) (Pr) is an acceptable arena for Weinberg-Salam theory. 

At this point if we fix r> ° then we see that for any 
non vanishing Higgs field ",:P-C.z it follows that (",/11"'11), 
11"'11 2 

= p("',"'), is a Higgs field on (/) (Pr)' Since ",/11"'11 maps 
(/) (Pr) onto a sphere of radius 1 in C2 and since the orbits of 
U(2) on C2 are precisely the set of all spheres in C2 it follows 
that X: = ",/11"'11 is a symmetry-breaking Higgs field on 
(/) (Pr)· It follows that X- I(~) is a U( 1) subbundle of (/) (Pr) 
which we denote by Qr' Its structure group is the isotropy 
subgroup of (~) in U(2). If 

A = eill ( ~ p :), la 12 + IP 12 = 1, 

is a typical element of U(2) we see that A (~) = (~) if and bnly 
if 

A- . _ (e2ill 0) 
° 1 

Thus we have: 
Observation 2: If ",:P_C2 is a nontrivial Higgs field on P 

and X: = t,b/11"'11 then the subbundle of (/) (Pr) defined by 
X - I (~)n(/) (Pr) is denoted by Qr and is a U( 1) subbundle of the 
U(2) bundle (/) (Pr).lts group is denoted by Ue(1) and is called 
the charge conservation subgroup of U(2). 21 A matrix 
AEU(2) belongs to Ue(I) if and only if 

A = (e2i~ ~). 

Observe that if 7 1
, r, r are the Pauli matrices and 

TI = !iTI, T2 = Vr, T3 = !ir, T4 = iI where Iis the 2X2 
identity matrix, then I Tp T2, T3, T4J is a basis of the Lie 
algebra u(2) and, moreover, ue (1) is generated by T3 + !T4. 
Observe also that if we consider the connection w to be re
duced to 

Pr = I ulT(u) = [pJ] 

then w is cu(2) valued and we may write 

w = wlgTI + w2gT2 + w3gT) + !w4g'T4 + wRg"I, 

where g, g', g" are coupling constants to be determined by 
empirical data. Since WR will be assumed to be "flat" this 
term will not represent a particle in this model so we choose 
g" = 1. Observe that if M is the subspace of cu(2) generated 
by I T I, T2, aT) + PT4J for some constants a andpsuch that 
aT3 + PT4 =1=O then Ad(h )(Wl)QIR for every hEUe(I) 
X +R~CU(2). Consequently by our Fundamental theorem 
of Sec. 2 we see that wi TQr has five components, four of 
which are tensorial fields on Qr' One of these tensorial fields 
is W R I TQR which will be assumed to be exact and thus repre
sents no particle in the model whereas the other three tensor
ial components of w I TQr will represent massive particles 
(vector mesons). The only component of w I TQr which fails 
to be tensorial is actually a connection on Qr and will repre
sent a massless particle (photon) in our model. It is desirable 
to compute the masses of the meson fields and with this in 
mind we observe that on anyone of the U(2) bundles (/) (Pr), 
W R vanishes [since w reduces to (/) (Pr ).] Also we regard the 
(/) (Pr)' as being the natural candidates for the real "physical 
bundle" which is to be the arena for Weinberg-Salam the-
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ory. Thus we write w = Wu + WR and will concentrate our 
efforts on wu , tacitly assuming it to be restricted to some 
specific (/) (Pr)' 

Consider the real bilinear form defined by 

1(w) = eVpR(wu'v,wu'v), (6.1) 

where eV is a positive constant, pR is the real matrix defined 
on R4 bypR(x,y) = 2.;= IXiYO and wherew u must be expand
ed in a basis of a real representation of u(2). The vector v is a 
vacuum state vector represented in R4. It is known II that the 
masses of the particles defined by the components of Wu on 
anyone of the bundles (/) (Pr) are given by the eigenvalues of 
the matrix of the form (6.1). These may also be computed 
from the coefficients of the appropriate quadratic terms of 
our Lagrangian (6.7) below. In particular the paragraphs fol
lowing (6.7) show the details of this computation. 

Since the Fundamental theorem requires the use of a 
basis with special properties we emphasize the role that a 
change of basis plays in diagonalizing the mass matrix. Since 
the bilinear form 1 is basis-independent we present the de
tails of the mass calculations in terms of 1. 

To identify the components of Wu to be assigned masses 
we must diagonalize the quadratic form 1 defined by (6.1). 
Since this form must be written in a real representation of 
U (2) we express all vectors XEC2 as four dimensional real 
vectors X = (Re XI' 1m XI' Re X 2, 1m X 2) and we write the 
matrices T I, T2, T3, T4 as 

MI = +[~ ~], M2 = +[~ ~], 

M3 = +[~ ~J]' M4 = [~ ~], 
where 

We identify Ti with Mi so that 

Since, on Qr' our symmetry-breaking Higgs field X has the 
value (0,1 )EC2 we see that the real vacuum state vector is 
v = (0,0,1,0). Observe thatMI·v = (O,!,O,O), M 2·v = (~,O,O,O), 
M 3·v = (0,0,0, - !), M 4·v = (O,O,O,!) so that 

1(w) = ev[~(wl)2 + ~(W2)2 
+ .w2(W 3 )2 + ~(g')2(W4)2 _ !gg'w3W4]. 

We now wish to write 1 in terms of a new basis 
I MI ,M2,M3 ,M4 J such that 1 is diagonalized in this new 
basis. It suffices to find an orthogonal matrix R such that Mi 
= 2.;= I Rji (gjMj ) where g I = g2 = g3 = g and g4 = (g'/2). 

Since the first two terms of 1(w) are already in diagonal 
form it suffices to choose R in the form 

R = [~ ~], 
where A is a 2x2 orthogonal matrix. We write 

[ 
cosa 

A= 
-sina 

sin a] 
cos a 
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for some a so that MI = gMI' M2 = gM2, 

M3 = ( cos a)gM3 + ( sin a)(!g')M4 

M4 = (- sin a)gM3 + ( cos a)(!g')M4. 

In this new basis we have 

O)u = (i)IMI + (i)2M2 + (i)3M 3 + ~M4 
where (i)1 = 0)1, (i)2 = (ii, (i)3 = (cos a)0)3 + (sin a)0)4, and 
~ = ( - sin a)0)3 + (cos a)0)4. Thus 

1(0)) = e
V 

gZ((i)lf + e
V 

gZ((i)2f 
4 4 

+ e
V 

[( _ g cos a + g' sin a)(i)3 
4 

+ (g sin a + g' cos a)~f. 

We wish to choose a so that 1(0)) will be diagonalized. We 
also want one of the fields to be a Dc (I) gauge field and hence 
a connection on the surviving De(l) bundle. Thus it should 
have values in the Lie algebra generated by M3 + ~M4 since 
this is the generator of u(2) which annihilates the explicit 
vector v we used in computing 1(0)) above. 21 Clearly (i)3 and 
~ are the only candidates for this field and in fact we may 
choose either to be the gauge field. We choose to let ~ be the 
component of the surviving connection on Q, so we want 
M4 = C(M3 + !M4) for some constant c. It follows that 
(- sin a)g = c. and ( cos a)g' = c. Thus 

cos a =g[g2 + (g')2]-1/2, 

sin a = - g~ + (g'f]-1/2 (6.2) 

and 

It follows that 

1(0)) = e
V 

g2((i)lf + ~ g2((i)2)2 + e
V 

((g2 + (g')2)1/2f((i)3)2. 
4 4 4 

Thus (i)I, (i)2, (i)3 represent massive vector mesons with 
masses ~ev/2g, ~ev/2g, and ~ev/2(g2 + (g')2)1/2, respectively. We 
see also that (~I TQ,) M4 represents a massless gauge field. 
Since M4 = gg'~ + (g')2] -I /2 (M3 + ~4) it follows that its 
eigenvalues are a multiple of gg'[g2 + (g')2] - 1/2 and thus this 
gauge field interacts with charged particles whose funda
mental unit of charge is gg'[g2 + (g'f] -I 12. Moreover it fol
lows from (6.2) that 

-3 g0)3 - g' 0)4 
0) = .....=.,.----"'-,--.,.,. 

(g2 + (g')2)1/2 ' 

-4 g'0)3 + g0)4 0) - .....=.,.----==---.,.,. 
- (g2 + (g'f)I/2 . 

Ifweidentifyaas - Ow where Ow is the Weinberg angle then 
we may identify I I (i)3 with - Z and~ with A whereZis the 
massive neutral field and A is the massless electromagnetic 
vector potential in the traditional form of Weinberg-Salam 
theory. 

We would also like to emphasize the fact that the fields 
(i)I, (i)2 represent charged particles as they experience "mix
ing" under the action of the charge conservation group 
De(l). Indeed, wehavethat[M4,MI] =gg'[g2 + (g'f]-1I2M 2 
and [M4,M2] = gg'[g2 + (g')2]-1/2MI and consequently 
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De(l), acting via the adjoint representation on u(2), rotates 
the plane spanned by [MI,M21 onto itself. This suggests that 
Dc (I) should be regarded as a "gauge group" for the pair (i)I, 
(i)2 and that these fields represent charged particles. As is 
customary we write them as complex fields: 

W ± = (i)1 + iciP. 
Finally we illustrate how to make this geometrical pic

ture explicit in terms of a specific Lagrangian field theory. A 
typical Lagrangian that couples a C2-valued Higgs field ¢ to 
a metric Higgs field 0" on a Gl(2,C) principal bundle with 
connection 0) is 

::t' = 40"ij *D¢i AD,P + 4(A/
d *DO"ik ADujI - V (oi¢,¢)). 

(6.3) 

In this Lagrangian * D¢ and * DO" are the duals22 of the 
covariant exterior derivatives D¢ and DO" of ¢ and 0", respec
tively. Moreover, 

V(oi¢,¢)) = V(O"(¢,¢))1T*(dA ), 

where V(oi¢,¢)) is a typical symmetry-breaking potential I I 
and 1T*(dA ) is the pullback under the projection 1T:P----+M of 
the volume dA on M defined by the spacetime metric. Ob
serve that since both 0" and ¢ transform under R + ~ Gl(2,C}, 
our Lagrangian is scale invariant. 

We shall specialize the geometry to reduce this Lagran
gian theory in first order in the R + -parameter to the Lagran
gian of the Weinberg-Salam theory. In the process we will 
show that the single surviving component of the Higgs scalar 
field in the Weinberg-Salam theory is an infinitesimal con
formal factor which scales the metric in the surviving De(l) 
charge conservation subbundle of P. 

Our first step is to impose a condition on the "bundle 
with connection and metric" which will insure that the ge
ometry of the bundle is a suitable generalized Weyl geome
try. This is reflected in the Lagrangian by requiring that ::t' 
be restricted to only those metric Higgs fields 0" which come 
out of a fixed conformal class defined by a p-conformal 
Higgs field r:P----+!!lJ *(C2) such that Dr = O. It follows from 
Theorem 5.2 that such 0" satisfy DO" = flu 0" for some I-form 
flu on P. We also require the Weyl connection degenerate to 
a metric connection and consequently it follows from 
Theorem 5.5 that the R-part of 0), O)R is exact. Thus there is a 
function S:P----+R such that O)R = ds. It is not difficult to see23 
that e - S is actually an +R-valued Higgs field on P and thus 
that e - s.p = e2sp is a metric Higgs field on P in the class r. 
Since D (e 2Sp) = 2e2s [dS - O)R ]p = 0 we see that 0) reduces 
to the D(2)-subbundle defined by (e2Sp) -I(r.p). Observe that 
these subbundles may be defined more simply by the equa
tion S = - In r; they are simply the "level surfaces" of S. 

On the other hand, the fact that O)R is exact implies that 
flu is exact where DO" = fluO" as above. Thus flu = dv u for 
some function v u :P----+R. If, moreover, ¢:P----+ + R is the + R
valued Higgs field such that 0" = ¢.p = ¢ - 2p then we denote 
Vu by v", and we have dv", = flu = - 2[O)R + d¢ /¢] 
= d [ - 2S - 2 In ¢ ]. Thus, by modifying S if necessary, we 

have 

v'" = - 2S - 2 In ¢ (6.4) 
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or 

(6.5) 

It follows from these remarks that the following statements 
are equivalent: 

(I)DO" = 0, 

(2) v", is constant 

(3) 0" = cp -2p = eV·(e - s.p) is a constant multiple of the 
metric Higgs field (e - s.p). 

Thus if DO" = 0 then the U(2)-subbundles defined by 
O"-I(r.p), r> 0 are the same as those defined by the level sur
faces of S. 

If we restrict our Lagrangian to fields defined on these 
U(2)-subbundles then DO" = 0 and the Lagrangian becomes 

2" = 4¢J -2pij (*Dt/i ADliJ) - V(cp -211¢t11 2). (6.6) 

Ifwe assume ¢t is a nontrivial symmetry-breaking Higgs 
field then 11¢t11 is never zero and it defines a metric Higgs field 
'T by 'T = II ¢tll- 2p. This field accounts for the "radial" depen
dence of ¢t. Let X = ¢tIll ¢til. Then X accounts for the "spheri
cal" dependence of ¢t and is itself a symmetry-breaking 
Higgs field on anyone of the U(2)-subbundles, S = constant. 
We now show how to rewrite 2" in terms of II ¢til, cp, X' and 
v r' To do this simply observe thae4 

D¢t = d (II ¢till') + UJ'(II¢tlll') 

= 1I¢tlldl' + d (1I¢tlill' + UJ u'(II¢tlll') + UJR '(11 ¢till') 

= 1I¢tII(dl' + UJu'l') + d (11¢tlill' + UJR '(11 ¢till') 

= 1I¢tIlDl' + [d (11¢t11) + UJ ] II ¢tIll' 
11¢t11 R 

and thus 

D¢t = II ¢til [Dl' - !(dvr)l']· 

It follows that 

* D¢ti A DliJ = II ¢til 2 [* Dl'i A D:? 

+ !(*dvr Advr)l'?] 

+ 1I¢tln( - ~)(*dvri)AD:? 
- *Dl'iA!(dvr):?]. 

But Ill' 112 = 1 and 0 = D ~(x'l')) = p(Dl',l') + p(x,Dl') so 
that pijl'i(D:?) = O. Als022 

Pij(*Dl'iA(dvr):?) = -pij(Dl'iA *(dvr:?)) 

= - ~ij(Dl'i):?) A *dvr = O. 

Thus 

Pij(* Dtf/ ADliJ) = 11¢t1l 2 [Po(* Dl'i AD:?) + !(*dvr Advr) 

and 

2" = 4¢J -211 ¢til 2 [pij(*Dl'i AD:?) 

+ !(*dvr Advr)] - V(cp -211¢t11 2). 

Since v", = - 21n cp - 2S and Vr = - 21n 11¢t11- 2Swe 
havethateVr Vr = 1I¢t1l2cp -2. Thus our general Lagrangian is 

2" =4[eVrvpij(*Dl'iAD:?) 

+ [*dellvrvriAdellv.-vri]] _ V(eVrVr). (6.7) 

Here we have assumed that 0" = cp -2p satisfies DO" = 0 and 
thus that v'" is constant. We see that this new Lagrangian is a 

1883 J. Math. Phys., Vol. 24, No.7, July 1983 

function only of X, Vr and the connection UJ. Moreover the 
components of the connection occur only in those terms in
volving Dl'i. If we define a subbundle Q, c;;,P, 
= ! uEP Is(u) = - In rJ byQ, = (x JP,)-lmthentheQ,are 

the charge conservation subbundles defined early in this sec
tion. On these bundles X is constant and 
Dl' = dl' + UJ·l' = UJ·l' = UJ u·x. It follows from the identity 
(CI) of Appendix C that the only terms of 2" having connec
tion terms are those in 

4ev, - vrpij (* Dl'i AD:?) 

= eVr VrpijESPDal'iDp:?1T*(dA ) 
---

= eV

.- vrpoESP [UJu(aa)'l'rl UJu(Jp)'l'] j(1T*dA) 

= e"· - vrgaPp(UJu(aa )l',UJu (ap )l')1T*(dA ). 

In this equation tia denotes J IJ(xa01T) where (xa
) are 

coordinates on M, 
In Minkowski space (ESP) = (1Jap) is the Minkowski 

metric and 1Jap = 0 for a =/-/3. One usually calculates the 
masses of the fields represented in the Lagrangian at the 
vacuum state, In our case we shall see that v r may be identi
fied as a multiple of the surviving component of the scalar 
Higgs field in the usual treatment of Weinberg-Salam the
ory, Thus Vr represents a perturbation away from the vacu
um so that masses of particles associated with components of 
UJ u are obtained from the matrix of the quadratic form 

with Vr = O. It is easy to see that the eigenvalues of the ma
trix associated with this form are the same as those of the 
matrix of 

(6.8) 

and this is the form utilized earlier to obtain the required 
masses of the components of UJ u' 

At this point we show how our Lagrangian collapses to 
the one usually used in Weinberg-Salam theory. To get the 
usual Lagrangian one passes to first order. The Lagrangian 
(6.7) is defined on a family of fields e11/211v. - vri each having 
values in the group + R while the usual Lagrangian is defined 
on fields with values in the Lie algebra R of +R. Thus if we 

, 1112l1 v • - v i b 1 h 1 approximate e r y + !(v", - v r ) we s ou d, up to 
minor modifications, obtain the usual Weinberg-Salam La
grangian. Indeed if we take 1J = - (l/v1) v rand 
v = v1 + (l/v1)v", then (l/v1)(1J + v) = 1 + !(v", - vr) and, 
to first order 

With this approximation (6.7) becomes 

2" = 4(1J ~ vYPij(*Dl'i AD:?) 

+ 2(*d1J Ad1J) - v[ (1J ~ V)T 
If we use the identity (CI) of Appendix C once more and 
restrict our fields to Q, we obtain (2" = 2'1T*(dA )) 
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(6.9) 

which is clearly the usual Higgs Lagranglan for the Wein
berg-Salam model. !! 

We also point out that in the usual model the field tP 
may be written 

in an appropriate U(2) gauge. In general we know that on Qr 

tP = IltPll(~) and also evr 
V

T = ¢ -21ItPI12. Thus, to first order 
we have 

and 

It follows from (6.5) that on Pr 

(6.lO) 

Thus 

tP = re -11/2IV~( 1J ~ v) (~) 

and if we like we may choose r such that re -1!l2lv~ = I (re
call!! that the masses of W ± , Z and the charge e determine 
the coupling constants g, g' and an additional parameter 
which in our case is v: = v ¢). 

Finally we wish to remark that this geometric model 
does indeed provide us with a geometric interpretation of the 
surviving Weinberg-Salam scalar field 1J . Using (6.lO) and 
the Lagrangian (6.7) we obtain 

2' =4[e- VT(r¢ -~)ij(*DXiI\D?) 
+ (*dellv~ - vTI 1\ dellv~ - VTI] _ V(eV~ - v,). 

Thus the term e - v, serves only to scale the metric 
(r¢ - 2)p = ri.,¢.p). Once we choose r and the constant v ¢ it 

follows that r¢ -2 is constant. Thus e - \ as V
T 

varies, is a 
conformal scaling. It follows that the field equations serve to 
choose the conformal scale for the metric. Recall, however, 
that the Higgs scalar 1J was identified as ( - 1Iv2) v T in the 
first order version of 2'. It follows then that 1J plays the role 
of an infinitesimal conformal factor in this model. 

VII. CONCLUSIONS 

A central objective of this paper has been to obtain a 
clearer understanding of the interaction between symmetry
breaking Higgs fields and gauge fields. To accomplish this 
purpose we have focused on the geometric aspects of both 
symmetry-breaking Higgs fields and gauge fields. Previous 
geometric work along these lines concentrated on gauge 
fields whose dynamics were restricted to those degrees of 
freedom represented by the symmetry group which survives 
after application of the Higgs mechanism. In mathematical 
terms this means that the connection reduced to the subbun-
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dIe defined by the symmetry-breaking Higgs field. We feel 
that this restriction is not only unnecessary but often ne
glects some issues of central importance in the theory. To 
illustrate this point we remark that the Weinberg-Salam the
ory of the electroweak interaction may be represented within 
the theory of connections on a principal fiber bundle and 
that in this model not only is it the case that the dynamics of 
the gauge field are not restricted to the surviving symmetry 
group U( I) but in fact the extra dynamical degrees of free
dom are needed to model the fields W ± and Z. The first part 
of our paper underlines the distinctive role of symmetry
breaking fields among the set of all Higgs fields. I t also shows 
that under reasonably general conditions a symmetry-break
ing Higgs field ¢ allows a decomposition of a connection UJ 

into two pieces, UJ = UJ' + 7 where UJ' is a new connection 
which reduces to a ¢-subbundle and 7 is a tensorial form. In 
the Weinberg-Salam theory UJ' corresponds to the massless 
electromagnetic gauge field A and the components of 7 cor
respond to the massive vector bosons W ± and Z. We wish 
to point out a possible geometrical generalization of this pro
cess. 

The Higgs mechanism is a technique which when ap
plied to a specific type of Lagrangian eliminates massless 
scalar bosons and gives masses to certain vector bosons and 
possibly to other fields as well. Can we characterize, geome
trically, which vector bosons are massive and which are 
massless? We conjecture that vector bosons which remain 
massless after symmetry breakdown should be represented 
by components of connections while vector bosons which 
acquire mass should be represented by tensorial fields. More 
generally we offer the following conjecture: 

If a Lagrangian field theory is suitably geometrized 
with the gauge fields represented by the components of a 
connection UJ then the symmetry-breaking mechanism 
should result in a decomposition of UJ as UJ = UJ' + 7 where 
the components of the connection UJ' represent the massless 
vector bosons of the theory and the components of the ten
sorial field 7 represent the massive vector bosons of the the
ory. 

By applying the Fundamental Theorem of Sec. 2 to the 
connection developed in our version of the Weinberg-Salam 
model we have shown that the model is compatible with the 
conjecture. 

A second main concern of this paper has been the ques
tion of whether or not the Higgs scalar field in spontaneously 
broken gauge theories can be geometrized. 25 After reviewing 
the structure of Higgs fields of the type that occur in spon
taneously broken gauge theories we argued that such fields 
should be associated with symmetry breaking fields on an 
+R-enlarged bundle. This led to a study of generalized con
formal geometry on an arbitrary principal bundle. From our 
results it was easily seen that Weyl geometry is a special case 
of this theory and also that the Weinberg-Salam theory may 
be modeled on a conformal bundle in such a way that it is 
completely parallel to a "trivial" Weyl geometry. Our con
formal model of the Weinberg-Salam theory provided us 
with a geometrical interpretation of the scalar Higgs field 
which survives the symmetry-breaking mechanism in the 
usual model. We found that this field may be identified as an 
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infinitesimal conformal factor and, in fact, that this factor 
may be obtained from the Weyl vector associated with the 
model. This identification was possible precisely because the 
Weyl "vector" was an exact differential form. The fact that it 
was sufficient to use a trivial Weyl geometry suggests the 
possibility of generalizing our model to the case where the 
Weyl vector is not exact. In such a generalization the total 
Higgs field could be eliminated from the theory in favor of 
bosons. In this theory one would obtain a final U( 1) subbun
dIe and would have in addition to the tensorial fields W ± ,Z, 
a new vector boson. In the same way as W ± ,Z were defined 
by certain components of the original connection liJ this new 
field would arise from the component liJR of liJ which corre
sponds to the scale degree offreedom present in the confor
mal group. 

APPENDIX A 

In this appendix we prove those theorems of Sec. 2 
which warrant some argument. We also include the proofs of 
the more technical results of Sec. 3. 

Proof of Theorem 2.2: Let P be the bundle defined just 
prior to the statement of Theorem 2.2 in Sec. 2 and let [sa J 
denote a family oflocal gauges in P whose domains cover M. 
For each a let Sa (x) = (x [ [sa (x),ri ] J) for each x in the do
main of Sa' It follows that [Sa J is a family of local gauges in 
Y E having the same transition functions as the [sa J. It fol
lows easily that P is bundle isomorphic to Y E and thus that 
P can be identified with a subbundle of Y E. • 

Proof of Theorem 2.4: Let f:P~!!# *( V) be ap-conformal 
Higgs field. It follows from the Remark preceding the state
ment of Theorem 2.4 that there exists an open cover [ Ua J of 
M on which there is defined a family [sa J of gauges of P and 
a family of metric Higgs fields Ta :(P I Ua )~!!#(V) such that 

T(sa(x))=[p) and T(U)=[Ta(U)], 

Thus fora,,Bsuch that UanUp #0 we know that Tp is a mul
tiple of T a and since both T a and T p are Higgs fields there 
exist smooth functionsfaP:UanUp--~ +R such that Tp(U) 
= fap(lT(U))T a (u). If ra is the fiber metric on E lOa induced 

by Ta then rp(x) =fap(x)ra(x) for allxEUanUp. If we now 
define yonEby y(x) = [r a (x)] where a is any index such that 
XEUa then it follows that jiis a conformal structure onE. We 
also know that there exist smooth functions Ca :Ua~ +R 

such that Ta(Sa(X)) = ca(x)P. If we defineXai(x) = ~ca(x) 
[sa (x),r i 1 it follows that: 

ra(x)(Xai(x),xaj(x)) = p(r;.rj) 

and thus y is a p-conformal structure on E. 
Notice that if 1" is a p-metric Higgs field and 

f:M~Gl(n,K) is an arbitrary smooth map some of whose 
values fall outside of G then r(u) = f(lT(U))1"(u) is a metric 
Higgs field which is not a p-metric Higgs field. Its corre
sponding fiber metric y is not a p-fiber metric. Thus if we 
define yby y(x) = [r(x)] then y is ap-conformal structure on 
E which is induced by no p-conformal Higgs field. 

Finally ifG = Gl(n,K) and y is ap-conformaI structure 
on E then there is an open cover { Ua J of M and p-fiber 
metrics ra on E I Ua such that y(x) = [ra(x)] for eachxEUa. 
Theorem 2.3 implies that there exists ap-metric Higgs field 
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1"a:(P lUa)~~(V) which induces ra' Ifwe define f by 
flu) = [Ta (u)] for UE(P I Ua ) then it follows that f is a well
defined p-conformal Higgs field on P which induces y. • 

ProofofTheorem 2.5: It is obvious thatp-metric Higgs 
fields inducep-conformal Higgs fields. The converse follows 
from Remark 1 following Theorem 2.3 along with Theorems 
5.6 and 5.7 of Ref. 6. • 

Proof of Corollary 2.6: If r is a p-fiber metric on E then 
clearly y(x): = [r(x)] is ap-conformal structure on E. Con
versely assume that y is a p-conformal structure on E. Since 
E can be identified with the bundle associated to the GI(n,K ) 
bundle P it follows from Theorem 2.4 that there exists a 
unique p-conformal Higgs field f on P which induces y. It 
follows from Theorem 2.5 that there exists ap-metric Higgs 
field on P and thus that there exists a p-fiber metric on E. 

Proof of Lemma 3.2: It suffices to show that if X and Y 
are vector fields on V which are everywhere tangent to orbits 
of G then [X, Y] is everywhere tangent to orbits of G. To see 
this let WE Vi and let A l.A2, ... ,Ar generate a complement of 
the Lie algebra f) of H = G w in g. On a neighborhood of w, 
X =!.~ ~ JkA t and Y = !.;~ Ig[A r· Since [A t,A n 
= [A k .A [ ] * and A is everywhere tangent to orbits of G for 

every AEg, it follows that [X, Y](w) is tangent to G·w at w. The 
lemma now follows via standard arguments. • 

Proof of Theorem 3.3: The proofs oft 1) and (2) are trivial 
consequences of the lemma and the definitions. We prove (3). 
Since G acts regularly on V we know that each orbit of G is 
regular and thus that the action of G foliates each Vi via 
regularleaves. By Palais, Ref. 26 page 19, V;lG is a possibly 
non-Hausdorff manifold and by page 25 of the same article 
there is a smooth mappingftbi:Ui~V;lG such that nioljJ 
= ftbi 011'. Ifftbi has constant rank then Ui is foliated by the 

components of the level surfaces offtbi> i.e., if 

wi=[L IL is a component Of/tbi -1(p) for somepEV;lG J, 

then Wi is a foliation of Ui each leaf of which has dimension 
dim M = rank(ftbi)' If L is anyone of the leaves of Wi then 
ftbi(L) is a single point of V;lG and consequently ljJOlT maps 
IT- l (L ) onto a single orbit of G. Since P IL = IT- l (L) it fol
lows that ljJ maps P IL onto a single orbit of G and thus 
ljJ I{P IL) is a symmetry-breaking Higgs field. • 

Proof of Theorem 3.4: Let H = Gs ' Qtb = ljJ -1(S), and 
Q", = tp- I(S). Recall that both Q,p and Q", are subbundles of 
P having Gs as structure group. We first construct an auto
morphism of Pwhich carries Qtb onto Q",. We complete the 
proof via a sequence of remarks each of which has a trivial 
proof. We omit the details of (1) and (2). 

(1) If t/J:P--G·S ~ Vis a Higgs field then there is a unique 
map,u",:P~Nsuch that t/J(u) = ,u",(u)s for every uEP. More
over,u", has the properties: ,u",(un) = n- l,u",(u), ,u",(uh ) 
= h -1,u",(u)h for uEP, hEN, nEN. 

(2) If t/J:P-G·S~ V is a Higgs field then the map 11' ¢ 

:P-Q", defined by IT,,,(U) = u.,u",(u) is a projection (~ = 11'",) 

of Ponto Q",. Thus P is a trivial principal bundle over Q", 
with structure group N. The inclusion i:Q",-P is a global 
section of the bundle 11' '" :P~Q", and 11'", has the properties: 
11' ",(uh ) = 11' ",(u)h and 11' ",(un) = 11' ",(u) for uEP, nEN, hEN. 

(3) There is a unique equivariant automorphism r:P-P 
such that t/J°r = ljJ. 
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To see this first observe that 1T '" I Q carries Q", to Q", 
since 1T",(P)~Q",. Moreover ifuEQ", and hEll then 1T",(uh) 
= 1T ",(u)h and 1T(1T ",(u)) = 1T(UIl",(U)) = 1T(U). Thus 1T '" I Q", :Q", 
_Q", is a bundle isomorphism. We extend this isomorphism 
to an automorphism y of P by requiring: 

y(u) = 1T",(UIl"(U))Il,,,(u)-I. 

The remainder of the proof is an easy but tedious com
putation showing that !/Joy = </> and that y is indeed equivar
iant. We leave the details to the reader. • 

APPENDIX B 

The singular decomposition of a vector space V intro
duced in Sec. 3 was tailored to the question of finding the 
largest bundles on which a general Higgs field is actually a 
symmetry-breaking Higgs field. The singular decomposition 
grouped together G-orbits of the same dimension. Another 
method of decomposing Vis to write Vas the union of strata, 
as introduced by Michel and Radicati. 16 A stratum in V is 
the union of all G-orbits that have, up to conjugation, the 
same isotropy subgroup. That these two decompositions are 
distinct and that the decomposition into strata is generally 
finer is illustrated by the following example. 

Let V = lR3 and let G be the identity component of 
SOt 1,2). On V the inner product x·y = xll - x 2y2 - X3y 3 is 
G-invariant and defines a null cone. 

It is easily seen that there are six classes of orbits and 
they may be characterized geometrically as follows: the up
per and lower naps of the null cone, the upper and lower 
halves of hyperboloids of two sheets lying inside the null 
cone, hyperboloids of one sheet lying outside the null cone, 
and the origin. All these orbits except the orbit consisting of 
the origin alone are two dimensional. The singular decompo
sition thus takes the form V = Uu~ where ~ = [0 land U is 
the union of all the other two-dimensional orbits. 

One can also easily show that there are four strata for 
this case: SI composed of the upper and lower naps of the 
null cone, S2 composed of orbits that are upper and lower 
halves of hyperboloids of two sheets, S3 composed of orbits 
that are hyperboloids of one sheet, and S4 = [0 l. Thus V 
decomposes into four strata as V = SIUS2US3US4' Hence the 
single nontrivial component U in the singular decomposition 
is the union of three strata U = SIUS2US3' 

APPENDIXC 

Let P (M,G ) be an arbitrary principal bundle over a 
manifold M with a metric g. Recall that if uEP then a k-form 
a on TuP is said to behorizontalifa(X1, ... ,xk) = o whenever 
at least one of the vectors X I ,x2, ... ,xk is vertical. Let H ~P 
denote the set of all horizontal k-forms at u. Observe that if 
aEll ~ P, /3Ell ~ P then a A /3Ell ~ + Ip. If n = dim M and 
aEll~P, k<n, we define an n-k form *a on TuP by 

*a{XI,x2,···,xn _ k) = *(s*a)(d1T{X1),···,d1T(Xn - k))' 

where s:U_P is any local section of P such that S(1T{U)) = u 
and *(s*a) is the usual Hodge dual of the k-form (s*a) with 
respect to the metric g. Observe that irs is any other section 
of P throughxo = 1T{U) then there is a G-valued functionh on 
a neighborhood U of Xo in M such that sIx) = s{x)h (x) for all 
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XE U. Since h (xo) = e we have, for each vector X at Xo = 1T(u) 

dxos(X) = dx"s(X) + V 

for some vertical vector V. Thus, for X I,x2,. .. ,xk in Tx"M 

(S*a)(X1, .. ·,xk) = (s*a)(X1, .. ·,xk) 

and {s*a)x" = (S*alx.,. It follows that *{s*a)xo = *(S*a)x" and 
that *a is well-defined. It is clearly horizontal; thus 
*aEll: - kp. One consequence of these remarks is that if a,/3 
belongtoH~P then *aA/3Ell:P. SincedimH~P= I we 
have that *a A/3is a multiple of(1T*'T/)u where'T/ is the volume 
on M induced by the metric g on M. Define a map gu:H ~P 
XH~P-lR by 

*a A/3 = ;jgu (a,/3 )(1T*'T/)u' 

It is clear thatgu is bilinear. We claim that it is also nonde
generate and symmetric. To see this let s be any local section 
of P and let a and /3 be arbitrary I-form fields defined on all 
of P. Then, for xEM, 

s*(*a A/3)x = ;jgsjx) (asw/3sjX) )S*(1T*'T/)x 

= ;jgsjX) (asjX) ,/3sjX) )'T/x' 

But it is known that if a and b are I-forms on a spacetime M 
then 

(*a Ab)x = .wx (ax ,bx)'T/x 

(this fact is not difficult to prove from first principles). It 
follows that 

s*(*a A/3)x = *(s*a) A (s*/3) = .wAs*a)x,(s*/3)x )'T/x 

and consequently 

gsjx) (asjX) ,/3sjX)) = gx ((s*a)x ,(s*/3)x)' 

Since gx is symmetric, so is gsix)' Since s is arbitrary we see 
that gu is symmetric for each uEP. Also if uEP and (XIL) are 
coordinates at 1T(U) then X I 01T, X201T, ... ,xn01T are n-coordi
natesofa chart of Pat u. Thus du (XIL01T) is inH ~P foreachll. 
We have 

gu (du (XIL0 1T),du (X
l'01T)) = g17ju) (d17ju)XIL,d17ju)xl'): = gill' 

and consequently g u is nondegenerate. It follows that g is a 
fiber metric on the subbundle 

ofT*P. 

If now </>:TP-Vis a vector-valued tensorial form on P 
and if [</> a l are the components of </> in some basis [ra l of V 
then, for each a, </> a is a horizontal I-form on P so that 

*rA</>b=;jg(r,</>b)(1T*'T/) = *</>bAr. (eI) 
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CU(2)~G\(2.q on (;2. On the other hand X is a Higgs field on p. with 
respect to the action of CU(2) on (;2 defined by 

(cA)·w=Aw 

for ce+R, AeU(2), weC2
• Thus 

DX=dX +w'X=dX + wu'X +wR'X, 

where wR'X = O. It follows that 

DX = dX + wu'X· 
"For another approach to the problem of geometrizing the Weinberg-Sa

lam model see Manton [Nucl. Phys. B 158. 141 (1979)]. Unlike our ap
proach Manton does not eliminate the Higgs particle from the theory and, 
in fact, he predicts its mass. 

26R. S. Palais, A Global Formulation of the Lie Theory of Transformation 
Groups (Memoir of AMS, No. 23, 1957). 
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Higgs fields as Bargmann-Wigner fields and classical symmetry breaking8
) 

A. F. Furtado do Amaral, F. A. Doria, and M. Gleiser 
Instituto de Fisica, Universidade Federal do Rio de Janeiro, CPo 68528, Rio de Janeiro 21944 RJ, Brazil 

(Received 3 August 1982; accepted for publication 22 October 1982) 

We show that Higgs fields can be written as Bargmann-Wigner-Teitler spin-O fields. When they 
interact with a gauge field, the usual inconsistency in the interaction equations is interpreted as 
Nambu's algebraic condition for nontrivial topological properties in the coupled system. 

PACS numbers: IUS.Ex, I1.30.Jw, I1.30.Qc 

1. INTRODUCTION 

Nambu I has recently discussed topologically nontrivial 
field configurations that arise out of solutions for the SU(2) 
[or SO(3)] field equations. In his paper Nambu notices that 
for a SU(2) field Y p.v coupled in the usual manner to a Higgs 
field cf> in the adjoint representation together with the condi
tions 

cf>.cf> = I, 

Dp. cf> = Jp. cf> + AI' xcf> = 0, 

(Ua) 

(Ub) 

we can define a scalar field !p.v = Y p.v·cf> that satisfies the 
Maxwell field equations. Moreover (Ib) implies that one 
should have, because of consistency, 

[Dp. ,Dv lcf> = Fp.v xcf> = 0, 

together with a solution for (Ib) which is 

AI' = cf>XJp. cf> + ap. cf>, 

(1.2a) 

(1.2b) 

where ap. (x) is an arbitrary scalar spacetime-defined func
tion. These conditions make it easier to analyze nontrivial 
topological aspects of the theory (which show up in local 
discontinuities in [(Ub) and (1.2a)] and they lead to some 
well-known solutions such as the t'Hooft-Polyakov mono
pole2

; thus they appear as physically meaningful. 
We show here that Nambu conditions I arise very natu

rally when we consider the coupling between a SU(2) gauge 
field and a Bargmann-Wigner3 spin-O field which takes val
ues in the SU(2) Lie algebra. Also as a consequence of our 
analysis we see that the Bargmann-Wigner SU(2) field
which at first sight could be seen only as an alternative way 
of introducing the Higgs field-breaks in a classical way the 
SU(2) symmetry down to U( I) without the need for a quartic 
self-interacting potential. After we have thus reduced the 
theory'S symmetry, we can redefine the fields in such a way 
that while the U(l) gauge field is kept unchanged, the Barg
mann-Wigner-Higgs field is (locally at least) gauged away. 
Obstructions to a global gauging away of the Higgs field are 
of a topological nature and they are identified to Nambu's 
vortex configurations. Algebraic pathologies also arise out 
of the Nambu conditions, since static solutions for Eq. (1) 
and (2) are quasiabelian in Solomon's sense4 and as such have 
copied potentials. 5 

2. THE BARGMANN-WIGNER-TEITLER SPIN-O FIELD 

The Bargmann-Wigner (BW) equations have been long 
considered to be plagued by inconsistencies when minimal 

-I Partially supported by CNPq and FINEP. 

interaction is added. We will use here Teitler's Dirac algebra 
formulation for the spin-O BW equations. 6 The Bargmann
Wigner-Teitler (BWT) equations are, in a local coordinate 
frame in Minkowski space, 

(yl"Jp. + m)'ll(m) = 0, 

tJi(m) = - mifJ (x) + ifJp. (x)y" . 

(2.Ia) 

(2.Ib) 

As expected we derive from the above set the usual first
order massive spin-O equations 

Jp.ifJ" = m 2ifJ, 

ifJa = JaifJ, 

(2.2a) 

(2.2b) 

(2.2c) 

In the massless case the BWT equations for a spin-O field are 

(r" Ja )tJi(O) = 0, 

tJi(O) = ifJp. (x)Y' . 

These equations imply 

Jp.ifJ" = 0, 

Ja ifJ{3 - J{3ifJa = o. 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

Because of the cocycle condition (2.4b) we have (locally at 
least, for a topologically nontrivial flat space) ifJa = Ja ifJ. 

When we make the usual substitution 
Jp.-Dp. = Jp. + AI" an inconsistency arises since (2.2c) and 
(2.4b) become DaifJ{3 - D{3ifJa = 0, while (2.2b) (or in the 
massless case the covariant definition ifJa = DaifJ lead to 

(2.5) 

In the usual electromagnetic case, (2.5) immediately implies 
that either Y p.v = 0 or ifJ = O. However if ifJ is supposed to 
take values in the representation space for a nonabelian se
misimple gauge group G, (2.5) has nontrivial solutions and 
opens up a highly nontrivial possibility for the coupled gauge 
and spin-O Higgs system, as we are now dealing with that 
situation. 

3. COUPLED SU(2) AND BARGMANN-WIGNER FIELDS 

We will restrict our attention to the G = SU(2) [or 
SO(3)] case with ifJ in the adjoint representation. Equation 
(2.5) then becomes 

(3.1) 

This algebraic condition imples that the SU(2) symmetry is 
broken down to U(l) in a pure!yclassical way. Equation (3.1) 
means that both F p.v and cf> are aligned in isospin space. An 
SU(2) gauge transformation then allows us to (locally at 
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least) transfornn7 

Fl'v(x)-F~v(x) =fl'v(X)9, 

~(x)-+<p '(x) = 1](x)9, 

(3.2a) 

(3.2b) 

where bothfl'v(x) and 1](x) are scalar-valued functions and 9 
is a constant Lie algebra element. Thus F is reduced to a U( I) 
gauge field. We should now consider here7 two cases: either 
(i) det ifl'v(x))¥=O everywhere in Minkowski space (but for a 
nowhere dense set with a void interior) or (ii) detifl'v(x)) = 0 
over an open U C Minkowski spacetime. In case (i) we have7 

F~,,(x) = a!, A" - a"AI' (3.3a) 

with 

(3.3b) 

in the particular gauge ofEqs. (3.2) where a!, and A are sca
lar-valued functions. Now Eqs. (3.1 )-(3.3) together with the 
definition ~I' = DI' ~ lead to ~I' = al'~' We then notice that 
the combination 

(3.4) 

is also a potential for F 1'''' Consequently the (possibly local) 
gauge map u(x) = exp( - 1](x)9) allows us to gauge away the 
Higgs field. We will see that in full detail when we examine 
the Lagrangian fornnulation for our spin-O system. We only 
notice that for ~ as in (3.2b) both (Ub) and (1.2b) are trivia
lized, since that case (Ub) entails that a!, 1] = 0 and (1.2b) 
reduce to (3.3b). 

If(ii) det Ul',,(x)) = Oon an open Uin Minkowski space, 
sincef = (l/2lfl'"dxl' I\dx" is simplectic and closed (for F 
satisfies the abelian Bianchi condition, and thus df = 0), we 
can find a coordinate system somewhere inside U such that 
the two-fornn F = (l/2lfl''' 9dxl' 1\ dxl' becomes 

(3.5) 

in that coordinate system, as a consequence of Darboux's 
theorem in simplectic geometry-provided thatfl''' (x) be 
real valued.7 (In the complex case we can splitf = Ref 
+ jlmf, and get the same result for either Refor 1m! We 
also notice that the transfornnation that leads to (3.5) is in 
general nonlinear coordinate transfornnation.) An obvious 
potential for (3.5) is given by the fornn 

A = (x l )9dx2
• (3.6) 

Another potential for (3.5) is 

B = ((xl)9 + h (x 2)9')dx2
• (3.7) 

We notice that when 9X9¥=0, (3.6), and (3.7) are not gauge 
equivalent, and provide us with an example of the "gauge 
field copy" or "Wu-Yang ambiguity" phenomenon.8 This 
makes our analysis more complicated to a certain extent, 
since the definitions ~A I' = DI' (A )~ = a!, ~ and 
~B = DI' (B)fjJ ¥=al' ~ do not coincide here. When we take 
~B I' into (2.4) [with a!, _DI' (B)] we check that 

al'au~=j¥=O, (3.8) 

wherej doesn't vanish because of the noncommuting 9X9'. 
However, we notice that the standard holonomy group gen
erated by the affine connection fornn (3.7) will not be U(l), 
and thus the theory's symmetry group [for (3.7)] will still be 
an unbroken SU(2). This will always be the case when we 
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have a copied potential, while when the two different poten
tials for the same field are (locally at least) gauge equivalent 
the local and infinitesimal holonomy groups always coincide 
with the reduced symmetry group.9 

We thus exclude copies potentials from our analysis 
and restrict ourselves to potentials that are gauge equivalent 
to (3.6). These potentials will have as components 

A; = ((xl)9 + a~ (x)9), 

A~ = akA (x)9, k ¥=2, 

and again we can define a new 

AI' .,., = AI' + a!, 1](x)9 

(3.9a) 

(3.9b) 

(3.10) 

[where A is given by (3.6)] so that the Higgs field fjJ is (at least 
locally) gauged away. 

In cases (i) and (ii) the Higgs field has served its habitual 
purpose, that of breaking down the theory's symmetry 
group; however, we notice that the group's reduction has 
been perfornned in a purely classical way. Equations (3.4) and 
(3.10) also suggest that the Higgs field is a mere artifact in the 
present fornnulation: the moment we have reduced the sym
metry group, it is (locally, at least) gauged away. 

The Higgs field can be derived from a Dirac-like La
grangian density, 10 

(3.11) 

which in the general case is a Clifford algebra valued object 
invariant under the action of the corresponding spinor repre
sentation of the Lorentz group. When we turn on the gauge 
interaction, (3.11) becomes 

2',y.SU(2) = - (l/4)Fl'v oFI'V + Wo(Y'DI' \fI). (3.12) 

It is now also a (locally) SU(2)-invariant object. Besides the 
usual gauge field equations we get 

DI-'~ =0, 

DI-'~" -DI-'~I-' =0, 

(3.13a) 

(3.13b) 

which together with ~I-' = DI-' ~ lead to the condition 
F 1-''' X ~ = O. We can now redefine our gauge potential ac
cording to the prescription given by (3.4) or (3.10). Both 
equations suggest in a very obvious way that we should look 
at the Higgs-BWT field as the nonhomogeneous part in the 
potential's transfornnation rule. After perfornning such a 
transformation (3.12) becomes the usual U(l) Lagrangian 
density, as a consequence of (3.13), since that condition leads 
to (3.1). The Higgs field has vanished in much the same way 
as in the case of Goldstone bosons. 

4. EZAWA-TZE VORTICES 

Such a gauge transfornnation can be always globally 
performed in Minkowski space. However, if we cut some 
holes in Minkowski space so that its first De Rham cohomo
logy group D I(M) becomes nontrivial, II and if the theory's 
group is SO(3) (with a nonvanishing fundamental group 7T1 

[SO(3)], we can show that obstructions to the construction of 
global gauge transfornnationsl2 are classified the same way 
as Nielsen-Olesen vortices. Actually the discontinuities that 
appear when one tries to globalize the local gauge mappings 
can be identified in a natural way to the vortices. 
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Ezawa and Tze13 mathematically characterize the exis
tence of a vortex by condition (1.1 b), 

Dl'eI> = 0, 

or, in its integrated form, 

g(xo,xo)eI> = (P exp fA!, dxl' )eI> = eI>, (4.1) 

where P denotes the path-ordered nonabelian exponentiated 
integral, and r is a closed loop reM encircling the vortex, 
with XoEr. Such maps from all loops around a vortex into the 
(nonreduced) gauge group G = SO(3) classify (mod gauge 
transformations) all possible vortices in the field; they exist 
provided that the De Rham group D I(M) be nontrivial 
(which is the case when we exclude the vortex region from 
our spacetime, thus punching a hole in Minkowski space); 
we also require the nontriviality Of1TI(G) = 1T1(SO(3)), which 
is the case here. 14 

The existence of a nontrivial De Rham group D 1 entails 
a discontinuity that may block the extension of local gauge 
transformations that gauge away the Higgs field to the whole 
spacetime manifold. This has been proved elsewhere l5 and 
an example will make things clear. 

Let S be a nontrivial 1-cocycle over M- [ vortex I that is, 
if r encircles the vortex region, 

(4.2) 

The "Higgs field" eI> = S 9 can be expressed as gradient of a 
scalar only locally, provided that 

P exp I(A + eI» (4.3) 

is mapped over a nontrivial element in 1TI((SO(3)), C,l), 
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where Cis the U( 1) subgroup ofSO(3) that stabilizes 9 and A 
is the (reduced) potential for F. 

5. CONCLUSION 

We finally notice that since Eq. (3.5) is valid for any field 
in case (ii) above, there will be (noninertial) local frames 
where all static real U( 1) fields look the same. Such frames 
are in general different for different fields, and different 
fields may wildly differ in their global properties, but they 
will always look locally the same. We do not have a clear 
interpretation for this phenomenon. 
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Phys. 22, 2943-2951 11981). 
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Application of Benson's inequalities to the atomic electronic density 
Frederick W. King 
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In this work, several upper bound estimates for the atomic electronic density are derived by 
making use of Benson's inequalities. In some cases, it has been possible to compare the results 
obtained using Benson's inequalities with some bounds recently derived by other workers. 

PACS numbers: 31.20. - d, 31.15. + q 

I. INTRODUCTION 

Some time ago, Benson 1 proposed an elementary meth
od which allowed a number of classical inequalities2

-4 to be 
derived. The basis of the method is as follows. If P(u, x) > 0 
andP (u,x) and G (u,x) are continuously differentiableforx in 
[a, b), then 

P(u' - Gup-1f>0, (1) 

P(u' - G P-l)2 + 2u'G + 2G ::;;. d(2G) (2) 
u U x:P" dx ' 

f [P(U')2+p-1G~ +2Gx ]dx>2G(u(b),b) 

- 2G (u(a),a). (3) 

A subscript indicates the appropriate partial derivative. De
spite the elementary nature of the above sequence of equa
tions, Benson showed by judicious choice of the functions P 
and G that many interesting inequalities could be obtained. 

A special case ofEq. (3) given by Benson is 

P(u,x) = pIx); G (u,x) = !u2g(x)P(x), 

which leads to the result 

i b 

[P(x)(u'f + Ip(X)g(X)2 + (P(x)g(x))')u(x)2]dx 

>u(b )2p(b )g(b ) - u(afp(a)g(a). (4) 

In the remainder of this paper, a simplified form ofEq. (4) 
will be utilized, namely, 

i b 

[(U(X)')2 + Ig(X)2 +g(x)'ju(x)2]dx 

>u(b fg(b ) - u(afg(a). (5) 

The main advantage of the above approach is that it provides 
a very straightforward approach to deriving bounds for the 
function u, given information on certain integrals involving 
u2 and (u'f In some instances, however, the approach of 
Benson does not lead to the sharpest possible inequalities. 
This particularly appears to be the situation if additional 
information is known about the function u(x). This point will 
be discussed further in the next section. 

II. THEORY 

In the present work, our interest is centered on the de
termination of bounds for the atomic electronic density. This 
topic has been the subject of recent interest,5-12 particularly 
the determination of bounds for the asymptotic behavior. 
Considering the central role played by the electronic density 

in discussions of the static and dynamic behavior of matter, 
it is obviously very useful to know rigorous bounds for this 
fundamental quantity. 

The following discussion will focus on the application 
ofEq. (5) to the electronic density for seven simple cases. The 
first couple of choices are selected in order to compare the 
resulting bounds with previous investigations. The last cou
ple of cases examined are attempts to provide very sharp 
bounds for the electronic density. 

The electronic density, which we will assume through
,out to be radially symmetric, is defined by 

p(c) = N fllJl(Cl,C2, ... ,rNWdc2dC3 ... dCN' 

where N is the number of electrons. Our results are restricted 
to atomic systems. 

Case 1: g = k (k is a constant). 
Ifwe setg = k, then the basic Benson inequality (5) 

becomes, on setting a = 0 and uta) = 0, 

ku(rb )2<f
b 
[u(x)'] 2 dx + k 2fbU(X)2 dx. 

If the optimum k is selected, then 

u(rb )2<2[f
b 
[u(x)'] 2 dx fbU(X)2 dx r2. 

which may be rewritten as 

u(r)2 < 2[fO [u(x)'] 2 dx 100 

u(xf dx rz. 

(6) 

(7) 

(8) 

This special case of Benson's inequality has been known for 
sometime. 13 The special caseofEq. (8) for r = Ocan be found 
in the book by Hardy et al. 2 

Employing the substitution 

u(r) = rp(r)1I2 (9) 

and making use of the inequality, derived by Hoffmann-Os
tenhof et al.,5 

100 T 
([rp(r)112]')2 dr<

o 2ff 

leads to the result 

p(r) < (2NT)1/2/2ff,z. 

(10) 

(11) 

In Eq. (10) Tis the total kinetic energy of the system. A 
slightly stronger result has been given by Hoffmann-Osten
hof et al.5

: 

(12) 

For Eq. (8) we assume that u(r) is continuous. No other as-
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sumptions on the function u(r) are employed, although the 
additional requirement that the integrals appearing in Eq. (S) 
converge will be employed; otherwise the result is rather tri
vial. The stronger result obtained by Hoffmann-Ostenhof, 
Eq. (12), follows from the inequality 

[
{<X> (<X> ] 112 

lu(rW< )0 [U(X)'] 2dxJo u(xfdx , (13) 

which requires the hypothesis u(O) = O. This additional con
straint allows the sharper inequality to be obtained, and can 
be observed to follow from a particular case of Block's in
equalities 14. 15: 

lu(rW< tanh k(b - a) {b [[U(X)']2 + k 2u(xf)dx, (14) 
2k L 

which represents the uniform bound of the more general 
form of one of Block's inequalities: 

lu(rW< sinh k (r.- a)sinh k (b - r) {b [[u(x)'f 
k smh k (b - a) Ja 

+ k 2u(X)2)dx. (15) 

Equations (14) and (15) are derived under the hypothesis 

u(a) = u(b) = O. (16) 

If, in place of Eq. (9), the substitution 

u(r) = p(r)1/2 (17) 

is employed in Eq. (S), then bounds for the electronic density 
at the nucleus may be obtained, and these have been dis
cussed elsewhere. II We note in passing that even for the case 
where u(O) = 0 is not assumed, the inequality that follows 
from Benson's Eq. (5), i.e., Eq. (6), can be given in slightly 
sharper form: 

ku(r)2<W + e - 2kr) i oo 
[ [u(x)'] 2 + k 2U(X)2) dx, (IS) 

which follows from an inequality of Block: 

lu(rW< coshk(b.-r)coshk(r-a) (b [[u(x)'f 
ksmhk(b-a) Ja 

+ k 2u(X)2)dx. (19) 

Case 2: g' + g2 = k 2e - 2rx IF is a positive constant). 
The differential equation to be solved is 

g(x)' + g(X)2 = k 2e - 2rx. (20) 

The standard approach to handle a differential equation of 
this form is to employ the substitution 

g(x) = v(x)'/v(x). 

Using Eq. (21), Eq. (20) is converted to 

v(x)" - k 2e - 2rXv(x) = O. 

(21) 

(22) 

The change ofvariabley(x) = k 2e - 2rx converts Eq. (22) into 
a modified Bessel differential equation. The solution of Eq. 
(22) is (in terms of constants C I and c2 ) 

v(x) = clo(ye - rX) + c2K O(ye - rX), (23) 

where y = k / rand 10 and Ko are modified Bessel functions 
of the first and second kind, respectively. The constant C2 

must be zero if v(x) is finite at x- 00. From Eq. (23) we have 
that 

g(x) = - ke- rXll(ye- rX)/lo(ye - rX). (24) 
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From Benson's inequality, Eq. (5), 

u(ra )2ke - rrOII(ye - rrO) 

lo(ye - rrO) 

< roo [ [U(X)']2 + k 2e - 2rxU(X)2) dx. (25) 

If we employ Eq. (9) and take advantage of the fact that the 
integrand in Eq. (25) is always positive, then 

I (ye - rr)[2T + k 2N (1/1 Ie - 2rr, 11/1) ] 
p(r) < 0 . (26) 

41Trke - rrll(ye - rr) 

From the asymptotic expansions for the modified Bessel 
functions of the first kind 16: 

e' [1 + ~ + _9_ + ... ] z-00,(27) 
(21TZ) I 12 Sz 12Sz2 

ldz)- e' [1 _ ~ __ 15_ + ... ] z-00,(2S) 
(21TZ) 1/2 8z 12Sz2 

it follows that Eq. (26) reduces to Eq. (11) in the limit r -0 
when the optimum k is employed. 

Hoffmann-Ostenhof et al. 5 have considered the prob
lem of deriving bounds for expectation values involving ex
ponential functions. Here we consider a different approach 
utilizing Sobolev's inequality. 17.18 Our bounds are restricted 
to expectation values of exponentially decreasing functions, 
and will allow us to express the expectation values in Eq. (26) 
in terms of the kinetic energy. 

Using the Holder inequality, we have 

Ie - kp(r)dr< {Ie - 3/2kr dr} 2/3 {I p(r)3 dr} 1/3. (29) 

Sobolev's inequality takes the form (in R 3) 

where the constant c = 4/33/2r. If we substitute 

ifJ (r) = p(r)1/2 

in Eq. (30), then 

Ip(r)3 dr<c2{IIVP(r)1/212 drr 

Hence, 

(30) 

(31) 

(32) 

Ie - krp (r)dro:;;;c2/3{I e - 3/2kr drr3 {fIVP(r)1/212 dr}, 
(33) 

which simplifies on using 

IIVP(r)1/212 dr<2T 

to give 

I
e- 2rrp(r)dr< 16T (~)1/3. 

27r 2 r 

(34) 

(35) 

We now make a simple evaluation ofEq. (35), using as a 
reference, the obvious result 

f e - 2rrp(r)dr<N. (36) 

For the hydrogen atom, p(r) = e- 2r /1T, and hence 
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Je - 2r'p(r)dr = 1 
(T + 1)3 . 

The right-hand side ofEq. (35) becomes 

_8_ (~)1/3 -0.17403 r -2 (in atomic units), 
27r l rr 

(37) 

and hence the bound in Eq. (35) is a fairly satisfactory ap
proximation. The inequality for the case of the hydrogen 
atom is sharpest for r = 2. Comparing Eqs. (35) and (36), we 
find that Eq. (35) is the better bound for r> 0.417 17. For a 
general atom, Eq. (35) is superior to Eq. (36) when 

0.348 069T 1I2/N <r. (38) 

For He Eq. (35) is better than Eq. (36) if r>0.7109 and for 
the Be atom, if r> 1.130. 

Returning to Eq. (26), we may rewrite this bound using 
Eqs. (35) and (36): 

p(r) < lo(ye - r')T [1 + 0.174 035rJ. (39) 
21Trke - r'/l(ye - Tr) 

or the alternative form, 

(40) 

The optimum bound for Eq. (40) can be obtained by examin
ing the limit r ->0, which leads to 

p(r) < (1I41Tkr)[2T + k 2 N]. 

Case 3: g' + g2 = k 2X2. 
With the substitution g(x) = v(x)' /v(x), the equation 

g(x)' + g(X)2 = k lXl (41) 

is transformed into 

x 2v(x)" - k lX4V(X) = 0, 

for which the solution is 

v(x) = XI/2[c1/1/4(~kxl) + c2KI/4(!kx2)]. 

(42) 

(43) 

With the requirement that v(x) remains finite as x- 00, we 
set C I = 0; hence 

g(x) = J.- _ kxK5/4(!":2) . (44) 
x K I/4(!kx ) 

Since the integrand in Benson's inequality is positive for the 
present case, we obtain, using Eq. (9) and (10), 

K I/4(!kr)[2T + Nk l( l[liri 11[1)] (45) 
p(~< . 

41Tk,-JK3/4(~kr) 
Case 4: g' + g2 = k 2/X. 
On making the substitution g(x) = v(x)' /v(x), the solu

tion of the Riccati equation 

g(x)' + g(X)2 = k 2/X (46) 

is, with P = 2kx1l2, 

g(x) = klolP)lxI/2IIIP), (47) 

which leads to the bound 

IIIP) [2T + Nk 2( I[Ilrl- 111[1) ] 
p(r) < 41T,-J /2klolP) (48) 

It can be shown, II that a slightly sharper bound can be ob
tained when the additional hypothesis that u(r) vanishes at 
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r = 0 is employed. The resulting bound is 

I I (f3 ) [ 2 T + Nk 2 ( 1[11 r 1- I 11[1 ) ] 

p(r) < 41T,-J/2k [/olP) + [/1(f3 )KolP)/ K 1(f3)] ] 

11(f3 )KIIP) [2T + Nk 2( I[Ilr l- 111[1) ] 

21Tr 

(49) 

(49a) 

For large values of p, the denominator of Eq. (49) behaves 
like - 2Io(f3). Therefore, in this limit, Eq. (49) is a sharper 
bound by a factor of 2. In the limit P->O, the additional 
factor in the denominator approaches zero, and hence Eqs. 
(48) and (49) become equivalent in this limit. The superior 
result, Eq. (49), is a direct consequence of the additional as
sumption on u(r). 

Case 5: g' + g2 = k /x2. 
The solution of the Riccati equation in this case is ele

mentary: 

g = ml/x, m 1 = ! + !(1 + 4k )112, (50) 

g=m 2/x, m2 =!-!(1+4k)1/2. (51) 

Ifwe employ Benson's inequality and Eq. (9), then each of 
Eqs. (50) and (51) leads to bound for p(r). The sharper of the 
two bounds is 

[2T+ kN (1[IIr l-
2 11[1)] 

p(r) < 21Tr[(1 + 4k )1/2 _ 1] . (52) 

The optimum k, restricted to positive values, for Eq. (52) is 

k=fl +fl 112, 

where 

fl= 2T 
N (1[IIr l- 111[1) 

It follows from the well-known inequality l9 

N ( 1[11 r 1- 111[1 ) < 8 T 

that fl;>! and hence k;>~. Equation (52) reduces to 

N (1[IIr l- 21¢)[2fl + fl Ill] 
p(r)< 21Tr[(1 +4fl+flI/2)112-1]' 

Case6:g' +g2 = - klxl. 

(53) 

(54) 

(55) 

(56) 

The constant k is positive. From Eqs. (50) and (51), it is 
obvious that -! is the most negative factor that is possible. 
Benson's inequality becomes, on using Eq. (50), 

!rbP(rb) - !rap(ra)<Lb[ [(rp(r) I 12)'] 
2 

- !p(r)]dr. (57) 

If we employ Eq. (10), Eq. (57) may be rewritten as 

f'b p(r) (41Tr dr)<8T + 81T[ rap(ra) - rbP(rb )] , (58) 
Ja r 

which is a generalization (for a radially symmetric density) of 
the well-known result 

Jp(r)dr <8T r . (59) 

Since the integrand in Eq. (57) is not necessarily positive 
for all r, it is clearly not possible to add the terms 
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rat ([rp(r)1/2]')2 -lp(r)Jdr + r'" !([rp(r)1/2] 'f 
Jo J~ 

-lp(r)Jdr 

to the right-hand side of the inequality. By way of example, 
consider the case of the hydrogen atom, for which this point 
can be resolved analytically. For the hydrogen atom, we 
have 

([rp(r)1/2]')2 -lp(r) = p(r)(r - 3/2)(r - !). (60) 

The integrand is positive for all r> 3/2 for the hydrogen 
atom, and hence for this case, 

p(r)..;J...[T- ~N(tJllrl-2ItJ1)] for r> 3/2. (61) 
1Tr 

Because of the importance of the region r = 0 - 0.5 a.u., 
where the integrand is positive [see Eq. (60)], it is straightfor
ward to show that Eq. (61) actually holds for all r. 

From Eq. (58), we have 

p(r)..; _1_ {8T _ N (tJllr l- 21 tJI) + roo 41TP(X)dX}. (62) 
81Tr J 

A bound for the last integral appearing in Eq. (62) can be 
obtained in the following manner. Ifwe integrate the bound5 

41Tp(r)< ~ (: + ~ aN)(I-e- 2a1, (63) 

we obtain 

41T {oo pIx) dx< (: + ~ aN)(1 - E2(2ar)r- l , (64) 

where a is an arbitrary positive parameter in Eq. (63) and 
E2(z) is an exponential integral. 16 Hence, Eq. (62) becomes 

p(r) < l/81Tr 

X {8T - N (tJllr l- 21 tJI) 

+ (l/2ar)(2T + a 2N)(1 - E2(2ar))}. 

Case 7: g' + g2 = - k 2 Ix. 

The Riccati equation to be solved is 

g(x)' + g(xf = - k 2 Ix. 

(65) 

(66) 

This may be converted into the following differential equa-

TABLE I. Bounds for p(r) for the hydrogen atom. 

tion: 
x 2v(x)" + k 2XV(X) = o. 

The solution ofEq. (67) is, with /3 = 2kx tl2 , 

v(x) = X
I12

[cIJ1(/3) + C2Y1(f3)], 

(67) 

(68) 

where I n and Yn are Bessel functions of the first and second 
kind, respectively. If v(x)' is finite as x-o, then C2 = O. The 
function g is 

k Jo(/3) 
g(x) = xl/2 J

1
(/3)' (69) 

Because of the oscillatory nature of the Bessel functions, we 
impose the restriction that /3 < 2.404 825 [the first zero of 
Jo(/3 )], i.e., 

r < 1.445 79 k -2. (70) 
Benson's inequality with u given by Eq. (9) gives 

p(r) < J1(/3) rWxp(x)1/2]'f-k 2xp(x)Jdx. (71) 
k,-3I 2Jo(/3 ) Jo 

Using Eq. (10), Eq. (71) can be rewritten as 

p(r) < k~~) {2T + ~ Ven + kz{oop(x)41TX dX}, 
41T Jo(/3 ) z J 

(72) 

where Ven is the electron-nuclear potential energy and Z is 
the nuclear charge. Both Eqs. (71) and (72) require the re
striction given in Eq. (70). 

A question of interest is whether or not a sharper form 
ofEq. (72) can be formulated. This can be answered in the 
affirmative, at least for one-electron systems. For the hydro
gen atom, we have that 

([rp(r)1/2]')2 _ k 2rp(r) 

=p(r)[r- p +~k2+~k[k2+4]1/2J] 
x[r-!1 +!k2-!k[k2+4]1/2J]. (73) 

In this case, the integrand in Eq. (71) is positive for 

r> 1 + !k 2 + !k[k 2 + 4j1/2 (74) 

and hence, 

(75) 

The range of r for which Eq. (75) may be applied is governed 
by both Eqs. (70) and (74); that is, 

Radial distance Bounds for p(r) (in atomic units) 
(atomic units) Eq.(II) Eq. (48) Eq. (49) Eq. (56) Eq. (65) Exact 

0.1 0.1592x 102 0.7958 0.7958 0.5872X 10' 0.2171 X 10' 0.2606 
0.2 0.3979x 10' 0.3979 0.3973 0.2936X 10' 0.9270 0.2134 
0.3 0.1768X 10' 0.2653 0.2631 0.1957X 10' 0.5564 0.1747 
0.4 0.9947 0.1989 0.1948 0.1468X 10' 0.3852 0.1430 
0.5 0.6366 0.1592 0.1530 0.1174X 10' 0.2887 0.1171 
0.6 0.4421 0.1326 0.1246 0.9787 0.2279 0.9587 X 10- , 
0.7 0.3248 0.1137 0.1042 0.8389 0.1865 0.7849 X 10-' 
0.8 0.2487 0.9947 X 10-' 0.8878 X 10-' 0.7340 0.1569 0.6427 X 10-' 
0.9 0.1965 0.8842 X 10-' 0.7678 X 10-' 0.6524 0.1347 0.5261 X 10-' 
1.0 0.1592 0.7958 X 10-' 0.6722 X 10-' 0.5872 0.1176 0.4308 X 10-' 
1.5 0.7074 X 10-' 0.5305 X 10-' 0.3929 X 10-' 0.3915 0.7053X 10-' 0.1585X 10-' 
2.0 0.3979 X 10-' 0.3979X 10-' 0.2633 X 10-' 0.2936 0.4970 X 10-' 0.5830X 10- 2 
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1 + ~k 2 + !k [k 2 + 4]1/2 < r < 1.445 79 k -2. (76) 

As a final remark on this case, we note that it is possible to 
derive an upper bound for the last integral appearing in Eq. 
(72) using an exponentially decreasing bound given by Hoff
mann-Ostenhof et aU The bound obtained requires infor
mation on the ionization potential. 

Numerical results for some of the bounds discussed in 
this work are presented in Table I for the hydrogen atom. 
More detailed applications will be presented elsewhere. The 
value of k in each bound formula was optimized at each 
value of the radial coordinate r. The best bounds range from 
a factor of about 1.3 too high at medium range to about a 
factor of 3 - 4 too high at both short and long range. At very 
long range, all the bounds give poor estimates because of the 
incorrect asymptotic behavior of the bounds as r_ 00. 

III. CONCLUSION 

In this work, we have examined the application of Ben
son's inequalities to obtain upper bound estimates for the 
atomic electronic density. The bounds derived herein do not 
exhibit the correct long-range asymptotic behavior; that is, 
they do not decay exponentially as r_ 00 • Also, the bounds 
are not finite at r = O. The problem of determining a reason
able bound which is both finite at the nucleus and decays 
exponentially for large r, is an unresolved problem. The few 
bounds for the electronic density which have been previously 
given in the literature, become infinite at r = O. The excep
tions are a recent bound derived by the author ll and a bound 
derived specifically for r = 0 by Hoffmann-Ostenhof et al. 6 

The bounds derived in this work are satisfactory for 
values of r typically in the small to moderate range. N umeri
cal applications will be discussed elsewhere. 

For the situation were g(x)' + g(X)2 is negative, only a 
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limited number offunctional forms have been examined. It is 
possible that a more judicious selection of the functional 
form of g(x)' + g(X)2 would result in improved bounds. 
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We study rigorously the problem of the Lamb shift and the spontaneous emission of light in a 
framework of nonrelativistic quantum electrodynamics by using an exactly soluble model of a 
harmonic oscillator atom interacting with a quantized electromagnetic field. We show that, under 
the perturbation of the electromagnetic field, all the point spectra corresponding to the excited 
states oft~e unperturbed atom disappear. This means that the "energy level shifts" (Lamb shifts) 
of the excited states of the atom cannot be described simply in terms of shifts of point spectra. 
Then, we give a rigorous mathematical meaning to both formal perturbation theories for the 
"energy level shifts" and for the transitions of the excited states due to the spontaneous emission 
of light, showing that the "energy level shifts" and the "decay probabilities" of the excited states 
of the atom are characterized in terms of the resonance pole of the S-matrix for the photon 
scattering by the atom. We also discuss broken symmetry aspects and infinite mass
renormalization of the model. 

PACS numbers: 32.30.Jc, 32.70.Jz, 03.65.Db, 03.70. + k 

I. INTRODUCTION: DESCRIPTION OF THE MODEL AND 
THE MAIN RESULTS 

The purpose of this paper is to give a rigorous math
ematical theory of spectra and radiation for a harmonic os
cillator atom interacting with a quantized electromagnetic 
field. The main interest lies in giving a rigorous mathemat
ical description to the "energy level shifts" and to the decay 
phenomena of the excited states of the atom due to the spon
taneous emission of light, the former corresponding to the 
Lamb shifts in quantum electrodynamics 1-5 and being usual
ly "defined" in terms of the formal perturbation theory. 
Such analysis is indeed necessary and is of theoretical impor
tance, because, in view of the finite lifetime of the excited 
states of real atoms due to the spontaneous emission oflight, 
one cannot expect that the "energy level shifts" are described 
in terms of shifts of point spectra and, if that is the case, then 
the meaning of the formal perturbation theory comes into 
question. 

In the preceding works,6,7 which are henceforth re
ferred to as I and II, the author studied the same problem by 
using a similar, but rather simple model which describes a 
system of a one-dimensional harmonic oscillator coupled to 
a quantized, massless, scalar field in three space dimensions. 
He proved that all the point spectra but the lowest one of the 
unperturbed harmonic oscillator disappear due to the inter
action with the field. This means that the "energy level 
shifts" of the oscillator due to the perturbation of the field 
cannot be described simply in terms of shifts of point spectra 
and hence that, without any reinterpretation, the formal per
turbation theory makes no sense. Then, he gave a rigorous 
mathematical meaning to both formal perturbation theories 
for the "energy level shifts" and for the transitions of the 
excited states due to the spontaneous emission of the bosons, 

alPart of this work was submitted to University of Tokyo for the degree of 
Doctor of Sciences. 

showing that the "energy level shifts" and the "decay proba
bilities" of the excited states are characterized in terms of the 
resonance pole of the S-matrix for the boson scattering, 
which is also a complex pole associated with the Wightman 
distributions or l' functions, In this paper, we shall show that 
results similar to those of (I,ll) hold for the present model as 
well, and further, we shall consider broken symmetry 
aspects and infinite mass-renormalization of the model. 

Similar models were studied by many authors from var
ious physical points of view (see, e.g., Refs. 8 and 9 and refer
ences cited there). However, it seems that so far, the rigorous 
mathematical treatment based on the Hamiltonian formal
ism has not been given. Our model is not realistic, but we 
hope that the study of it serves as a step towards a rigorous 
construction of spectral and radiation theory for realistic 
models (see Refs. 10 and 11 for a general mathematical 
framework for the problem). 

We now proceed to describe the model. We shall use the 
Coulomb gauge in quantizing the electromagnetic field. The 
underlying Hilbert space cW' of state vectors for the system is 
defined as the tensor product of L 2(R 3) and yEM, the Fock 
space for photons in the Coulomb gauge: 

cW' = L 2(R 3) ® yEM. (1.1) 

Let alrl( I) and alrl" (/),fE L 2(R 3), r = 1,2, be the photon anni
hilation and creation operators in yEM, respectively; they 
are densely defined on ygM, the linear subspace of the finite 
particle vectors in yEM, and leave it invariant, satisfying 

(alrl(f) 1{!,4» = (I{!,a lrl '( ])4», 

[alrl(f),alsl'(g)] I{! = Ors (f,g)L 'IR') I{!, 

[al r)( 1),aIS)(g)] I{! = 0, 

(1.2) 

(1.3) 

for alII{!, 4> in y~M and all/, g in L 2(R 3). Let elr)(k)E R 3, 

r = 1,2, be the polarization vectors of photon with momen
tum k, which satisfy 
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e(rl (k)·k = 0, e(rl(k)'e(sl(k) = Drs' e(1l(k) X e(21(k) = k/lkl. 
(1.4) 

Then, in the Coulomb gauge, the time zero radiation field 
A(f) and its canonical conjugate 1'/'(f) are given by 

AI'(f) = _1_ ± !alrl'(!e~I/~) 
V1 r= I 

+a(rl(!e~)/~)j, !/~EL2(R3), (1.5) 
• 2 

1T1'(f) = _1_ I !alr)'(~!e~)) 
vL r= I 

- a(r)(~ fe~)) J, ~!E L 2(R 3), 

f.l = 1,2,3, (1.6) 

where! denotes the Fourier transform ofJandg is defined by 

g(k) = g( - k), (1.7) 

and w(k) is the energy of a free photon with momentum k: 

w(k) = Ikl. (1.8) 

We denote the free Hamiltonian of photons by H~M, 
which is a nonnegative self-adjoint operator in yEM and is 
symbolically written as 

H ~M = rtl J d 3kuJ(k)alr)'(k)al rl(k) (1.9) 

with a(r)(k) being the symbolic notation for alrl(f) given by 

a(r)(f) = J d 3ka1rl(k)J(k). (1.10) 

All the operators in yEM [respectively L 2(R 3)] have 
natural extensions to diY'; e.g., a(r)(f) in yEM [respectively 
- iV in L 2(R 3)] is extended as I ® alr)(f) (respectively 
- iV ® I). The extensions will be denoted by the same nota-

tions. We shall also denote the closure of a closable operator 
by the same notation. 

The interaction of the harmonic oscillator atom with 
the quantized electromagnetic field is taken to be minimal. 
Let m > 0, eE R I and Wo > ° be parameters denoting the phys
ical mass, charge of the "electron" and the spring constant of 
the oscillator, respectively. Then, the total HamiltonianH in 
the dipole approximation is given formally by 

H = 1 : (p _ eA(p))2: + J..mw2q2 + HEM 
2(m _ 15m) 2 0 0 , 

(1.11) 
with 

. a 
p= -Iaq' (1.12) 

where: : denotes the Wick ordering and p is a real-valued 
function which denotes the charge distribution of the elec
tron. The quantity 

15m =2 e2 Jd 3k Ip(kW (1.13) 
3 Ikl 2 

will be found to give the mass-renormalization. Throughout 
the present paper we assume, for technical simplicity, that 

p is a rotation invariant function, satiSfYing} 
pEY(R 3), P > 0, 

(AI) J d 3xp(x) = 1. 
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We shall denote p(k) as p( I k I). 
Remarks: 
(1) For the proof of the essential self-adjointness of H 

(see Theorem A.2), it is sufficient to assume that../Wp andpl 
ware in L 2(R 3). 

(2) The total Hamiltonian without the dipole approxi
mation is defined by replacingp(k) by p(k) exp ( - i k·q) in the 
right-hand side of(1.11). We can prove the existence of its 
self-adjoint extension for all e and the fundamental spectral 
property similar to that given in Ref. 11. The use of the di
pole approximation permits us to solve the Heisenberg equa
tions of motion exactly and hence to analyze the spectrum of 
the total Hamiltonian in detail. However, the total Hamil
tonian without the dipole approximation leads to a compli
cated nonlinear Heisenberg equations of motion, which may 
not be solved exactly. 

(3) Since we consider the one electron problem, (i.e., the 
charge one sector), the longitudinal (static) part of the elec
tromagnetic field due to the Coulomb gauge does not appear 
in our Hamiltonian. It appears only in the Hamiltonian of 
the charge Z-sector with Z-;.2 which is given formally in a 
general form by 

H(Z) = ~ { 1 : (p _ eA (q)2 + V(q,)} j-=-I 2(m _ om) J P' 
2 

+ I e +H~M, (1.14) 
l<j<k<:.Z 41Tlqj - qk I 

where Pj (respectively qj) denotes the momentum (respec
tively position) operator ofthejth electron and Ap(qj) is de
fined by replacingp(k) by p(k) exp ( - i k.qj) in A(p). The 
operator V (q) is the potential in which the electrons exist. [In 
our case, V(q) = mw~q2!2.] The second term of (1.14) is the 
longitudinal (static) part of the electromagnetic field due to 
the Coulomb gauge. The Hamiltonian H (Z I is defined in the 
Hilbert space ( ® ~L 2(R 3)) ® yEM, where ® ~ denotes the 
Z-fold antisymmetric tensor product. It would be of great 
interest to analyze the Hamiltonian H(Z I. 

Our first task is to establish the self-adjointness of the 
total Hamiltonian. We write 

H = H + !mw~ q2 

with 

(1.15) 

H= (p-eA(pW +H~M. (1.16) 
2(m - 15m) 

Let 

- 1 H =_p2+HEM 
o 2m 0 , 

(1.17) 

Ho = Ho + !mw~q2. (1.18) 

Then, we shall prove 
Theorem A.I: H is essentially self-adjoint on any core 

for Ho. In particular, if m > Om, then H is self-adjoint with 
D (H) = D (Ho). Furthermore, if m > 15m (respectively 
m < om), then H is bounded below (respectively not bounded 
below): 

H-;.- -_ e2 // p //2 
2(m -15m) ~ 0' 

(1.19) 
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where II II~ denotes the norm of L 2(R 3). 
Theorem A.2: The total Hamiltonian H is essentially 

self-adjoint on any core for Ho. In particular. if m > f>m. then 
H is self-adjoint with D (H) = D (ii)n D (q2) and is bounded 
below with the same lower bound as that of ii given in (1.19). 
If m < bm. then H is not bounded below. 

For the proof of the first half of Theorem A.I. see Ref. 
11. The second half can be easily proved. We shall prove 
Theorem A. 2 in Sec. II. 

The second half of Theorem A.2 shows that. if m < bm. 
then the ground state of H does not exist. Therefore. the case 
m < 8m may be unphysical. In fact. in this case. there exists 
an unphysical solution to the Heisenberg equations of mo
tion which grows exponentially as time tends to a remote 
future or past (see Theorem 3.1). 

Remark: If m < 8m. then the Hamiltonian without the 
dipole approximation is not bounded below. either (see the 
proof of Theorem A.2 in Sec. II). 

The next thing to analyze is the spectrum of H. We first 
want to remark on a mathematical feature of the problem. 
The total Hamiltonian can be rewritten as 

H = Ho + H V I + H \21 + R. 

where 

Hili = - ~ p.A(p), 
m 

2 

H~21 = ;m : A(p)2 ., 

R= 8m (H\II+H\21+L). 
m -bm 2m 

(1.20) 

(1.21) 

(1.22) 

The operator Ho is taken to be the unperturbed Hamiltonian 
of the system and the operator HII) + H12) is the minimal 
interaction. The operator R is the mass-renormalization 
counter term. which. in the lowest order in e. coincides with 
Bethe's I if p(k) = XIO.m I( Ik! )/(21T)312 with XIO.m) the charac
teristic function for the interval [O.m]. Concerning the un
perturbed Hamiltonian Ho, we note that the point spectrum 
(Jp(Ho) is embedded in the continuous spectrum. In fact. 

CIp(Ho) = !E~IJ, CI(Ho) = [~liJo.oo). (1.23) 

where CI(Ho) denotes the spectrum of Ho and 

E~I = (n + ~)liJo. n = 0.1.2 ..... (1.24) 

which is degenerate with multiplicity M = (n + l)(n + 2)/2. 
Thus, from the perturbation theoretical point of view, the 
analysis of H gives a problem of perturbation of point spectra 
embedded in a continuous spectrum, which is hard to ana
lyze in general (see. e.g .• Refs. 12-19). 

In order to analyze the spectrum of H, we first construct 
the exact solution to the Heisenberg equations of motion. We 
shall do this in Sec. III. Then, in Sec. IV, we shall prove the 
existence (respectively absence) of the asymptotic radiation 
fields in the case m > 8m (respectively m < 8m), obtaining the 
explicit form of them, which permits us to analyze the spec
trum of H in detail. In Sec. V we shall prove 

Theorem B: 
(1) Let m > bm and 

Eo = inf CI(H). (1.25) 

Then, 

CI(H) =CIac(H) = [Eo.oo}. CIp(H) = [Eo), CIs (H}=0. 
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where fJae (H) [respectively fJs (H)] denotes the absolutely (re
spectively singular) continuous spectrum of H. The eigenva
lue Eo is simple. 

(2) Let m < 8m. Then, 

fJ(H) = fJac(H) = R I, fJp(H) = fJs(H) = 0. 

Remark: As is seen from the existence of the ground 
state of H without infrared cutoff [Theorem B-(1)], no in
frared problem arises in our model in contrast to models in 
Refs. lO, 20, and 21. This may be due to that the electron is 
(harmonically) bound. In fact. in the case liJo = O. we can 
prove the absence of the dressed one electron states without 
infrared cutoff in the Fock space. 22 

Theorem B shows that the perturbation of the electro
magnetic field makes all the point spectra (but the lowest one 
in the casem > 8m) of Hocompletely disappear. This is natu
ral in view of the spontaneous emission of light and leads us 
to expect the same for the Lamb shifts in real atoms. Then, 
however, a problem arises: What are the "energy level 
shifts" that the formal perturbation theory gives? Or. in oth
er words, what does the formal perturbation theory approxi
mate? In Theorem C below. we shall give a solution to this 
problem together with that of the spontaneous emission of 
light. 

We must begin with describing some facts related to the 
formal perturbation theory. Let 1JI~~j, n>O,j = 1, ... ,M, be 
the eigenvectors of the unperturbed Hamiltonian Ho with 
theeigenvalueE~), and [P(OI(E) J be the spectral family asso
ciated with Ho. Put 

E .(z) = -(IJI(OI.H(lI(H _z)-I(I_P(O)(E(OI))H(lIIJl(OI.) 
n,j n,J' JOn In,)' 

(1.26) 

which is an analytic function ofzin C\. [~liJo, 00). We shall see 
in Lemma 6.2 that 

En. j = lim En)Z), n>O, j = 1, ... ,M, (1.27) 
z __ E~O) 

Im(zl>O 

exist and that En,j does not depend onj. Let 

E ~Ij(e) = E ~Ol + Re (En) + (1JI~~lj,H\211J1~~)j) 
+ (1JI~lj.(Dm/2m2) p21J1~lj)' (1.28) 

which are the formal perturbation expansions (see, e.g., Ref. 
23. Chap. II). up to the second order in e, for the "perturbed 
energy levels." To this order the "energy level shift" is 

8E (21.(e) = E (21.(e) _ E (01. (1.29) 
n,j n,j n 

The formal time dependent perturbation theory (the "Gold
en Rule") (see, e.g .• Ref. 24) gives 

(1.30) 

as the "decay probability," up to the second order in e, of the 
excited state 1JI~lj' The decay is of course due to the sponta
neous emission of light. 

Now, the Heisenberg operators are given by 

A(J,t) = eitH A(f)e - ilH, JEY(R 3). tE R I, 

q(t) = eilHqe - ilH, 

p(t) = eilHpe - itH. 

AsaoArai 

( 1.31) 

(1.32) 

(1.33) 

1898 



                                                                                                                                    

We consider the 2-point r-functions in the case m > om: 

~:J(t - s) = (!J,T [q,.(t )qv(s)]!J), (1.34) 

~;"MI(f,g;t - s) = (!J,T [A,.(f,t )Av(g,s)]!J), I,gEY(R 3), 
(1.35) 

r!~(l;t - s) = (!J,T [A,.(f,t)Pv(s)]!J), IEY(R 3), (1.36) 

where!J is the ground state of Hand T [ . ] denotes the time 
ordered product. It will be shown by explicit construction in 
Sec. VI that ~:J(t ), ~:vMI(f,g;t ) and ~;"M,h 1(l;t ) are all well
defined, and in particular that the latter two are continuous 
functionals on Y(R 3) X Y(R 3) and Y(R 3), respectively, for 
each t. Hence we can write 

~:vMI(f,g;t )= f d 3X d 3y l(x)g(Y)~:vMI(x,y;t), (1.37) 

~;"M,h 1(l;t )= f d 3x/(x)~;"M,h I(x;t). (1.38) 

Let 

fl:J(E) = f: '" dt ~:J(t )e - ilE, (1.39) 

fl;"MI(x,y;E) = f: '" dt ~;"MI(x,y;t)e - ilE, (1.40) 

fl,.~M,h l(x;E) = f: '" dt ~;"M.h I(x;t )e - ilE, (1.~) 

and 

C+ = !zEqRe(z»Oj, 

n ± = (zEqRe(z) >0, Im(z)~OJ. (1.42) 

Then, we shall prove in Sec. VI 
Theorem C: Let m > om, and assume, in addition to 

(AI), that 

p(lkl) has an ~nalytic continuationp(z) onto n - and} (All) 
p(z) = O(lzl-3/2)(lzl_00). 

Then, all the three functions of E (with fixed x,y) in (1.39)
(1.41) have meromorphic continuations from (0,00) to C + 

and there exists aconstant..t > 0 such that, if lei <..t, then the 
meromorphic continuations have in common a unique sim
ple pole; (e) in n _, which is analytic ine, satisfying; (e)---+(l)o 
as e-Q. Let 

;(e) = /vo + ale + a2e
2 + "', lei <..t. 

Then: 

(l)a l =O, 1m (a2) <0. 

(2) r~l(e) = - 2ne2 1m (a2), n>O. 

(3) oE~lj(e) = 8E~11 (e) + ne2 Re (a2), 

n>O, j= 1, ... ,M. 

(1.43) 

(1.44) 

This theorem shows that the formal perturbation ex
pansions for the "energy level shifts" of the harmonic oscil
lator atom and the "decay probabilities" of the excited states 
are characterized in terms of a pole associated with the 2-
point r-functions, at least up to the second order in e. We 
shall also show that the pole; (e) is the resonance pole of the 
S-matrix for the photon scattering by the atom (see Sec. VI). 

Remarks: 
(1) The general n-point r-functions are written as a sum 
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of products of 2-point r-functions. 
(2) We can also consider the Hamiltonian 

H' = _1_ : (p _ eA~W : + ..!..m/V~q2 + H~M + om2 p2, 
2m 2 2m 

which is the "Taylor expansion" of H up to second order in e. 
It can be shown that results similar to those of Theorems B
(1) and C hold in this model as well. In particular, as is ex
pected, the pole which characterizes the "energy level shifts" 
and the "decay probabilities" coincides with; (e) up to the 
second order in e. 

In Sec. VII broken symmetry aspects of the model are 
considered: The model has a symmetry which is broken if 
m <om. From this point of view, the unphysical solution in 
the case m < 8m may be regarded as a kind of "Goldstone 
boson." Then, we shall describe a mechanism ("Higgs 
Mechanism") by which the unphysical solution disappears 
and the physical theory can be obtained. 

In the last section, we shall consider the point limit, 
p(x)-8 (x), of the interaction, which corresponds to the re
moval of the ultraviolet cutoff in momentum space and re
quires the infinite mass-renormalization. The point limit is 
taken in terms of the Wightman distributions constructed 
from the physical theory obtained in Sec. VII. 

II. SELF-ADJOINTNESS OF THE TOTAL HAMILTONIAN 

In this section we prove Theorem A.2. Let L = Ho + I. 
Then, by the basic estimates 

Ila1rl(f)1{/ II < III 1v'WllollH ~M 1121{/ II, (2.1) 

Ila,rl'(f)1{/ II < II 1 1v'WlloIIH~M 1121{/ II + II Illoll'l'll, 
(2.2) 

we can show that H pl, j = 1,2, and R given in (1.21) and 
(1.22) are Ho-bounded, so that 

IIHI{/ II <clILI{/ II, I{/E D (Ho), 

for some constant c> O. We can also show by commutation 
relations that 

I (H<1>,L I{/) - (L<1>,HI{/) I <d IlL 1/2<1> II IlL I /21{/ II, 

<1>,I{/E D (Ho) 

for some constant d> O. It is clear that H is symmetric on 
D (Ho). Therefore, by the Nelson's commutator theorem (see, 
e.g., Ref. 25, §X.5) H is essentially self-adjoint on any core 
for H o. 

We next prove that, if m > om, then H is actually self
adjointwithD (H) = D (H)n D (q2) and isboundedbelow. Let 
m > Om. Then, by Theorem A.1, we can take a constant c > 0 
such that 

He=H +c>O. (2.3) 

Therefore, 

Re (He l{/,q21{/»Re ([ q,.,He] l{/,q,.l{/) 

for all I{/ in D(H ~). But, the commutation relations give 
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so that 

Re(Hc tf/,q2tf/» _ 1 II tf/ 112. 
m-om 

Since He and q2 are Ho-bounded, this inequality extends to 
all tf/ in D (Ho). Thus, we obtain 

IIHe tf/ W + lI!mcu~q2tf/ W< II(H + c)tf/ W 

(2.4) 

for all tf/inD (Ho). SinceHisessentially self-adjointonD (Ho) 
as prov~ above, (2.4) implies thatH is self-adjo.int withD (H) 
= D (H)n D (q2). The statement in regard to the bounded 

belowness of H follows from (1.19) and the positivity of q2. 
Finally, we show that, if m < om, then H is not bounded 

below. We can easily find a sequence! tf/n J;: ~ 1 in JY such 
that lItf/n II = 1 and (tf/n,Htf/n)-+- 00 asn-+oo. Take, for 
example, 

tf/n = rPn ®flF , 

where 

rPn(q) = (: Y14e _ nq'/2 

and flF is the Fock vacuum in .rEM. Thus, His not bounded 
below. This concludes the proof of Theorem A.2. 

III. CONSTRUCTION OF EXACT SOLUTION TO THE 
HEISENBERG EQUATIONS 

In this section we shall construct explicitly the Heisen
berg operators A(J,t) and q(t) as defined by (1.31) and (1.32). 
Formally the Heisenberg equations read (summation over 
repeated indices with respect to Greek letters is understood): 

where 

P!-'v(x) = ((21T~3)1/2 I d
3
kp(k)d!-'v(k)e

ikx (3.2) 

with 

(3.3) 

and A(x,t ) is the symbolic notation given by 

A(J,t) = I d 3xA(x,t )f(x). (3.4) 

Equations (3.1) can be exactly solved as an initial value 
problem. The following is a rigorous formulation of the solu
tions given in Refs. 8 and 9 by the theory of Fourier trans
form26 (Ref. 8; Laplace transform is used in Ref. 9). We begin 
with preparing some technical lemmas. 

A. Technical preliminaries 

We formally define the operator G E' E> 0, by 

(GEf)(k) = Id 3k' f(k') . 
~(k2 _ k'2 + iE) 

(3.5) 
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Let Ma (R 3) be the Hilbert space given by 

Ma(R 3) = [flllflla=lIcuafIlL2(R'1 < 00 J, aE R 3. 

(3.6) 

Then, we have 
Lemma 3.1: (1) GE isa bounded operator on Mo(R 3) and 

has the strong limit 

s-lim GE=G, (3.7) 
€--+ + 0 

on Mo(R 3). Furthermore, G is skew-symmetric on Mo(R 3). 
(2) G is also a bounded operator on M -I d R 3). 
For the proof, see [I, Lemmas 4.1-4.3]' 
Let 

D (z) = mcu~ - z( m - Om - ~e2 I d 3k :~~2)' (3.8) 

which is analytic in the cut plane C\ [0,00). 
Lemma 3.2: 
(1) Let m > Om. Then, D (z) has no zero in C\ [0,00). 
(2) Let m < Om. Then D (z) has a unique simple zero in 

( - 00 ,0). We denote it by - E 1 (EB > 0). 
The proof is elementary and is omitted. 
Lemma 3.3: 

D+ (s) lim D(s ± iE) 
- €_+o 

(3.9) 

exist for each SE[O, 00 ) and are continuous with respect to s. 
Furthermore, 

inf ID+(s)I>O. (3.10) 
SEIO.oo) -

The proof is quite similar to that of [I, Lemma 4.4]. 

Lemma 3.4: Let 

Q(k) = iep(k)lD+(k2). (3.11) 

Then, 

where e is the Heaviside function and Y B is defined only in 
the case Om > m by 

1 
YB = (D'( -E1))1/2 >0. (3.13) 

Proof Since Q is rotation invariant, we have 

I!-,v=(Q,d!-,vQ)o = o!-,vj IIQ II~· 

But, since 

D_(k2
) - D+(k2

) = ~ i~e2IkI3p(lkl)2, 

we get 

I =0 - ds------1 50
00 {II} 1 

flY !-'v 21Ti 0 D +(s) D _Is) s· 

(3.14) 

Then, the method of contour integration using Lemma 3.2 
gives (3.12). • 

Lemma 3.5: Let T!-'v' /-l,V = 1,2,3, be operators defined 
by 

(3.15) 
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Then: 
(1) Tp.v is a bounded operator on Mo(R 3). 
(2) Tp.v and T:v are also bounded operators on Ma(R 3) 

for a = ±~, - 1, where T:v denotes the adjoint of Tp.v in 
Mo(R3). 

Proof (1) follows from Lemma 3.1-( 1) and the fact that 
UJ3/2Q is in L "" (R 3). By the skew-symmetry of G, we have 

T!v 1= Op.v 1+ ie..j{;) p dp.vGUJ5/2QJ (3.16) 

Hence (2) follows from Lemma 3.1-(2) and the fact that UJ2Q 
is in L ""(R 3). • 

Remark: The operator Tp.v is symbolically given by a 
distribution kernel: 

(3.17) 

with 

Lemma 3.6: 

(1) T~f3df3p. Tp.v + B(om - m)(Yf3EBf(Fvf3' . )oFf3a 
= daJ, (3.19) 

where 

F _ _ ed-'a..::..(3P:....~_ 
a(3 - UJ2 + E~ (3.20) 

(2) IrlT d T* lsi + 2( IslQ ) IrlQ - 0 I ea af3 f3p. p.vev mUJo ea ,. oea - rs . 
(3.21) 

(3.22) 

(4) Tp.v/=D ~ Tp.v/+(I-D ~) 

x (Op.v I - ~ [dp.v 1]), IE Mo(R 3), (3.23) 
817" 

where 

D ~ (k) =D+(k2)/D_(k2
), 

[J](k) = i, dfJ (k)1 (lklfJ(k)), 

and the bar denotes the operator defined by 

AI= AI. 

(3.24) 

(3.25) 

(3.26) 

(5) If h is a rotation invariant function on R 3, then we 
have 

Then, by Lemma 3.5, b Irl(f), b Irl"(f),JE Mo(R 3), Cp. and Dp. 
are well-defined on DF and leave it invariant, satisfying 

(b Irl(f) '/I,(/» = ('/I,b Irl"(f)(/», '/I,f/>E DF, (3.39) 

[b Ir)(f),b w(g)] = (f ,g)Oors> [b Irl(f),b ISI(g)] = 0, 
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T~f3df3p.hTp.v = T~f3df3p.hTp.v 
as operator identities and 

T~f3df3p.h Q = - T~f3df3p.hQ, a.e. 

for h with hQE Mo(R 3). 

(6) 
Ir)T F _ . mUJ6Qet)B(om - m) 

ea af3 f3p. - - I 2 
EB 

(3.27) 

(3.28) 

(3.29) 

i 
(7) Tp.vp = - Op.v - [mUJ6 - (m - om)UJ2]Q. (3.30) 

e 

(3.31) 

The proof of Lemma 3.6 is quite similar to that of [I, 
Lemma 4.9] and hence we omit it. 

B. Exact solution to the Heisenberg equations of 
motion 

Let A p. and fr p. be the Fourier transforms of A p. and 17" p. 

respectively: 

Ap.(f) = Ap.(/), frp.(f) = 17"p.(/)' (3.32) 

We define 

b Irl(f) = _1_ { mUJ6 (JL etl,J) qp. + i(..j{;)Qet),J)oPp. 
v1 ..j{;) 0 

+Ap.(T:ve~I..j{;)I)+ifrp.(T!ve~) ~)}, (3.33) 

b Ir)"(/) = _1_ { mUJ6 (Q et),J) qp. - i(..j{;) Qet),J)oPp. 
v1 ..j{;) 0 

+ Ap. (T!J?~)..j{;) J) 
_.~ (-T* -Irl L)} fi M (R 3) 117"p. p.vev , Eo· 

..j{;) 

Let 

DF =Do®y~M, 

where 

i=O,I, ... }. 

I,gE Mo(R 3), r,s = 1,2. 

[b Irl(f),cp.] = [b Irl(f),Dp.] = 0, 

IE Mo(R 3), r = 1,2, J.l = 1,2,3, 

[Cp.,Dv] =iop.vB(om -m), J.l,V= 1,2,3. 
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The commutation relations (3.40) [respectively (3.41)] can be 
proved directly using Lemma 3.6-(2), 3.6-(4) [respectively 
3.6-(6)]. The commutation relations (3.42) is proved by direct 
computations. 

Lemma 3.7: DF is a set of analytic vectors for CI' and 
DI',f-L = 1,2,3. In particular, CI' andDI' are essentially self
adjoint on DF • 

Proof The first half of the lemma follows from the stan
dard number operator estimates for PI" ql" alr)(/) and alr)"(/) 
(see, e.g., Ref. 25, §X.6 and §X.7). It is clear that CI' and DI' 
are symmetric on DF • Thus, by Nelson's analytic vector 
theorem (see, e.g., Ref. 25, §X.6), they are essentially self-
adjoint on D F • • 

Lemma 3.8: Let m > 8m and 
A 

H=H -Eo>O' (3.43) 

Then, 

Ildr)(f)IfIII<cll/ll_ I12II(H + 1) 1/2 lJ1l1, (3.44) 

IIdr)"(f)IfIII<c(II/I1_1/2 + 1I/110)II(H + 1)1121f111, r = 1,2, 
(3.45) 

II ql' IfIII<cll(H + 1)1/21f111, (3.46) 

II PI' ifill <cll(H + 1)1121f111, f-L = 1,2,3, (3.47) 

forall/E M -ldR 3)n Mo(R 3), IfIE D (H 1/2)andforsomecon

stant c> O. 
Proof With the operator in (2.3), we have 

IIH ~MI121f111 < IIH ;121f111 IfIE D (H ;12). 

On the other hand, it follows from the H-boundedness of He 
(2.4) that He is formbounded with respect toH (see, e.g., Ref. 
25, §X.2). Therefore, together with (2.1) and (2.2), we obtain 

(3.44) and (3.45). Since q~ is also H-bo~nded by (2.4), we ~ave 
(3.46). By (3.44) and (3.45), AI' (f) is H I12-bounded for I in 
M _ I (R 3)nM -I dR 3). On the other hand, one can easily 
show that 

1 III PI' - eAI' (p))1fI1I2< IIH 1/21f1112 + d II IfI 11 2, 
2(m -8m) 
IfIE D (H 112) 

for some constant d> O. Thus, we get 

II PI' ifill < III PI' - eAI' (p))1fI1i 

+ lei IIA I' (p)1fI II <cll(H + 1)I!21f1 11· • Lemma 3.8 gives estimates for b Ir)(f) and b Irl"(f) in the 

casem>8m: 
Lemma 3.9: Let m > 8m, and let b Irl#(f) denote either 

b Irl(f) or b Irl'(f). Then, 

lib Irl#(f)1fIlI<c(II/II-1/2 + 1I/110)II(H + 1)1/21f111 (3.48) 

for all IE M -1/2(R 3)n Mo(R 3), IfIE D (H 1/2) and some c> O. 
Proof This follows from Lemmas 3.S and 3.8. • 
Lemma 3.10: 
(1) Let/be inM_IdR 3)nMo(R 3)nMI(R 3). Then, we 

have 

[H,b Irl#(f)] IfI = ± b Irl#(w/)lfI, IfIE DFn D (Ho), 
(3.49) 

where + (respectively - ) sign goes with b Irl"(-) [respective
ly b Irl(.)]. 
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(2) [H,CI' ] IfI = - iEBCI' 1fI, [H,DI'] IfI 

= iEBDI' 1fI, lJIE DFn D (Ho). 

eilHC e - ilH = e'EBC eitHD e - ilH 
I' 1" I' 

-IEBD D 
= e I' on F' 

(3.S0) 

(3.S1) 

Proof The commutation relations (3.49) are proved by 
Lemma 3.6-(7), 3.6-(8). The part (2) can be proved by direct 
computations.. • 

Remark: If M > 8m, then, by Lemma 3.9, (3.49) extends 
to alllfl in D (H 3/

2
). 

We now give the exact solution to the Heisenberg equa
tions of motion: 

Theorem 3.1: The Heisenberg operators defined by 
(1.31) and (1.32) have the following explicit form on the do
mainDF : 

ql' (t) = ~ rtl {b Irl"(.jW Qe~leiIW) + b Ir)(vW Qe~le - iIW)} 

+ ~ (Cl'e'EB + Dl'e -IEB), f-L = 1,2,3. (3.S3) 
~2EB 

Proof The outline is as follows: The initial conditions 
are checked by Lemma 3.4, Lemma 3.6-(1),3.6-(3), and 3,6-
(S). Using Lemma 3.10, one can get the expressions (3.52) and 
(3.S3). • 

Remark: A(f,t ) and q(t ) satisfy the equations of motion 
(3.1) on DF in the sharp-time operator-valued distribution 
sense with the time derivatives being taken in the strong to
pology. 

Theorem 3,1 (the initial conditions) permits us to ex
press drl#(f), p and q in terms of b Irl#( ), C and D: 

Corollary 3.1: Let 

Wlr,s)' = J...(_I_ elrlT* elsl 'oJ + 'oJ elr)T* eISI _1_)f, 
+J 2 vW I' I'v vvw VW I' I'v v rw ' 

(3.S4) 

wlr,sl' = J...(_I_ elr)T* elsl 'oJ _ 'oJ elrlT* eISI _1_)f,-
-J 2 rw I' I'v vvw VW I' I'v v rw ' 

(3.SS) 

FI~,I' = +VEBYB( VW ± i ~)Fl've~l. (3.S6) 

Then, 
2 

drl(f) = L [ - b IS)"( WI"')"I) + b Isl( WI';S);) J 
s= 1 

+ (FI'.:...,I'J)oCI' - (FI1'I'J)oDI" (3.S7) 

2 

alrl"(f) = L [b ISI"( WI';S)"I) - b Isl( WI".I"I) J 
s= 1 

(3.58) 
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IV. ASYMPTOTIC FIELDS 

In this section we consider the asymptotic limits, as 
t-+ ± 00, of the operators given by 

(4.1) 

with fin M _I dR 3)n Mo(R 3). If m > Dm, then H ~M is form
bounded with respect to H (see the J'roof of Lemma 3.8) and 
hence a~rl# (f) is well-defined on D (H 1/2). On the other hand, 
if m < Dm, then a~rl#(f) is well-defined on DF [see (3.57), 
(3.58) and Lemma 3.10]. 

Lemma 4.1: Each WI::sl is a Hilbert-Schmidt operator 
on Mo(R 3). 

Proof By direct computations, we have 

(WI::sY)(k) = f d 3k' WI~SI(k,k')f(k'), 

where 

- ie -Q (k'\?(k)elrl(k)eISI(k') I k' 12 
WI~SI(k,k') = It' I-' I-' 

2(lkl + Ik'llJikilk1 
But, it can be seen easily that WI::,I(. , .) is inL 2(R 6). There
fore, the lemma follows. • 

Theorem 4.1: 
(1) Let m >Dm. Then, for all tflin D(n 1/2) and allfin 

M _ I dR 3)n Mo(R 3), the strong limits 

s-lim a~rl# (f)tfI=a~~f'(f)tfI 
t-±oo in 

exist and are given explicitly by 

al~#(f) = b Irl#(f), 
2 

a~~t (f) = I b Isl(L Ir,y), 
s= I 

2 

a~~: (f) = I b ISI'([Ir,sy), 
s=1 

where 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

L Ir,sy = Drs f + 1Tew3pQetl [fe~']. (4.6) 

(2) Let m <Dm andp be in C o(R 3). Then, the strong 
limits (4.2) with tfI in DF do not exist in general. 

Proof (1) The existence ofthe strong limits (4.2) can be 
proved in the same way as in Refs. 27 and 28. We prove (4.3)
(4.5). By Lemma 3.10-(1) and (3.57), we have 

2 

a~rl(f) == I { - b ISIO(eit"'WI~SIOeit"'f) 
s= I 

+bISI(e-it"'WI~SI'eit"'f)} (4.7) 

on D F • Since WI~sl' is also a Hilbert-Schmidt operator on 
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Mo(R 3) by Lemma 4. 1, it follows from the Proposition Al in 
Appendix A that 

lim Ileit ... W,::"oeitwfllo = 0 (4.8) 
t-± 00 

for allfin Mo(R 3). On the other hand, let 

X(t)=e-itwWI~sIOeitwf (4.9) 

withfin Y(R 3). It is easy to see that X (t) is strongly differen
tiable with respect to tin Mo(R 3) and 

!!...X(t) =..!.. ew3/2Qetie -itw (pe~le-itw ,f) . 
dt 2 J(;) 0 

Therefore, we get 

X (t ) = WI~SIJ + !ew3/2Qetl 

X dre- 1TW I-' ,f it . (pelrle - iT'" ) 

o J(;) 0 

By integration by parts we have 

I (
pelrle - itw ) I 1 

I-' J(;) ,J 0 <constX r ' 
sothatthestronglimitss-limt~± ""X(t) X ± in Mo(R 3)ex_ 
ist. It is easy to check that they are given by 

X _ = Drs J, X + = L Ir,s,! (4.10) 

Since 

s-lim b Irl#(fn) = b Irl#(f) on DF 

asfn -f in Mo(R 3) (this can be proved by the number opera
tor estimates for a lrl#( ), p and q), the desired result with 
respect to a~rl(f) follows from (4.7)-(4.9) and (4.10). Bya 
limiting argument we can extend the result to allfin 
M -ldR 3)nMo(R 3) and all tflinD (H 1/2). In the same way we 
can prove the result for a~rl*(f). 

(2) In this case we have 
2 

a~rl(f) = I { - b ISI*(eitwWI~SIOeiIWf) 
s= 1 

+ b ISI(e - itwWI:SI* eitwf)) 

+ (Flrl eitW1) e'EBC _ (Flrl eitw1) e - tEBD 
-,I-" 0 I-' +,1-" 0 1-" 

(4.11) 

As proved above, the first term of (4.11) converges in the 
strong topology on DF as t_ ± 00. But, we can see that the 
second (respectively the third) term diverges [respectively 
converges to zero for alifinMo(R 3)]forsome/'sast_00 and 
converges to zero for alifinMo(R 3) (respectively diverges for 
some/'s) as t-+ - 00. This proves the part (2). • 

V. ANALYSIS OF THE SPECTRUM OF THE TOTAL 
HAMILTONIAN 

In this section we shall prove Theorem B. 

A. The case m> om 

Lemma 5.1: 
(1) Either up(H) = 0 or up(H) = {Eo} holds. 
(2) the ground state of H, ifit exists, is unique up to 

scalar multiples. 
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(3) I/'is the ground state of Hifand only ifb (')(1)1/' = 0 
for allf in M _1/2(R 3)nMo(R 3) and for r = 1,2. 

Since we have established (3.57H3.60) and Theorem 
4.1, the proof of this lemma is quite similar to that of [I, 
Lemma 6.2-6.4]. 

With Lemma 5.1 in mind, we shall prove the existence 
of the ground state of H by an explicit construction. 

1. Construction of the ground state 

Let 

B=(m~Or/2(q+i m:J, (5.1) 

Qt~± =hfmcuoQet)(;; ±~} (5.2) 

Then, using (3.33), (3.34), (3.54), and (3.55), we can write 
2 

b (')(1) = L I alS)O( W(:.'~f) + alS)( W(S;Y) J 
s= 1 

+ (Qt~- ,f)oB: + (Qt~+ ,f)oBp., (5.3) 
2 

b (,)0(1) = L I alS)O( WIS;Y) + aIS)( WI:.'Y) J 
s= I 

+ (Qt~+ ,f)oB: + (Qt~- ,f)oBp.. (5.4) 

The properties of Tp.v given in Lemma 3.6 read 

W~ W+ - W~ W_ +P+ -P_ =1, (5.5) 

W~ W_ - W~ W+ +P_+ -P+_ =0, (5.6) 

W W* - W W* = I (5.7) + + - - , 

(5.8) 

where W ± ' P ± ' P + _ and P _ + are bounded operators on 
the Hilbert space 

Na(R 3)=(Ma(R 31f, 
with a = - 1/2,0, defined by 

(5.9) 

W± =(WI~SI), P± =((Qt~±,· )oQt~±), 

P ± Of = ((Qt~±, . )oQt~Of))' (5.10) 

Let 

K("S)I"=_I_ el')T cud T* els)L (5.11) 
J ~ a afJ fJp. p.v v ~. 

Then, by Lemma 3.5, K 1"sI is a bounded operator on M a (R 3), 
a = -!, O. We can also see that 

K = (KI',S)) (5.12) 

is a nonnegative bounded self-adjoint operator on No(R 3). 
Lemma 5.2: dim Ker W + = 3. The following serve as 

the three independent vectors in Ker W +: 

1904 

_ _I(~ e~l) -"~([ +KI J., ~:) · ,,~[.2.3. 
Proof By the identity 

1 2 el'l 
(W+f)I')=2S~1 iw T:fJe~)~((1 +K)f)ISI 
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(5.13) 

and Lemma 3.6-(3), we have 

1 2 el') 
(W +lUp. )1') = -2 L ;; T:fJe~letIQ = 0. 

s= I VCU 

Since lU p. 's are independent, it follows that dim Ker W +;;;. 3. 
LetfEKer W +. Then, by Lemma 3.6-(2) and 3.6-(3), we get 

(1+ Kif ~ """~ .t, (f,d Qe';'.I"k(i :~) (5.[4] 

i.e., 
2 

f= mcu~ L (~Qetl,fI'))olUp., 
r= 1 

which implies that dim Ker W + = 3. • 
By Lemma 5.1-(3) and (5.3), the ground state fl, if it 

exists, is a vector in JY' satisfying 
2 

L I aI')O(( W _ f)I'I) + al'l(( W + f)I'I) 
r= 1 

+ (Q t~ - ,fI'I)o B: + (Q t~ + ,P'I)O Bp. Jfl = 0, (5.15) 

for allfin No(R 3)n N _ I dR 3). This equation is equivalent to 
the following ones: 

Ltl aI'IO(( W _lUp.tl) 

+ (A_)p.vB ~ + (A +tvBv}fl = 0, Il = 1,2,3, (5.16) 

2 

L I aI')O(( W _ f)I')) + a l')(( W + f)I')) 
r= 1 

+ (Q~! _ ,fI'))oB~ + (Q~! + ,P'))oBv Jfl = 0, (5.17) 

where A ± are 3 X 3 matrices on C3 given by 
2 

(A ± )p.v = L (Q~! ± ,lUt))o' (5.18) 
r= I 

In order to "solve" these equations, we need further some 
technical lemmas. 

Lemma 5.3: A + is a strictly positive Hermitian matrix, 
and A + - I exists. 

Proof By (5.13), we have 

Qt~ ± = Hmcuo (cuo ± cu)((1 + K)lUp.)I'), 

so that 

A = A (I) + A 121 
± -

where 

A ~~ = Hmcuo (cuo(1 + K )lUv,lUp.)NoIR'I' 

A ~~ = ~ ~mcuo (cu(1 + K )lUv,lUP.)N"IR'I· 

It is clear that A (I) is a strictly positive Hermitian matrix 
(note that K;;;.O). For A (2) we have by (5.14) 

2 2 

A ~~ =! ~mcuo mcu~ L (lU~I,~ Qe~))o L (~Qe~l,lUtl)o' 
r= 1 s= I 

so that A (2);;;.0. Thus, the lemma follows. • Lemma 5.4: Let 

A =A ~IA_. (5.19) 
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Then, 

(5.20) 

Proof By taking the "matrix element" of(5.6) between 
;;'1' and W- y ' we have 

(A +)I'a (A -)ya = (A -)I'a (A +)va' 

Since A ± are Hermitian matrices, this implies 
A +11 _ = A _11 +, which, together with the Hermiteness of 
A ± ' yields (5.20). • 

Let Y = (y(r.sl) be an operator on No(R 3) given by 

y Ir.sy = W 1'::.5) - (A ::;: I )I'y (Q ~~ + ,f)o 
2 

X I W('::.Plw-V'), fE Mo(R 3). (5.21) 
p~1 

By Lemma 4.1, each y(r.sl is a Hilbert-Schmidt operator on 
Mo(R 3). It follows from (5.7) that (W + W~ )-1 exists and 

2 

hence that W + ~ (Ker W +)1 is a one-to-one map from 
(Ker W +)1 onto No(R 3). Therefore 

Z=(W+ ~ (Ker W+)l)-1 (5.22) 

is a bounded operator on No(R 3) with Ran Z = (Ker W +)1. 
Put 

C= yz. (5.23) 

Then, each c(r.s) is a Hilbert-Schmidt operator on Mo(R 3). 
Lemma 5.5: Let C(f.sl(k,k') denote the Hilbert-Schmidt 

kernel of the operator Clr.sl. Then, 

C (r.sl(k,k') = C Is,rl(k' ,k). 

Proof (5.24) is equivalent to C * = C, i.e., 

Z*Y* = YZ. 
By using (5.6), we can see that 

(5.24) 

(5.25) 

W*+ Yf= W*_ W+f- ~ I(-Q!~,I_, f(r,) 11 (-Q(rl f(r,) IQ 
j k ~ 0 - Yl' Y, + ' 0 1', + . 

r= I 

Also we have 

Therefore, by Lemma 5.4, we get 

W~ Y= y*W+, 

which, combined with W +Z = I, yields. (5.25). • 
We now proceed to construct the ground state. Equa

tions (5.16) and (5.17) are equivalent to 

ttl (A ::;: 1)l'ya(rl·((W _w-Jrl) 

(5.26) 

2 I I alr'·((CfJl") + alrl(f(rl) + ((Z *ul' )(rl,f(rl)o B: 111 = 0, 
r= 1 

(5.27) 

where 
(rl _ Q(rl 11 Q(rl 

U/-l - /-L. - - /-LV v, + ' f.J. = 1,2,3. (5.28) 

Let 

(5.29) 

where tPo is the ground state of the free harmonic oscillator: 

tPo(q) = (~) - 3/4e - (mwol2IQ'. 

mcuo 
Then, it follows that 

a(r)(f)l1o = 0, Bl'l1o = 0, r = 1,2, f.J. = 1,2,3, 

for allfin Mo(R 3). Put 

V = - ~ ± f d 3 kd 3k'C (r,sl(k,k')a(rl·(k)a(SI·(k') 
2 r,s~ I 

(5.30) 

(5.31) 

-± alrl·( (Z*u Jl'1)B* -~A B*B* (5.32) 
r ~ I I' I' 2 I'y I' y' 
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Since c(r,sl(. , .)E L 2(R 6) and (Z *ul'tlE Mo(R 3), the opera
tor Vis well-defined onDF and leaves it invariant. Further
more, we can show that D F is a set of analytic vectors for V. 
Thus, we can define the vector 

11- ~ vnl10 -c k --,-, 
n~O n. 

where c > 0 is the normalization constant. 
We can now prove 

(5,33) 

Lemma 5. 6: The ground state of H exists and is equal to 
11 given in (5.33) up to scalar multiples. 

Proof We need only to show that 11 satisfies (5.16) and 
(5.17). It is easy to see that 

[V,a(rl(f)] I{! = ttl alSI·(C(S,y) + ((Z *ul' )(rl,J)o B:} I{! 

for allfin Mo(R 3) and alII{! in DF • Therefore. we have 

rtl alrl(f(rl)V nl1o = - nttl a(r'·((Cft') 

+ (Z*UI',f)Nn(R'IB:} vn- ll1o 

for a1lfin No(R 3) and n~ 1, yielding (5.17). Similarly. we get 

ttl alrl• ( (Z*ul')(rl) + Al'yB ~ + BI' }11 = O. 

But, by (5.6) and W +Z = I, we see that 

Z *ul' = (A ::;: I)I'Y W _W-y . 

Therefore, (5.16) follows. 

2. Proof of Theorem 8-(1) 
• 

By Lemmas 5.1 and 5.6, we have O'p(H) = I Eol, where 
Eo is simple. Then, in the same method as in Refs. 27-29, we 
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can show that H is unitarily equivalent to H ~M acting in 
y~M. Thus, we get the theorem. • 

B. The case m < om: Proof of Theorem B-(2) 

Lemma 5. 7: Let 

al-' = ~ (CI-' + iDl-')' Il = 1,2,3. (S.34) 

Then, there exists a normalized vector flphys in jy'such that 

al-'flphyS = b Ir)(f)flphys = ° (S.3S) 

for allfin Mo(R 3) and for r = 1,2, Il = 1,2,3. The vector 
flphyS is unique up to scalar multiples. 

Proof By (3.3S) and (3.36), we have 

al-' = a+BI-' - a_B! + bAy(FI-'Y) + ciTv(FI-'Y)' (S.36) 

where 

a ± = (mUJo)1I2 (1 + i)YB (1 ±~), (S.37) 
2EB 2 EB 

b = [(1 - i)/2]Eif2YB' (S.38) 

c = [(1 + i)/2]E }(2YB' (S.39) 

Let 

UIs.r). = W ls.r). __ 1_ (Q Ir) f) (~+ ic rw)F elsl 
-J -J.J2a 1-'.+' 0.jW "W I-'y y, 

(S.40) 

UIs.rl. = Wls.rl. __ 1_ (Qlrl f) 
+ J + J v1a 1-'. +' 0 

x(~ - ic.jW)Fl-'ve~l, fEMo(R 3). (S.41) 

and define 
2 

c'rl(f) = I !aISI·(UI~Y)+aISI(UIS:y·)j, (S.42) 
s=1 

2 _ _ 

Clrl*(f)= I !alsl·(UI~Y)+alsl(UI~Y)j· (5.43) 
s=1 

Then, the properties of TI-'Y given in Lemma 3.6 read 

U~ U+ - U*-- U_ =1, (S.44) 

Ii· U - Ii· U = ° + - - + , 

U U • - Ii Ii· = I + + - - , 

(S.4S) 

(S.46) 

U_U~ - Ii+Ii*-- = 0, (S.47) 

where U ± are bounded operators on No(R 3) given by 

U ± = (U(~SI). (S.48) 

Further, by Lemma 4.1 and the fact that Q t~ + ® (b /.jW 

+ ic.jW)Fllye~1 is in L 2(R 6), U _ is a Hilbert-Schmidt opera
toronNo(R 3). Therefore, (S.42) and (S.43) give a proper linear 
canonical transformation (see Ref. 30, Chap II) and hence 
there exists a unique (up to scalar multiples) normalized vec
tor '/10 in yEM satisfying 

clrl(f)'/Io = 0, r = 1,2, fE Mo(R 3). (S.49) 

Let 
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Then, we can see that the vector 

00 Tn 
flphys=N I -t/Jo® '/10 (S.SI) 

n=O n! 

is well-defined with Nbeing the normalized constant and 
that it satisfies (S.3S). 

We next prove the uniqueness of flphys ' Suppose that 
there exists another normalized vector '/I satisfying (S.3S). 
Without loss of generality, we assume (flphys , '/I) = 0. Let jf" 
be the closure of the linear subspace 

! b ,r,I·(fd ... b Ir.I·(fn )a!, ... a!mflphYS,flphys I fl, ... ,fnE Mo(R 3), 

rj = 1,2, Ili = 1,2,3,n,m> 1) 

Then, it is easy to see that '/I is orthogonal to all vectors in jf". 
On the other hand, by (3.S7)-(3.60), jf" is invariant by the 
algebraA =! alrl#(f), p,ql fEMo(R 3), r = 1,2, j, which is irre
ducible in jy' (see Ref. 30, Chap. I). Hence we have 

jf" = jy'. (S.52) 

Therefore '/I must be O-vector. But this is a contradiction. • 
ProofofTheorem B-{2}: 
By (5.S2) we can define a unitary operator U on jy'such 

that 

Uflphys = flo, (S.S3) 

Ub Irl#(f)U -I = alrl#(f), fE Mo(R 3), r = 1,2,(S.S4) 

Ual-' U -I = BI-" Il = 1,2,3. (5.SS) 

Using commutation relations (3.49) and (3.S0) and the irre
ducibility of the algebra A, we can show that 

-I EB ( ) HEM UHU = - p.q + q.p + 0 + const. 
2 

(S.56) 

Thus, by Proposition A2 in Appendix B, we obtain the de-
sired result. • 

VI. CHARACTERIZATION OF THE "ENERGY LEVEL 
SHIFTS" AND THE "DECAY PROBABILITIES" 

A. 2-point r-functions, proof of Theorem C 
We first consider the 2-point functions in the case 

m > 15m: 
;wi:J(t - s) = (fl,ql-' (t )qy(s)fl ), 

;wi;yMI(f,g;t - s) = (fl, All (f,t) Ay(g,s)fl), 

(6.1) 

f,gEY(R 3), 

(6.2) 
;wi:VM.hl(/;t -s) = (fl, AI-'(f,t)py(s)fl), fEY(R 3), 

(6.3) 
By (3.33), (3.34), and (3.40) we can show that fl is in 
C OO(b (rl#(f)) for allfin M -1/2(R 3)nMo(R 3) and therefore 
that all the 2-point functions are well-defined. 

Remark: The general n-point functions are also well
defined and can be written as a sum of products of the 2-
point functions. 

We can evaluate the 2-point functions by (3.40), 
Theorem 3.1 and the fact that b Irl(f)fl = 0, 
fEM_IdR 3)nMo(R 3): 

;wi:J(t) = !15l-'y(Qeiwt,Q )1/2' (6.4) 

;wi;yMI(f,g;t) = !(eiwtTY{3g,d{3a TI-'a /)-1/2' (6.S) 
. 2 

JriEM h I(/;) ImUJo (Q iwt d T fA) (6.6) 
I-'v' ;t =-2- e , va al-' -1/2' 
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Employing the formula 

.l {61(t)e- iEt + 61( - t)eiEt J 
E 

= lim ~ foo dE' __ e_-_iE_'t __ 
E_ + ° rr _ 00 E '2 - E 2 + iE ' 

[61 (t): the Heaviside function] 

we obtain 

~h)(t) = _1_ /j f"" dE e- iEt 
1''' 2rri 1''' _ '" D +(E 2) , 

~;"M)(X,y;t) = (2:)4 f: '" dE {KI''' (E;x - y) 

_ e2Jl'a(E;x)J"a(E;y) }e- iEt 
D+(E2) , 

~EM,h)(X;t) = imw~e foo dE JI',,(E;x) e - iEt 
1''' (2rr)5/2 _ '" D+(E2) , 

where 

(6.7) 

(6.8) 

(6.9) 

KI',,(E;x)= lim fd 3k dl',,(k)e-
ikx

, (6.10) 
E_ + ° E 2 - k2 + iE 

Jl'v(E;x) = lim fd3kP(k)dl'v(k)e-ikX (6.11) 
E~ + ° E 2 - k2 + iE 

To prove Theorem C we need 
Lemma 6.1: Letp satisfy assumptions (AI) and (All). 

Then: 

(1) Kl'v (E;x) and Jl'v(E;x) have analytic continuations as 
functions of E from (0,00) onto C+. 

(2) D + (E 2) has an analytic continuation as a function of 
E from (0, 00 ) onto C+ and there exists a constant..t > Osuch 
that, if lei <..t, then the analytic continuation has a unique 
simple zero 7J(e) in n _, which is analytic in e, satisfying 
7J(e)-wo as e~. Let 

7J(e) = Wo + b,e + b2e
2 + "', lei <..t. 

Then, 

b, =0, (6.12) 

b
2 

= WoDm + ~ P f d 3k p(k)2 _ i2~w~p(wof 
2me2 3m w~ - k2 3m 

(6.13) 

Proof Since the proof of (1) is fairly easy, we prove only 
(2). Since (3.9) can be written as 

D (E2)=mw2 _E2(m -/jm -'!e2pfd3k p(k)2 ) 
± ° 3 E2 _ k 2 

+~ i~e2E3p(E)2, E>O, 

the function 

Du (z) = D (Z2) - ~ i~e2z3p(z)2 

defines an analytic continuation of D + (E 2) from (0,00) onto 
n _. Therefore, the function 

{

D (Z2), ZE n +, 

F(z) = D+(Z2), ZE(O,oo), 

Du (z), ZE n _ 
gives an analytic continuation of D + (E 2) from (0,00) onto 
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C+. We can rewrite F(z) as 

F(z) = mw~ - mr + e2(e- 2/jmr + ~(z)) F(z,e), 
(6.14) 

where ~ (z) is an analytic function in C+. Therefore, F(z,e) is 
analytic in C+ X C as a function of two complex variables 
(z,e) and F(z,O) has the unique simple zero atz = Wo' Thus, by 
the Weierstrass preparation theorem (see, e.g., Ref. 31, p. 
188), there exists a complex neighborhoodff of (wo,O) and a 
functionf(z,e) which is analytic and nonvanishing inff such 
that F(z,e) can be expressed in the form 

F(z,e) = (z -7J(e)}f(z,e) inff, 

where 7J(e) is analytic in a neighborhood ~ of e = ° and 
7J(0) = Wo' Taking Lemma 3.2 into account, we conclude 
that 7J(e)E n _ for real eE~ and Du (7J(e)) = 0. 

We next prove the uniqueness of 7J(e). Suppose 

F(zo(e)) = 0, eE R I. 

Then, it can be shown that, if lei < /j, then 

1(1 - /j;: )zo(e)2 - w~ I <e2c(/j) (6.15) 

for some constant e(/j ) depending on /j, where we have used 
the asymptotic behavior of p(z) at 00 assumed in (All). It 
follows from (6. 15) that there exists a constant ..t > Osuch 
that, if lei <..t, then (zo(e),e) is contained in ff and zo(e)-wo 
as e~. Therefore, zo(e) must be equal to 7J(e) for lei <..t. 
Equations (6.12) and (6.13) follow from (6.14) by direct com
putations. • 

Lemma 6.2: The function En,j(Z) defined by (1.26) has an 
analytic continuation from n + onto Ii _n {ZEC I Re (z) 
E(E~) - wo, E~) + woll. In particular, E n.j in (1.25) exists 
and is given explicitly as 

11 ~e2w~ np(wo)2 

3m 
j= 1, ... ,M. 

Proof By direct computations, we can show that 

2rre2w 
En,j(zl = -~ {(n + 3).1 +(z) 

(6.16) 

+ nJ _(z) J, ZEC\ [~wo, (0), (6.17) 

where 

J ± (z) = 1'" dE Ep(E)2. (6.18) 
o E ± Wo + E~) - Z 

It is easy to see that the function 

J _(z)u = J _(z) + 2rri(z + Wo - E~O)LO(z + Wo - E~») 

defines an analytic continuation of J _ (z) from n + onto 
Ii +n{zEqRe (z) >E~) - wo}. On the other hand, J +(z) is 
analytic in C\ [ E~) + wo,oo). Thus, the first half of the 
lemma follows. (6.161 can be obtained from (6.17). • 

Proof of Theorem C: The first half of the theorem fol
lows directly from (6.7)-(6.9) and Lemma 6.1, where S (e) is 
taken to be7J(e) itself. (1.43) follows from (6.13) and (6.16). To 
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prove (1.44) we compute E ~)j(e) explicitly: 

E(2).(e) = (1 + om)Elo) + Re (E .) n.J 2m n n.J ' 

so that 

oE~)j(e) - oE~)1 (e) = n~~m + Re (En• j - EO. I ), 

which, together with (6.13) and (6.16), yields (1.44). 

B. Resonance pole of S-matrix 
• 

In this subsection we show that; (e) in Theorem C is also 
the resonance pole of the S-matrix for the photon scattering 
by the atom. 

The Hilbert space JY'in of the photon scattering states 
out 

are defined by 

JY'in = .Y(a!~,)·(fd···a~~")·(fn)fl IfjEM_ 1/2(R 3)nMo(R 3), 
out out out 

rj = 1,2, n=O,I,. .. j, (6.19) 

where .Y ( . . 1 denotes the closure of the linear span of 
( . . I. By relations (3.57)-(3.60) and the irreducibility of 
the algebra (a1 r)#(f), p, ql r = 1,2,fE M _1/2(R 3)n Mo(R 3) 1 in 
JY', we can prove the asymptotic completeness: 

(6.20) 

Then, the S-matrix S for the photon scattering is defined as 
an operator from JY'in to JY'out by 

Sa!~,)·(fd···a~~")·(fn)fl = a~~niI)···a~~:·(fn )fl. (6.21) 

It follows from Theorem 4.1 and (6.20) that S is unitary. The 
n-photon S-matrix element is given by 

Sin) ( r ... !.;g ... g ) 
rl,··rn;sl'··Sn J l' , n I' , n 

By commutation relations, we can show that the n-photon S
matrix element can be written as a sum of products of the one 
photon S-matrix element which is given explicitly by 

with 

Sgl(f;g) = J Sgl(k;k')f(k)g(k')d 3kd 3k', (6.23) 

sgl(k;k') = orso3(k - k') - 21Tio(lkl 

-lk'I)Y(lkl)e~)(k)et)(k'), 

Y(E) = _ e
2
EjJ(E)2 E>O. 

W+(E2)' 

(6.24) 

(6.25) 

We can also show that all the off-diagonal matrix elements of 
S are zero. 

Theorem 6.1: (1) The function Y(E) originally defined 
in (0,00) has a meromorphic continuation onto C+ which, 
for lei <A., has a unique pole; (e), where A. and; (e) are the 
same in Theorem C. 

(2) Let; (e) = E (e) - ir (e)/2, so that r (e) > 0, and let 
I Ie Ie> ° J be an arbitrary family of open intervals containing 
E (e) and such that the Lebesgue measure of Ie is 0 (r (e) I 12) as 
e_ + 0. Then, for EEl., 
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IY(EW = 3e
2
jJ(E)2 { y(e)r(e) + O(I)} 

32~E (E - E(e))2 + lr(e)2 

as e--+ + 0, where 

y(e) = - Re [D iI(;(e))] -I. 

The proof is quite similar to that of (II, Theorem 3) and 
hence is omitted. (See also Ref. 14, Theorem 4). 

The theorem shows that; (e) is the resonance pole of the 
S-matrix. 

VII. BROKEN SYMMETRY ASPECTS 

From now on we assume m <om. 
We have seen that, if m < om, then the total Hamilton

ian H is not bounded below [Theorems A.2 and B-(2)] and 
the unphysical mode (all' a; I (or (ell' DIl II appears. This 
phenomenon corresponds to the explicit symmetry breaking 
of H with respect to the linear canonical transformations of 
the dynamical variables which leave the quadratic form 

I mul 
----(p-eA(pW+--

o q2+H~M 
21m -oml 2 

invariant. Therefore, the unphysical mode may be regarded 
as a kind of "Goldstone boson." The following is a procedure 
("Higgs Mechanism") by which the unphysical mode disap
pears and the physical theory can be obtained. 

Let JY'phyS be the closure of the linear subspace 

rj = 1,2, n;>ll, (7.1) 

and P be the orthogonal projection onto JY' phys' Then, by 
restricting the dynamical variables within JY'phys, we can see 
that the unphysical mode disappears. In fact, by (3.41), 
(3.52), and (3.53), we have 

A:(!.t)-PAIl(!,t)P= ~ rtl {b,r)'(~eit"jTvllf) 

+ blr{~ e- itwTYIl f)}' (7.2) 

q:(t)=Pqll (t)P = ~ rtl {b Ir)'([c;) Qe~)eitW) 

+ b Ir)([c;) Qe~)e - itW)}. (7.3) 

The projected fields AP(!,t) and qP(t) satisfy the field equa
tions (3.1) in the operator-valued distribution sense. But the 
equal time commutation relations for the projected fields 
become noncanonical, which is a compensation for the dis
appearance of the unphysical mode. 

We can also define the physical Hamiltonian H phys in 
JY'phys by 

H phys = PHP, (7.4) 

which is unitarily equivalent to H ~M + const. in ..rEM [see 
Proof of Theorem B-(2)] and, in particular, satisfies 

Hphysflphys = Eflphys 

for some real constant E. 
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Now we can construct the scattering theory in JIl"'phys' Then, 
Let 

a~rl#(/) = eitHphY'Pe - itHodrl#(/)eitHope - itHphy" (7.6) 

leMo(R 3), r = 1,2, 

which are well-defined on JIl"'~hYS [see (3.57) and (3.58)]. 
Then, we have 

Theorem 7.1: For all '/Iin~hYs and alliin Mo(R 3), the 
strong limits 

s-lim a~rl#(f)'/I =a~~f'(f)'/I 
1_ ± 00 in 

exist and are given explicitly by 

2 

a~~t (f) = L b ISI(L Ir,sy), 
s= 1 

2 

a~~: (f) = L b ISIO(Dr,sy), 
s= 1 

where the operator L Ir,sl is given by (4.6). 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

The proof is quite similar to that of Theorem 4.1 
Theorem 7.1 permits us to develop the scattering theory 

in JIl"'phYS' but we omit the details (cf. Sec. VI-B). 

VIII. POINT LIMIT-REMOVAL OF ULTRAVIOLET 
CUTOFF AND INFINITE MASS-RENORMALIZATION 

In this section we consider the point limit, p(x)-o (x), of 
the interaction, which corresponds to the removal ofthe ul
traviolet cutoff in momentum space. Since {;m- 00 as 
p(x)-o (x), the point limit requires the infinite mass-renor
malization. 

We shall take the point limit in terms ofthe Wightman 

distributions ! W~:~~n;""""m I:'m = I for the projected fields in 
JIl"'phYS defined by 

wt:.~L""""m (/1,tl"",ln ,tn ;Sl, .. ·,sm) 

= (ilphys ' A:, (/1,tl)···A :n(fn,tn )q~, (SI)···q~Jsm )ilphys ), 

11''''./neY(R 3). (8.1) 

Using (7.2) and (7.3), one can easily see that, if n + m is odd, 
then W!~:)I is zero and, if n + m is even, then it is written as a 
sum of products of the 2-point distributions given explicitly 
by 

W~:~~ (/1,t l./2,t2) = !(TIl,a II,dape - ilt, - t21WTPll2 12)-1/2' (8.2) 

WII.II(J,t;S) = l(T J,A d e-ilt-s)w-Q) (8.3) 
J.l;v' 2 pa , av 0' 

WIO,21 (S ,s ) = l(Q d e - ils, - S21WQ ) . 
","2 1 2 2:' V."2 1/2 (8.4) 

We mean by p-o thatp_(21T)-3/2 with !p I being uni
formly bounded. 

Lemma 8.1: 
(1) For each ke R 3, 

limD+(k2) = mW6 - k2(m + ie2Ikl)=D~ (k2). 
p--6 61T 

(8.5) 

(2) Let 

QR(k) _ ie 
(21T)3/2 D ~ (k2) 

(8.6) 
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lim IIQ - QR 111/2 = O. 
p--6 

(8.7) 

(3) Let T:" be an operator given by 

TR 1= {; _ e2w5/2Gdll".,juj I 
10''' IlV I (21T)3 D ~ . (8.8) 

Then, for allf in Mo(R 3), 

(8.9) 

Proof The parts (1) and (2) are easily proved. By Lemma 
3.1, T:" is a bounded operator from Mo(R 3) to M _I dR 3). 
Let/be in Mo(R 3). Then, we have 

II Til" I - T:"/II 

« lei! Ilw2(Q - Q R )Gdll"p.,juj 1110 
+ Ilw2Q RGdll,,(p - (21T)-3/2).,juj/llol. (8.10) 

By the boundedness of G on M _ 1/2(R 3) and the dominated 
convergence theorem, the first term of (8.10) converges to 
zero asp-o. On the other hand, we have [the second term of 
(8.10)] ..;constX IIG 11-1/211VJ - (21T)-3/2)/ll o-o asp-o .• 

By Lemma 8.1 and (8.2)-(8.4), we obtain the following 
Theorem 8.1: For all n, m> 1, 

=W~:.~~;", ... "J/I,tl''''./ntn;SI, ... ,sm)' fjeY(R 3),tj,sjER I, 
(8.11) 

exists; if n + m is odd, then W!~:)IR is zero and, if n + m is 
even, then it is written as a sum of products of the renorma
lized 2-point distributions WI2,OlR WII,IIR and WIO.2IR which 

, J-lV 'J.l;v J.lV 

are obtained by replacing Til" (respectively Q) by T:" (re
spectively Q R) in the right-hand side of (8.2), (8.3), and (8.4) 
respectively. 

The sequence of the renormalized Wightman distribu
tions ! W!~:)IR I:'m = I is positive definite and has time trans
lation invariance. Thus, by the Wightman reconstruction 
theorem, we can construct a Hilbert space, a Hamiltonian, 
fields and a unique vacuum in such a way that they give 
! w!~;mIR I:'m = I as the vacuum expectation values for the 
fields. By noting the unitary equivalence of JIl"'phys and .rEM 

(cf. Sec. V-B and Sec. VII) or the explicit form of the fields 
(7.2) and (7.3), we can get a concrete realization for the renor
malized theory and develop the scattering theory. Since it is 
an easy, but a tedious task, the details are omitted. 
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APPENDIX A: A PROPERTY OF HILBERT -SCHMIDT 
OPERATOR 

Proposition AI: Let S be a Hilbert-Schmidt operator on 
L 2(R n), n> 1. Then, 
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lim IISeiRr II L '(R n) = 0, fE L 2(R n), 
t~± 00 

where 

R (x) = Ixi. xE R n. 

Proof We can write as 

(SeiRr)(x) = f dyS (x,y)ei'Y'r( y), 

where st· , ')E L 2(R 2n) is the Hilbert-Schmidt kernel of S. 
The square integrability of S (. , .) and the Riemann-Lebes
gue lemma imply that 

lim (SeiRJ)(x) = 0, a.e.x. 
t----+± OC! 

Furthermore, we have by the Schwarz inequality 

I(SeiRr)(xW<llfll~'(Rnl f dylS(x,yW, a.e.x. 

The rhs does not depend on t and is integrable with respect to 
dx. Thus, by the dominated convergence theorem, we get the 
desired result. 

APPENDIX B: SPECTRUM OF THE OPERATOR p.q + q.p 

We shall consider the spectrum of a more general oper-
ator 

n 

An I (Pjqj + q}Pi)' (Bl) 
j~1 

which acts in L 2(R n), where qj is the multiplication operator 
ofj-th coordinate andpj = - iJ;Jqj' By applying the Nel
son commutator theorem (see, e.g., Ref. 25, §X.5), we can 
prove that An is essentially self-adjoint on any core for the 
operator ~jn~ 1 (pJ + qJ). 

Proposition A 2. For all n> I, we have 

u(An)=uac(An)=RI, up (An)=us (An)=0. (B2) 

Proof We need only to prove (B2) for n = I, because An 
(n>2) is identified with the operator A 1 ® I ® ••• ® I + I ®A 1 

® ••• ® I + ... + I ® ••• ® A 1 acting in the n-fold tensor pro
ductofL 2(R I). We denote A I byA. The HilbertspaceL 2(R I) 
is decomposed as a direct sum: 

(B3) 

where R + = (0,00 ) and R _ = ( - 00 ,0). Using the essential 
self-adjointness of A on CO' (R I" I 0 I), which follows from 
that ofp2 + q2 (see Ref. 25, §X.4, Kalf-Walter-Schmincke
Simon theorem), A is reduced by L 2(R ± ). Thus, we need 
only to consider Ain L 2(R ± ), which are denoted by A ± 

respectively. Forfin L 2(R +), we define a function ufon R 1 

by 

(Uf)(A) = _1_ i dq e - i/2(A - i) log '1'(q), AER I. (B4) 
2.,fii R+ 

By change of variable we have 

1910 

(Uf)(A) = _1_ i dx e - iA"(vf)(x), 
fi1i R' 
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(B5) 

where 

(vf)(x) = v2e"f(e2x). (B6) 

It is easy to see that the map v is a unitary operator from 
L 2(R +)ontoL 2(R I). Since ufis the Fourier transform ofvf, it 
follows that u isa unitary operator fromL 2(R +)ontoL 2(R I). 
Now, let fbe in CO' (R +). Then, by integration by parts, we 
have 

(uA+f)(A) =A (Uf)(A). (B7) 

Since CO' (R +) is a core for A +, (B7) extends to allfin D (A +), 
so that we have 

uA+u- 1 =A. (BS) 

In the same way we can show that A _ is unitarily equi
valent to the multiplication operator A. in L 2(R 1). Thus, we 
obtain (B2) for n = 1. 
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Previous work of the authors on a three-level quantum system is extended to allow the radiation 
field in interaction with the system to have a continuous spectrum of possible frequencies. The 
limiting procedure involved in the passage from discrete to continuous spectra is complicated by 
the need to express sums over different discrete spectra as integrals with well-behaved limits. 
Exact expressions are found, for a spontaneous emission problem, for the time evolution of the 
probabilities that the system be in (each) one of its three states and representative calculations of 
these probabilities are presented. The emergence of irreversible behavior upon constructing the 
thermodynamic limit of the problem is plainly seen and this demonstration permits for the first 
time a discussion of the relative effectiveness of competing decay channels in three-level quantum 
systems without imposing any ad hoc assumptions (such as exponential decay). Rather, the actual 
form of the decay emerges as a consequence of the structure and parameters of the Hamiltonian 
defining the model, and hence one can examine the variety of circumstances in which the 
evolution can reasonably be described as exponential. The results obtained should be of great use 
in clarifying certain outstanding conceptual problems in radiation physics, particularly those 
which deal with the universality of exponential decay in three- (and two-) level quantum systems 
in interaction with a radiation field and the conditions under which nonexponential or even 
nonergodic behavior can emerge in such dissipative quantum systems. 

PACS numbers: 32.80. - t, 03.40.Kf 

I. INTRODUCTION 

In this paper we continue work begun in an earlier one 
(Ref. 1). There we set up a model of a three-level quantum 
system interacting with a one-dimensional radiation field, 
and found exact expressions for the time evolution of the 
system in the sector describing the spontaneous emission of 
radiation by the system from its highest energy level. These 
expressions were obtained for a finite system; that is, one 
where the modes of the radiation field were discrete. Our 
task in this paper will be to extend the results to infinite 
systems, where there is a continuous spectrum of possible 
radiation frequencies. To this end, we start with a finite sys
tem for which the modes of the field are those characteristic 
of a one-dimensional box of length L, with periodic bound
ary conditions. Then L will tend to infinity. This seemingly 
simple procedure is in fact very complicated. In the eighth 
paper cited in Ref. 2 can be found the analogous calculations 
for a two-level atom, and while we will be able here to take 
advantage of many of the results of that paper, a good deal of 
additional work is necessary. The difficulty arises because 
the discrete-spectrum results are expressed as nested sums 
over three different discrete spectra, one simply that of the 
unperturbed radiation field, the second that of a two-level 
atom, and the third the spectrum for the three-level system 
itself. Before the L-- 00 limit can be taken, these sums must 

be expressed as integrals for which limits exist in reasonably 
tractable form. 

-) The research described herein was supported by the Office of Basic Energy 
Sciences of the Department of Energy. This is Document No. NDRL-
2275 from the Notre Dame Radiation Laboratory. 

The (discrete-mode) Hamiltonian governing the system 
is 

H=1i£313)(31 + IIi(E2 +w,,)12;..1. )(2;..1.1 

" 

+ I2w" 11;U ) (1;U 1 + Iw" 11;..1.) (1;..1.1 

" " 
+ v1{ ~ii" 12;..1. ) (31 + I~", 11;..1.2,,11) (2;..1.21 

A1>A;z 

+ I~", 11;..1.1,,12) (2;..1.21 + ~"V211;U) (2;..1. 1 

" 
+ ¥ 11;..1. )(31 + Hermitian conjugate}. (1) 

[see Eq. (2) of Ref. 1] The notation is as follows: 13) is the 
state with the quantum system in its highest energy level, 
with energy separation 1i£3 from the ground state. 12;..1. ) is a 
state with the system in its intermediate level, separated by 
1i£2 from the ground state, and one photon in mode A of the 
field. 11;..1.1,,12) has the system in its ground state, and one 
photon in each of modes AI andA2, where AI <A2 according 
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----~--------~----------------13> 

-----+--------~--------T-------12;A> 

II; A > ___ -lI!~ ________________ .::JL ______ II; AI . A2 > 

11;2A> 

FIG. I. The model for a three-level atom considered in this paper. 

to some suitable ordering of the modes. 11;U ) and 11;A. ) are 
defined in the obvious way. The photon energies are Iiw A., 
where the frequency WA. will be taken as 2rrnclL, n = 1,2,3, 
... , c = speed oflight. The quantities hA.' gA.,fA. are transition 
matrix elements which measure the strength of the couplings 
of the system with the field. The bars in Eq. (1) and subse
quently denote complex conjugates. The model is intended 
to describe the system shown in Fig. 1. The spontaneous 
emission problem starts with the system in state 13). 

It is clear that if our quantum system is intended to 
model electronic excitations in an atom, then, at least for 
electric dipole radiation, one of the three transition matrix 
elements for each mode A. must vanish by the parity selection 
rule. However, this need not be the case for radiation of high
er multi polarity . There exist other quantum systems, too, for 
which the three states will not have a well-defined parity and 
for which consequently the selection rule will not apply. In 
condensed phase spectroscopy, for example, in addition to 
finding matrix-induced shifts and splittings in the electronic 
spectra of matrix isolated solutes, one also finds that the 
matrix can allow a partial or complete relaxation of the usual 
free-molecular selection rules,3 and it would seem useful to 
have rigorous results at hand to discuss aspects of this situa
tion in detail. 

Apart from this consideration, the calculations of this 
paper are further steps in the process of replacing Wigner
Weisskopf style approximations to the dynamics of the de
cay of excited quantum states by exact quantum-mechanical 
results. For many systems the improvement in accuracy 
achieved by this replacement will not be large (see Ref. 4 for 
bounds on the discrepancy between the exact and Wigner
Weisskopf exponential solutions) and may not even be ex
perimentally detectable. However, the calculations present
ed here may have considerable theoretical interest. A good 
deal of attention has been given recently to various "semi
classical" models of the interaction between matter and radi
ation. See, for example, the works cited in Ref. 5. Injudging 
the worth of these models it is most useful to have a collec
tion of exact results against which the approximate results of 
semi-classical models can be compared. We intend in a fu
ture paper to attempt such comparisons. 

In Sec. II, an infinite-system (continuous-spectrum) 
limit is found for P3(t), the probability that the system is in 
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state 13) at time t. In Sec. III, the limit is found for P2(t ), the 
probability of the system being in its intermediate state. The 
ground state probability is, of course, just 1 - P2(t) - P3(t). A 
numerical investigation of these functions is presented in 
Sec. IV for a particular set of parameter values, and Sec. V 
contains concluding remarks. 

II. CALCULATION OF P3(r) 

Our starting point is Eqs. (22) and (23) of the earlier 
paper, and our task is to replace all the discrete summations 
in these equations by integrals of which the infinite-system 
limit can readily be taken. Let us rewrite the expression for 
¢>3(t), the probability amplitude whose squared modulus is 
P3(t ), the probability that, at time t, the system is in its state 
13). We have 

¢>3(t) = _1_. f dz e - izt [2rriF(Z) 
2m Jc 
+ (2rri)2 _1_ ~ I G (SJL) 

HI(z) 1i2 JL H'(SJL)H(z - SJL) 

~ G{5JL) - G{5K) + G(z -SJL) - G(z -SK)]-I 
x~, , 

K H (5K)H(Z -SK) 
(2) 

where C is a Bromwich contour above and parallel to the real 
axis; 

1 ( 2lfJLI2 ) F(z) =-. E3 -z- I fz2 ; 
2m JL (wJL - z) 

(3) 

1 ( 21gJL I
2 

) HZ--E-Z- . ( ) - 2' 2 I 1i2( )' rrl JL WJL - Z 
(4) 

the zeros of H are denoted by the sequence SK; 

1 
HI(z) = ~ H'I&)H(z - SK) ; 

(5) 

the zeros of H I are denoted; v; 

1 v'1 ~ g;..h;.. (6) 
G (z) = - (2rri)2 --,; + W;.. _ Z ; 

and G (SJL ) denotes simply the complex conjugate of G (5JL)' 
It is convenient to proceed directly to the dimensionless 

variables used for the purposes of numerical calculation in 
the earlier paper. Accordingly, we make the following set of 
definitions using a dimensionless coupling constant a: 

r = aE3t, (7a) 

S = zlaE3, f3;.. = w;..laE3, YJL = SJL laE2' 

(7b) 

e = E31E3' cr = aE3L Ic. (7c) 

Dimensionless coupling functions are introduced as follows: 

g;.. = li(aE2clL )1!2gI/2(aef3;..), (8a) 

f;.. =sIi(aE3clL )1/2fI!2(af3;..), (8b) 

(8c) 

where the notations g1/2,f 1/2, h 1/2 denote complex functions 
whose squared moduli will be written simply as g,/, h. The 
scaling parameters sand r are introduced in order to permit 
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the normalization g( 1) = f( 1) = h (1) = 1. Functions corre
sponding to F, H, HI' G are defined: 

F(s) = (21Tila€3)F(a€3S), 

H(S) = (21Tila€2)H(a€~), 

HI(S) = (a€2/(21Tif)HI(a€~), 
G(S) = [(21Tifv1lha€2]G(a€~). 

From Eq. (2), then, we obtain 

~3(r)-t,h3(t ) 

= _1_. ( dS e - iliT 
21Tl Jc 
X [hs) + x 1 I x ~(YIJ I 

eHI(es) /l. H'(Y/l.)H(eS - Y/l.) K 

(9a) 

(9b) 

(9c) 

(9d) 

X G(y/l.) - G(y-;;) + Gles - Y/l.) - G(es - Yk) ] -I. 

H'(yJH(es - YK) 
(10) 

Let us collect here a few results on Laplace transforms 
and convolutions that will be of great use in our subsequent 
analysis. If two functions a, b, defined on the positive real 
axis have Laplace transforms A, B defined as follows: 

A (5) = if" drexp(isr)a(r), 

(11) 

B(S) = if" dr exp(isr)b (r), 

then the Laplace transform of the function ab is the convolu
tion, A *B, of A and B, defined by the formula 

(A *B)(s )=~i dt A (t)B (5 - s)· 
21Tl D 

(12) 

Either A or B, regarded as a function of the complex variable 
5, is defined and holomorphic in the region 1m 5> k, for 
some k. The integrand in Eq. (12) will possess singularities 
with 1m t < k associated with the function A and singulari
ties with 1m t> - k associated with B. In the representa
tion (12), the contour D is defined as one which passes from 
- 00 to + 00, leaving the singularities associated with A on 

the left and those associated with B on the right, provided 
this is feasible. The inversion formula for Eq. (11) is then 

aIr) = ~ ( ds exp( - isr)A (S). (13) 
21TlJc 

Similarly, if one considers the inverse transform of the pro
duct AB, one finds that 

~ (dse-iliTA (s)B(S) = JTdr, a(r- r')b(r'). (14) 
21TlJc Jo 

We can now obtain an integral expression for the sum 

(15) 

such that the L-. 00 limit is easily taken. For this we define 
functionsfl andf2 as inverse Laplace transforms as follows: 

(16) 
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Then the sum in Eq. (15) can be expressed as a contour inte
gral for 1m 5 > O. 

__ 1 (dt x q (t ) , 
21T;)C H (t )H (es - t) 

and this is just the convolution 

(- G IH)*lIH 

evaluated at es. It is easy to see that this convolution is also 
the value of the sum 

Ix G(ef- YK ) 

K H'(YK)H(es - YK) 

From (12) and (13) the convolution is just 

i 1"" dr eies'il(r}f2(r), (18) 

and the L---+ 00 limit of this will be obtained by making use of 
theL---+oo limits ofthefunctionsfl andf2' It has been seen in 
Ref. 2viii that these limits are well defined, and given by the 
following expressions: 

and 

/(r)= __ 1 (""dte-i;T( q+(t) _ q-(t)). (20) 
2 21T;)O H +(t) H -(t) 

Here, the functions H ± and G ± are the limiting values of 
the functions Hand G, which become sectionally holomor
phic6 in the L---+ 00 limit: 

H ± (t ) = ..!.. - t + J:..& ("" d)' g(a}. ) =+= 2ig(at), (21) 
a 1T Jo t-}. 

G ± (t) = 2r & ("" d)' gI/2(a}. )h II2(a}. ) 

1T Jo t -}. 
+ 2ir.g11 2(at)h 1/2(at), (22) 

(& denotes Cauchy principal part). 
In an exa~ly similar way, we obtain the result 

G(y ) 1"'" Ix, x /l. =i drereS'iI(r}f2*(r), 
/l. H (Y/l.)H(es - Y/l.) 0 

(23) 

where we definef2*(r) = f2( - r). 
We still need an integral expression for the summation: 

LG(Y)JG(y/l.~ + G(es - Y/l.)] 

/l. H'(Y/l.)H(es - Y/l.) 

One partJs easy: 

I ?(Y/l.)~(eS - Y/l.) 

/l. H'(Y/l.)H(eS - Y/l.) 

~ 

- (~*~ )les) 

= - i 1"" dr eieSJ2( r}f2 *( r), (24) 

where 

O(s)=G(;). 
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For the rest, define a function};: 

/(T) = _ ",IG(~KWe-'r.,. 
3 ~ H'(YK) 

Then it is immediate that 

~ G (Yp)G (Yp) _ 'L""d iesrl" ( If ( ) 
~A A --I Te JIT 3 T. 
p H'(Yp)H(e5 - Yp) 0 

(25) 

(26) 

We still need an expression that permits us to take the infi
nite-system limit of/3• By use of the residue theorem we 
obtain 

_1 (d5 G(5)G(5)e- ist 

21TiJc H(5) 

_ ~IG(YKW -ir.-" 2re~h( ,Q) -ieP.r 
- - ~ x e - -- aep A. e 

K H'(YK) if ' 
so that in the limit 

/(T)=_1 (""dr[ G+~)G+(~) _ G-i~)G-(~) ]e-i',. 
3 21T;)0 ~ H+(~) H-(~) 

+ 2r ("" d)' h (a). )e - iAr. (27) 
1T Jo 

We may now put together the results (18), (23), (24), and 
(26) into Eq. (to) to obtain 

~3(T) = ~ r d5 e - isr[£(5) 
21TlJc 

- ~ ("" dT eiesrV;(Tlh ·(T) + /1 (T)f3(T)) 
eJo 

+ A dT eieS'il(T)f2 ·(T) 2 1"" 
eH(e5) 0 

Xf" dT' eieST'/l(T'lh(T')] -I. (28) 

The integrand considered as a function of 5 is holomorphic 
for 1m 5> 0, and so in particular along C, but has a branch 
cut along the real axis of 5' We can deform C to a contour B 
(see Fig. 2) by Jordan's lemma, since the integrand in Eq. 
(28), apart from the factor e - isr, tends to zero as 151-+ 00 • 

Then the entire expression in Eq. (18) can be evaluated in 
terms of the limiting values of the integrand as 5 tends to 
positive real values either from above or below the real axis. 

In order to obtain these limiting values, we are con
cerned with the analytic continuation of expressions like 

{ plane 

Im{ 

Re{ 

(0) 

Im{ { plane 

ej B : ~ 

Re! 

(b) 

FIG. 2. (a) The Bromwich contour C chosen in the evaluation of the integral 
(28); (b) The deformed contour B. 

(29a) 

defined for 1m 5> O. This expression defines a function of 5 
which is analytic for 1m 5> 0 and tends to a well-defined and 
finite limit as 1m 5-+0+. Now the functions represented by 
pIT) are all analytic for 1m T < 0, and in fact they all tend to 
zero as ITI-+oo in the lower half-plane. To see this, consider, 
for example, the definitions (16) and (17) Of/I(T) and/2(T). 
Thus the function in (29a) can be continued through the neg
ative real axis of 5 by the following formula: 

i 1"" dT eiSTp(T) 

= i Sa - "" dT eisrp(T) (Jordan's lemma) 

= - i 1"" dT e - iSTp( - T). (29b) 

The last expression here is analytic for 1m 5 < 0 and thus 
when evaluated for real and positive 5 gives us the limiting 
value from below needed in order to evaluate Eq. (28). 

Finally, then, 

- [£-(5) + ~i"" dB e -ies8(h( - 0 lh·( - 0) + ft( - Olh( - 0)) 

+ A 2 1"" dOe- ieS8.ft( - ov;·( - 0)1"" dO' r ieS8 '.ft( - O'!h( _ 0')] -I}. 
eH I-(e5) 0 0 

(30) 
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It is easy to see that 

F ± (5 ) = ~ - 5 + 2r &' (00 dA f(aA ) + 2is2f(as) 
a 1T Jo S-A 

and 

HI ±(5) = +il
oo 

dre±isT[fI( ± rW, 

since from the definition of HI it is clear that 

HI = - (lIH)*(lIH). 

Then the probability, P3(r), is given by 

(31) 

(32) 

(33) 

P3(r) = 1¢3(rW. (34) 

The qualitative features of ¢3(1"l are probably most easi
ly inferred from Eq. (28), in which t,63(r) is expressed as an 
inverse Laplace transform. This expression may be com
pared with Eq. (16), forft(r), which is the function corre
sponding to ¢3( r) for the spontaneous emission of a two-level 
system. [See paper (iii) of Ref. 2, Eq. (12), and paper (viii), Eq. 
(15).] Both functions equal unity for r = ° and tend to zero as 
r-+ 00. It is also instructive to consider the limiting forms of 
Eq. (28) if one or more of the coupling functions g,/, or h is 
zero. Iff = 0, we still have a two-stage decay process, and the 
only simplification is that F (5) = 11 l! - 5. If h = 0, on the 
other hand, thenf2 = f3 = 0, and so t,63(r) = (1I21Ti)f c 
ds e - iST [F (5 )] - 1, an expression exactly analogous to Eq. 
(16). It is clear that in this case the existence of state 12) does 
not influence the decay, because, as is clear from Fig. 1, the 
states 12;A ) are not coupled to either 13) or the final states 
11;A ). If g = 0, the state 13) can d~cay either to 12;A ) or 
11;A ). The resulting dynamics for t,63( r) are just like those of 
fl(r) but with coupling to two continua. This is clear when 
one notes that, for g = 0, 

2r2lOO . f2 = 0, fl(r) = e- iT1a, nr) = - dA e-uTh (aA). 
1T 0 

The integrand in Eq. (28) becomes accordingly 

e - iST[ ~ _; _ 2s
2 (00 dAf(aA ) 

a 1T Jo A -; 

2r2 (00 dA h (aA ) ] - I (35) 
- -;;")0 (A + 1Ia - e;) . 

III. CALCULATION OF P2(r) 

For this calculation the starting point in Eqs. (18) and 
(24) of the earlier paper. These combine to yield the following 
expression for t,6 2.A (t ), the probability amplitude for the state 
12), ) atthe time t: 

.. 2 • t,62.). (t ) = _1_. ( dz e - iz/ t,63(Z) ~ 
2mJc HI(z) If 

Xl: /1 
I' (51' - (rJA)H (SI')H(z - 51') 

~G(5I') - G(5K) + G(z - 51') - G(z - SK) 
Xk . 

/( H'(sK)H(z - SK) 
(36) 

In this expression, ~3(Z) denotes the Laplace transform of 
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t,63(t) as given by Eq. (2): 

(37) 

As in the last section, we can move to dimensionless 
variables in Eq. (36). We obtain 

¢2.A (r)=t,62.). (t ) 

= !fi _1_ gl /2(ae/3). ) ( ds e - iST ..!,/2Jil.. 
(J" 21Ti Jc HI(es) 

1 

(38) 

Here the following definition has been used beyond those of 
Sec. II: 

tP3(5 ) = aE3~3(aE3s), (39) 

We wish now to make use of the structure ofEq. (38) as 
the inverse Laplace transform of a product of two functions 
of 5' Accordingly, we define the function tP A implicitly by the 
equation 

¢2,A (r) = -2
1 

. ( ds e - iSTtP3(5 )tP). (5), (40) 
mJc 

so that if ¢A (r) denotes the inverse transform of tPA (5), 

¢A(r)=~( dSrisTtPA(5), (41) 
2mJc 

then from Eqs. (40) and (14) we obtain 

¢2,A(r) = ilTdr' ¢3(r - r')¢).(r'), (42) 

since tP3(5) is the Laplace transform of ¢3(r). We shall be 
interested finally inp2(r), the probability that at time t = rl 
aE3 the atom is in the state 12). From Eq. (42), then, 

P2(r) = LI¢2.A(rW 
A 

= fdr'fdr" ¢3(r - r');3(r - r") 

XL¢).(r')¢A(r"). (43) 
A 

The physical interpretation of the probability amplitUde 
¢2.A (r) is as follows. It is the convolution of ¢3(r)-the Il!'1pli
tude of the state 13> which can decay into 12;A )-andt,6A (r), 
which is exactly what one obtains as the amplitude of state 
12;A ) in the decay of a two-level system (states 12) and 11») in 
the presence of a photon. [See paper (vii) of Ref. 2, Eq:.J24).] 
This "photon" is here characterized by the amplitude hA \"21 
Ii, the transition matrix elements from 13) to 12;A ). 

The next task, then, is to obtain the infinite-system limit 
of the expression 

L¢A(r')¢A(r"), 
A 

since we already have the limit of the function ¢3' From Eq. 
(38) and the definition of ¢ A' we obtain 
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~,dr) = ffe ~ r(ae/3;..) 
0' 2m 

xidse-isT~ 
c HI(es) 

1 
XL x x 

p, (yP, - e/3;..)H'(Yp,)H(es - Yp) 

XL G(yp,) - G(y:) + Gies - Yp,) - G(es - YK) . 

K H'(YK)H(eS - YK) 

Just as in the preceding section, we can conclude that 

~L G(yp,) - G(y:) + Gies - Yp) - G(es - YK) 

HI(es) K H'(YK)H(eS - YK) 

= G(yp,) + G(es - Yp,) _ ~ I"" dO 
HI(es)Jo 

(44) 

xeies9ft(O }f2(O). (45) 

Let us denote the last term in this expression by A (es ), and let 
aIr) be the inverse Laplace transform of A (s): 

aIr) = ~ids e - iSTA (5). (46) 
2m c 

In order to deal with the sum over J.L in Eq. (44), consider the 
contour integral 

__ 1 i dt G(t) + G(~s - f) +A (es) . (47) 
2rri c, (t - e/3;..)H(t)H(es - t) 

The contour C2 is above and parallel to the real axis of t, and 
lies below the contour C. Thus, 1m t < 1m S. The contour C2 

may be closed in the lower half-plane of t, and, within the 
closed contour so formed, the integrand of (47) has poles at 
the points t = e/3;.., t = Y p, for all J.L. Thus the integral (47) 
equals 

L G(yp,) + G~es - Yf ) +A (es) 

p, (yP, - e/3;..)H'(Yp,)H(es - Yp,) 

r 7JTT'I(ae/3;..) 
+ A 

r(ae/3;..)H(es - e/3;..) 
(48) 

Now from the definitions Of/I andf2' Eqs. (16) and (17), we 
see that 

1 ids e-
ist 

_ 1 -i?;T/'i(r) (49) 
2rri c H (es _ t) - ~ e I; , 
-I-ids -ist q(es-t) = _1- e - i?;T/'i2(!')' (50) 
2rri c H (es - t) e e 

If we make the definition 

A (r;t)==_1 ids e- iST x A (es) , (51) 
2rri c H (es - t ) 

then use ofEqs. (45), (48), (49), (50), and (51) in (44) allows us 
to write 

~;..(r) = - ffe ~ r(aE/3;..)i dt 1 
0' 2m c, (t - e/3;..) 

X { -.2-- [ 1- e - i?;Tle(G (t V; 
H(t) e I 

X ( ; ) - f2( ;)) + A (r;t)] 

- -er e-i?;T/'iI(!.e) 7JTT'I(ae{3;..) 1 } (52) 
r(ae/3;..) . 
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This expression now contains no discrete summations. The ...,... 
complex conjugate, r/J;.. (r), can easily be obtained from this 
expression by noting that the complex conjugate of an inte
gral of the form 

LdtP(t) 

for some function P is just 

Ld{P(t), 

where C is a contour below and parallel to the real axis. Note 
that P (t ) is analytic in t if Pis. 

For the evaluation ofl:;..~;..(r'~;..(r"), then we need the 
following sums over A: 

2e} g(ae/3;..) =_I+H(t)-H(t') 
q2~(t-e/3;..)(t' -e/3;..) t' -t ' 

2er
L 

7JTT'I(ae/3;..)g1/2(ae/3;..) _ G(t) - G(t') 

q2;.. (t-e/3;..Ht'-e/3;..) t'-t 
(53) 

2er
L 

h 1/2(ae/3;..) r(ae/3;..) = G(t) - G(t') 

q2;.. (t-e/3;..Ht'-e{3;..) t'-t 

2er
L 

h(ae/3;..) = E(t)-E(t') 

q2 ;.. (t-e/3;..Ht'-e/3;..) t'-t 

These results follow directly from the definitions of the func
tions H, G, G, and 

E(t)=2erLh (ae/3;..) . 
q2 ;.. t - e/3;.. 

In the infinite-system limit, E becomes a sectionally holo
morphic function: 

E (t ) --+ 2r r" dA h (aA) . 
rrJo t-A 

The results (52) and (53) now yield 

~~;..(r')~;..(r") 

=_1 idt' dt' 
(2rr)2 c Jc 
X {[ _ 1 + H(t) - H(t')] B((;t~(r";t') 

t' -t H(t)H(t') 

(54) 

_ [ G(t) - G(t') ] 1-e-i?;T'IJI(r'/~}B(r",t') 
t' -t e H(t') 

_ [ G (t) - G(t ') ] 1- e- i?;'T"le Tt( r" ) BJr';t) 
t'-t e e H(t) 

(55) 

where 

B (r;t )==(l/e)e - i?;Tle[ G (t }fl(rle) - f2(rle)] + A (r;t), 

First we may observe that 
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_1 id'~=O. 
21T'i c Hit) 

The proof is as follows. The integral equals 

_J:...f .(!\1"2(!) +~id'~. 
e ere 2m c H (' ) 

Now from Eq. (51) we obtain 

_1 id,~=_1 idse-iSTA(es) 
21T'i c H (~) 21T'i c 

1 i 1 x- dS ...... A,..---.:A---

21T'i c, H(')H(eS -~) 

= - ~ids e-lsTA (es)iI.(es) [Eq. (33)] 
2m c 

=~idse-iSTJ" dO eiesiJ,nOlf2(O) [Eq. (45)] 
2m c Jo 

Combining results we note the pairwise cancellation of the 
term (2/elf.(T/e}h(T/e), thereby completing the proof. 

Equation (55) can now be rearranged into the following 
form: 

(56) 

Now if Q is a sectionally holomorphic function with a cut along the positive real axis, and with limiting values Q ± (') on 
either side of the cut, then we have, for any two functions R. and R2 holomorphic on and below the contour C, and such that 
their integrals along the closure of C in the lower half-plane tend to zero, that 

-1-id,r d,' Q('),- Q(,') R.(,) R 2(;') 
(2m12 c Jc ~ -, 

=_1 .id'Q(')Rg) R2(,) _~r d,' Q(~')RI(") R2(;') 
2m c 2mJc 

= ~ r d'Q(')R.(~) R 2(;) = ~ roo d~ RI(~) R2(~)[Q +(~) - Q -(~)] 
2mJ B 2mJo 

(57) 

(where B is the contour of Fig. 2). In order to apply Eq. (57) to (56) in the infinite-system limit, notice from Eqs. (27) and (54) in 
this limit: 

_1 roodl"e-i!;T[G+i~)G+(') -k+(I")- G-i')G-(~) +k-(I")] =/(T). 
21T'iJo ~ H+(~) ~ H-It) ~ 3 

(58) 

Then, the limit ofEq. (56) can be written as 

(59) 
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We have now succeeded in writing l:,t¢,t (r')¢,t (r") in a form free of discrete summations, and thus ready for the infinite
system limit to be taken. Equation (59) is still very messy, however, and we can now embark on substantial simplifications 
designed to facilitate numerical computation. Since 

A (r;;) =_1_. (dse~iSTleA(s) =~rledoe-i~'iI(O)a(!.-O) (60) 
21TleJc H(S-{;) eJo e 

[Eqs. (14) and (49)], we obtain 

_1 .roo d{; [ q +({;) _ q -((;) ] e-i~r'leA (r";{;) = ~ r"ledO J;(O)a( r" _ 0 \1"2( i... - 0). (61) 
21TlJo H +({;) H -({;) eJo ere 

Similar calculations permit us to evaluate all the terms in Eq. (59) which involve integrals over {;. These terms become 

1 [ ( ') (T" Ie (" \1" (' ) (" ) (T'le (') (" ) e2 ifl : Jo dO J;(O)a : - 0 y2 : - 0 - iJ; : Jo dO/I(O)a : - 0 /z : - 0 

( 
')(T"le (" \1"(' ) (")(T'le (') (" ) + if2 : Jo dO J;(O)a : - 0 yl : - 0 - i/z : Jo dO/I(O)a : - 0 J; : - 0 

(T'le (T"le (') (" \1" ] + Jo dO Jo dO' iI(O )J;(O ')a : - 0 a : - O'y 1(0 - 0') . (62) 

The next step is to derive an expression for a( r) in the infinite-system limit. This expression will tum out to be made up of 
yet more convolution integrals, with readily calculated limits. From the definition, 

A (s) = - -2!- (00 dO eis°iI(O lf2(O). 
HI(s)Jo 

Now it is shown in the previous paper that as Z-oo, 

2ff!IHI(z) = -!Z+€2+0(Z-I). 

In dimensionless variables, this becomes 

lIHI(s) = S - 2/a + O(S -I), 

Consequently, 

lIsHI(s)-1 =O(S-I) 
for large S, and we can legitimately make the definition 

hl(r) = _1 . ( ds e- iST[ -J- - 1]. 
21TlJc SHI(S) 

If, further, we define 

d 
14(0) = dO [f1(O lf2(O)], 

then an integration by parts in Eq. (63) yields 

A (s) = 2[ -J- - 1] (00 dO eis%(O) + 2 (00 dO eis%(O). 
sHg) Jo Jo 

Since A (S) is the Laplace transform of aIr), we can use Eq. (14) to obtain 

aIr) = - 2ih,(O) + 2 fdr' 14(r')h l(r - r'). 

A limiting expression forh is available from those for II and/2; for hi' Eq. (64) gives, in the limit, 

1 1 ("" e - i~T [1 1] 
hl(r) = -]jJ<i) + 21T;)0 d{;-{;- H t({;) - H I-({;) . 

Equation (32) allows for easy evaluation of this expression. ~ 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

The final result ofthis section can now be written down. It is an expression for P2(r) in terms of the function ¢3(r) 
considered in the previous section and five other functions of r, namely,/I./2,h,h, and hi' combined as a sum of numerous 
products and convolutions. The expression, although long, now has a quite simple structure: 

P2(r) = ~1¢2.,t(rW = [dr'iTdr" ¢3(r - r'~3(r - r")[ ~¢,t(r')¢,t(r")], (69) 

where 
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~~A(r'¥A(rn) = :2 (r.( ~ )1;( r; )r3( r' ~ rn ) + h( r" ~ r' )r2( ~ )T.( r;) 

+h( r' ~ rn )rl( ~ )h( r;) +f,( r' ~rn )r2( ~ )h( r;) 

_ 2f,( ~ )[ledOf2( r' ~ rn + 0 )T.( r; -0) [h(O) - ii6dO' h(O') 77;(0 - 0')] 

-2Tt(r;)fledOh( rll~r' +O)rl(~ -0)[~(0)+ii6dO'f4(O')hl(0-O')] 

_ 2h( r; )fledOf,( r' ~ r" - 0 )rl( ~ - 0 )[.r4(0) + if dO' ~(O')h,(O - 0')] 

_ 2h( ~ )["ledOf.( r' ~ r" + 0 )T.( r; - 0)[ h(B) - ii6dO' h(O') 77;(0 - 0')] 

+ 4fledO ["ledO'f,( r' ~ r" _ 0 + o')r.( ~ - 0 )Tt( r; - 0') 

X [.r4(0) + if d,.,.r..{7])h ,(O -7])][ h(O') - if d,.,' h(,.,') 77;(0' - .,()]). (70) 

Again, the limiting forms of this expression for one or more zero coupling functions are interesting. If only f = 0, 
naturally enough there is no simplification in Eq. (70), since the details of the two-stage decay process must still be described. 
But, if h = 0, thenf2 = f3 = f4 = 0, sop2(r) = 0. We saw before that the states involving 12) are inaccessible from state 13> in 
this case. The most interesting case is again that in which g = 0. Then 

h = f4 = 0, nr) = ei'T{a), f3(r) = 2,-2 rco dJ. h (aJ.)e - iAT 

1T Jo 
as before. Although we shall not need it, we also note the result that h,(r) = 2/a. [Compare Eq. (34) of paper (viii) of Ref. 2.] 
Then 

~~A(r'~A(rn) = e~f.( ~ )T.( r; )1;( r' ~ rn ) 

= :~ico dJ. h (aJ. )exp[ - ~ ( ! +J. )lr' - rn)]. 

Then, from Eq. (69), 

P2(r) = :~icodJ.h(aJ.)li[dr'~3(r')exp[ -~(! +J. )lr-r')] 12. 

A quantity of interest is the limit of this as r_ 00 , i.e., the probability that the system ends up in state 12) when that state cannot 
decay. The answer can be readily expressed in terms of 7/13' the Laplace transform of ~3(r): 

(71) 

We write 7/13+ here since 7/13 is sectionally holomorphic like the other Laplace transforms of the paper. In fact, for the case g = 0, 
Eq. (35) gives 

(7/13(; ))-1 = ~ _ t _ ~ rco dJ.f(aJ.) _ 2,-2 rco dJ. h (aJ. ) . 
a 1T Jo J. - S e1TJo J. + l/a - et 

Now, ifin additionf = 0, one expects thatp2( 00) = 1, since now state 11) is inaccessiblefrom state 13). This is easily seen to be 
true, since Eq. (71) can then be written as 

P2( 00 ) = 2:iei
co 

dA [7/13+ ( ~ (J. + ~ )) - 7/13- ( ~ (J. + ! ))] 
=_1. r dt7/l3(~(t+~)) 2meJB e a 
= 1, 

since IV. NUMERICAL RESULTS 
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In the previous sections, exact expressions were derived 
describing the emission of an excited three-level system in a 
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(one-dimensional) field of radiation in the limit where the 
system size becomes of infinite extent and the mode spec
trum becomes continuous. In the formulation of the prob
lem, it was assumed that the state of the system excited ini
tially was the state 13) and it is now of interest to follow the 
evolution of the system through the competing channels 
available for the decay of this quantum system. From Eqs. 
(30) and (34) derived in Sec. II, one can study the evolution 
from the excited state 13); then, from Eqs. (69) and (70) of 
Sec. III, one can determine the influence of the intermediate 
state 12). The functions fA , hA' andgA which specify the 
coupling between the states 13) and 11), 13) and 12), and 12) 
and 11), respectively, must, of course, be assigned before the 
numerical work can be performed. In our earlier work, com
putations were carried out for several different choices of 
coupling function; for example,f(x) was taken as 
fIx) =x- 1/4

, 

fIx) = X-
1I2

, (72) 

fIx) = 4x/(1 + xf (73) 

In the problem of the two-level atom, it was found2v that for 
sufficiently small values of the coupling parameter a, all of 
the above coupling functions led to strictly ergodic behavior 
in the time evolution of the system; however, our calcula
tions also showed that the first two functionsf(x) allowed 
nonergodic behavior. Here we shall focus on results generat
ed for three-level systems using the (always when a < 17"/8) 
"ergodic" form factor, Eq. (73). Moreover, in this study, we 
have restricted our choice of the parameters of the model to 
the following set of values: a = 0.1, e = 2, and r = s = 1. 
Specifying the parameter e = E3/ E2 = 2 means thatthe three 
levels of the system are equally spaced with respect to the 
energy gap between the states 13) and 12), and 12) and 11). 
Setting r = s = 1 [see the definitions (8)] means that the func
tionsfA' hA' andgA coupling the levels of the problem (see 
Fig. 1) are placed on an equal footing. Given these specifica
tions, the results plotted in Fig. 3 were obtained, and we turn 
now to a discussion of the evolution profiles, P3( r) vs. rand 
P2(r) vs. r, displayed therein. 

An acid test of the reliability of the present calculations 
in the accuracy with which the initial conditions of the prob
lem, P3(r = 0) = 1.0 and P2(r = 0) = 0.0, are achieved. Al
though it is clear from the structure ofEqs. (69) and (70) that 
the probability P2(r) at r = 0 must vanish identically, the 
quantity P3(r = 0) can be computed. We determined that 
P3(r = 0) = 0.9892, an accuracy comparable to that realized 
in the finite system calculation I when a2 = 1.0 [P3(r = 0) 
= 0.9928] and somewhat better than that achieved when 

a2 = 10.0 [P3(r = 0) = 0.9405]' A second, rather demanding 
test of the accuracy ofthe numerical work involves the func
tionp2(r). Given the structure of the expression (70), it is seen 
that the real and imaginary parts of the wavefunction ¢2(r) 
appearing therein are "mixed." Therefore, in the calculation 
of P2(r) not only should the real part of P2(r) be bounded 
between 0 and 1 (it is), but the imaginary part ofp2(r) for allr 
should vanish; the explicit calculation ofImp2(r) yielded a 
maximum value of 0.0089 at the maximum in the curve,P2(r) 
vs. r, with the magnitude of this contribution much less else
where. For reasons of economy these computations were 
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done in single precision; it is likely that the above checks can 
be improved in going to double precision. 

Resul ts corresponding to the above set of parameters of 
the model (a = 0.1, e = 2, and r = s = 1) and various cou
pling functions were obtained previously for the discrete 
spectrum problem, and evolution profiles forf(x) = X-

1/4 

andf(x) = X- 1/2 were displayed explicitly in Ref. 1. For 
small values of the coupling constant (a = 0.1), it was found 
that the specific choice of coupling function had a relatively 
small (numerical) effect on the calculated evolution of P3(r), 
both for small systems (a2 = 1.0) and larger ones (a2 = 10.0); 
more noticeable differences in the evolution of the system 
were found in studying the probability P2(r). For both proba
bilities, the evolution determined for small a was much more 
sensitive to the other parameters of the model (e,r,s). To de
termine whether for given specification of e, r, and s these 
trends for small a persist in the limit a2 -+ 00, we focus here 
on a comparison of the discrete vs. continuous spectrum re
sults for the same parameter specification (a = 0.1, e = 2, 
r = s = 1), but for two different choices of coupling function, 
namely, Eqs. (72) and (73). 

Both for finite systems (see Figs. 3 and 10 in Ref. 1 
corresponding to a2 = 1.0 and a2 = 10.0, respectively) and 
the infinite one studied here (see Fig. 3), our calculations 
show that the initial decay of the system from the excited 
state 13), as monitored by the quantity P3( r), takes place on a 
time scale which seems to be relatively unaffected by the 
particular form factor fIx) adopted in the calculations. In 
fact, the closeness with which the initial decays from the 
state 13) are in correspondence for finite versus infinite sys
tems is quite remarkable, as can be seen in Fig. 4, where we 
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FIG. 3. The temporal behavior of the three-level atom studied in this paper. 
The parameters which characterize the system are a = O.I,J(x) = 4x/ 
(1 + X)2, e = 2, r = 1, and s = 1. The solid curve describes the evolution of 
P3(r) while the dashed line describes the evolution of P2(r). We determine 
P3(0) = 0.9892. 
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FIG. 4. A comparison of the effect of system size on the evolution from 13) 
and 12). The solid curves give the quantitiesp3(r) andp2(r) as determined 
from expressions (34) and (69), respectively, of this paper; here, a = 0.1, 
r = S = 1.0, e = 2.0, and/(x) = 4x/(1 + xl'- The dotted curves give the 
quantitiesp3(r) andp2(r) as determined from expressions (40) and (41), re
spectively, of Ref. I; in addition to the parameters specified above, we assign 
cr = 1.0 and choose/Ix) = x- 1/2. 

display the evolution of P3(T) for dl = 1.0 under the coupling 
function (72) and for dl-oo under the coupling function 
(73). For all intents and purposes, the decays are essentially 
coincident up to times l' - 1.0; beyond this time there arise 
Poincare recurrences in the evolution of the three-level 
quantum system in interaction with afinite number of modes 
of the field (the case dl = 1.0), whereas the system remains 
de-excited for all times l' > 1.0 in the continuous spectrum 
case. In both calculations, one finds a slight "shoulder" in 
the evolution curve in the vicinity of l' = 0; the emergence of 
this behavior in exactly solvable, dynamical models charac
terized by a finite coupling constant a, and the collapse to 
strictly exponential decay in the weak-coupling limit (a-o) 
have been discussed in our earlier work. ',2viii 

Differences in the discrete vs. continuous spectrum 
problem seem to manifest themselves rather more dramati
cally in the evolution from the intermediate state 12) of the 
three-level system. Over the range of l' for which meaningful 
comparisons can be made (1'';;; 1.0), the probability P2(T) of the 
system's being in the state 12) persists for a longer time in the 
discrete spectrum problem than in the continuous spectrum 
one; moreover, the maximum probability P2(T) realized in 
the former case is somewhat greater than that achieved in the 
latter one, over that same range of 1'. It is worth noticing that 
the slightly faster decay of the functionp3(T) for (very) short 
times for the case dl _ 00 vs. dl = 1.0 is accompanied by a 
slightly greater probability of finding the system in the state 
12) over that same time scale. 

The conclusion which emerges from these calculations 
of P3(1') and P2(T) is that it is not the decay from the initial, 
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excited state 13) that is most affected by the passage from a 
discrete to a continuous spectrum of radiation, but rather the 
decay from the intermediate state 12). We have already not
ed for finite systems' the apparently greater sensitivity of the 
probability pz(1') to the coupling function and to the param
eters of the model. Since the probability pz(T) that the atom 
be in the state 12) at time l' reflects the importance of a com
peting decay channel available to a three-level quantum sys
tem, it is clearly of great interest to study the interplay 
between "direct" de-excitation events (13)_11») versus 
those that proceed through the intermediate state 12) as a 
function of the coupling function (with various choices of r 
and s), the coupling constant a, and the level splitting param
eter e. This study, which is underway, will have a direct 
bearing on the assessment of earlier theories which have 
treated the problem of a two- or three-level quantum system 
in interaction with a radiation field in an approximate or 
phenomenological way, this owing to the absence of an exact 
solution to the time-dependent Schrodinger equation for the 
problem. However, with our earlier work on two level quan
tum systems (Ref. 2) and the work in Ref. 1 and in the present 
study on three-level ones, we now have available an exact 
quantum-statistical theory for such problems. It may be an
ticipated that the worth of these earlier theories will be de
cided on the basis of the success with which the detailed 
behavior of the probability pz(1') is reproduced as the param
eters of the model are changed. 

V. CONCLUDING REMARKS 

In this paper, we have undertaken the study of a model 
for a three-level system in interaction with a continuous 
spectrum of radiation, and have succeeded in obtaining an 
exact solution to this important, quantum-statistical prob
lem. The complexity of the derivations of this paper and the 
difficulty in evaluating numerically the expressions derived 
will serve, we hope, as good excuses for our not complicating 
the model at this stage with features such as three space 
dimensions, angular momentum, multi pole expansions of 
the radiation field, and so on. Our main objective here was to 
display the essential mathematical issues that are involved 
and to show how the attendant analytical difficulties could 
be handled (exactly). It should be clear, however, that no 
difficulties of principle stand in the way of incorporating 
such features. 

Exact solutions of models with an infinite number of 
modes or with continuous spectra are quite rare, and now 
that the present model has been solved it is worth comment
ing on the uses to which the theory and its generalizations 
can be put. Of perhaps greatest interest (to us) are the various 
theoretical and conceptual questions about the interaction of 
matter and radiation that are still outstanding. It is worth 
emphasizing that the L-oo limit introduces inrreversible 
behavior and permits discussion of competing decay chan
nels without any ad hoc assumptions such as exponential 
decay. Rather, the actual form of decay emerges as a conse
quence of the model, so that one can examine the circum
stances in which it can be reasonably described as exponen
tial. Situations in which nonexponential decay can arise and 
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the further problems of ergodicity and mixing in quantum 
dynamical systems7 can also be studied without approxima
tion. The explicit treatment here of a three-level quantum 
system allows, as well, some assessment of the extent to 
which these general notions pertain to concrete problems in 
spectroscopy, viz., fluorescence and phosphorescence. Tak
en together with the results obtained in our exact analysis of 
a two-level quantum system in interaction with a discrete 
[Ref. 2(iv)] or continuous [Ref. 2(v)] spectrum of radiation, 
we may, for example, calculate the line shape and line broa
dening in a variety of situations. As noted in the preceding 
section, the results obtained may be compared with those 
derived using approximate theories, e.g., the semiclassical 
theory of matter-radiation interaction, and a definitive state
ment can then be made concerning the regime of applicabi
lity of these approximate theories. At the very least, such a 
study should allow one to develop better approximations 
and thus enhance the range of applicability of these earlier, 
more intuitive theories. 
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Small has given a set of equations for stationary electromagnetic wave envelopes in a cubically 
nonlinear two-dimensional medium and has obtained some particular solutions. These solutions 
are generalized. Some solutions of the Ginzburg-Pitaevski equation for superfluid are obtained as 
a by-product. 

PACS numbers: 42.65. - k, 03.40.Kf, 67.90. + z 

I. INTRODUCTION 

In a recent paperl Small has obtained the following set 
of equations for stationary electromagnetic wave envelopes 
in a cubically nonlinear two-dimensional medium. 

ax:x; + ayy - (¢; + ¢; - k ~)a + /3a 3 = 0, 

aa 
ax =-, etc. ax 
(a2¢x)x + (a2¢y)y = 0, 

a¢ 
,/, =-,etc., 
'I'x ax 

where the electric field is given by 

E = (a(x,y)cos[¢ (x,y) - UJt ],0,0) 

for linearly polarized waves and by 

(la) 

(Ib) 

(2a) 

E = (a(x,y)cos [¢ (x,y) - O)t ],a(x,y)sin [" (x,y) - O)t ],0) 
(2b) 

for circularly polarized waves. Wave number vector 

_ _(a¢ a¢ ) k(x,y)=V¢= -,-,0, ax ay 
ko and /3 are constants, and 

F(/PI2) = /3a 2 

(3) 

(4) 

represents the nonlinearity of the medium where P is the 
polarization vector. 

Equation (I) has been solved by Small when a and ¢ are 
functions of x only. In the present paper we seek solutions of 
(I) for (i) a = a(x) and (ii) a = air) where r = x 2 + y2 with no 
restriction on ¢. 

2. SOLUTIONS 
Case (I): a = a(x), ax;;z!'O 

and 

Here (I) is reduced to 

¢; +¢; =a(x), 

a(x) = (ax:x; + k ~a + (3a3)1a, 

a(¢xx + ¢yy) + lax¢x = O. 

It will be shown that (5) leads to 

¢y = const = B (say) 

If ¢y = O,¢x #0, then (6) is automatically satisfied with 

B=O. 

(5a) 

(Sb) 

(5c) 

(6) 

If ¢y #0, ¢x = 0, then the left-hand side of (5a) is a function 

of y only and the right-hand side is a function of x only. 
Hence both are constants. Hence, ¢y = const and (6) is satis
fied. 

If ¢x #0, ¢y #0, one can proceed as follows. Differenti
ating (5a) with respect to y, 

¢X¢Xy + ¢y¢yy = 0. 

Hence, eliminating ¢yy by use of (5c) and then dividing 
throughout by ¢y/a and integrating, 

a
2¢ 
¢yX = y(y), 

where r(y) is an unspecified function ofy. This readily gives 

¢=¢(u), 

where 

u=X+ Y, X=fdX 
2 ' a 

Y=f dy 
r(Y)· 

Using the above relations we get from (5a) 

¢ ~(X; + Y;) = a(x) 

or 

X 2 y2 I 
_x_+_y_=_. 
a(x) a(x) ¢~ 

Differentiating the above equation separately with re
spect to X and Y, respectively, and comparing the results, 

a(x)[ X;] + a(x) [_1_] Y; = [Y; h. 
a(x) x a(x) x 

Differentiating again successively with respect to X and Y, 

{a(x) [_I ] } [Y; h = o. 
a(x) x x 

Hence, either 

a(x)[ 1/a(x)1x = const 

or 

Yy = const. 

That a(x)[ 1/ a(x) 1x = const is not possible will be shown in 
Appendix A. From Yy = const and Y = Sdy/y(y) we have 

y( y) = const. 

Differentiating [X;/a(x) + Y;/a(x) 1 = 1/¢ ~ with respect 
to Yand using Yy = const, we get 
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[~] =0, 
4> u u 

which gives 4>u = const, 
Hence,4>y = 4>u uy = 4>u Yy = const. Thus in this case of 

4>x #0, 4>y #0 we also see that (6) is satisfied. Hence (6) is true 
for all cases. Now, using (6) and (5c) we get 

4>x = A /a2, where A is a constant. 

Generalizing (6) and (7), we get 

4> = A f ~~ + By. 

Using (8) together with (5a) and (5b), we get 

axx =A 2/a3 + (B2 - q)a -fla3 

or 

~a;) = 2A32 + 2(B 2 _ k ~)a _ 2{3a3, 
da a 

or 

(7) 

(8) 

f .,(2ada 
[-fla6+2(B2-k~)a4+2Ka2-2A2r/2 =x, 

where K is a constant. The above equation can be rewritten 
in a more compact form as follows: 

f dZ 
[ _ 2{3Z 3 + 4(B 2 _ k ~)Z 2 + 4KZ _ 4A 2] 1/2 = x, 

Z=a2. (9) 

The integral in Eq. (9) is of the form of an elliptic integral and 
hence can be expressed in terms of standard elliptic integrals. 
Equation (9) then gives a implicity. 4> is then given by (8). 

Case (Ii): a = a(r), ar ~O, where r2 = x 2 + ,V, tan (J = y/x 

Here (1) is reduced to 

r4>; + 4> ~ = c5(r)r, 

(lIr)(ra,), + k ~a + fla 3 

8(r) = , 
a 

a[+tr4>,), + ~oo ] + 2a,4>, = 0. 

It will be shown that (10) leads to 

4>0 = const = D (say). 

(lOa) 

(lOb) 

(lOc) 

(11) 

If 4>0 = 0, 4>, #0 then (11) is automatically satisfied with 
D = 0. If 4>0 #0, 4>, = ° then the left-hand side of (lOa) is a 
function of (J only and the right-hand side is a function of r 
only. Hence both are constants. Hence, 4>0 = const and thus 
(11) becomes satisfied. 

If 4>0 #0,4>, #0 one can proceed as follows. Differenti
ating (lOa) with respect to 0, 

1 
4>,4>'0 + ~04>00 = 0. 

Hence eliminating 4>00 by use of (10e) and then dividing 
throughout by tPo/ar and integrating, 
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a2rA. 

f,=X(O), 

where X (0 ) is an unspecified function of O. This readily gives, 

4> = 4> (v), 

where 

v=p+e, P - f dr Q - f dO 
- a2r' 1:7 - X(O)' 

Using the above relations we get from (lOa) 

2( Z e~) 4> v p, + 7 = c5(r), 

or 

p; e~ 1 
-+--=-. 
c5(r) rc5(r) 4> ~ 

Differentiating the above equation separately with respect to 
p and e, respectively, and comparing the results, 

rc5(r) [ p;] + rc5(r)[+-] e~ = [e~ ]19' 
c5(r) p r-c5(r) p 

Differentiating again successively with respect to p and e, 
{rc5(r)[ lIrc5(r) lp} p [e ~ ] 19 = 0. 

Hence, either 

rc5(r)[ lIrc5(r) lp = const 

or 

eo = const. 

That rc5(r)[lIrc5(rj]p = const is not possible will be shown 
in Appendix B. 

From eo = const and e = IdO /X(O) we have 
X (0) = const. Differentiating 

p;/c5(r) + eVrc5(r) = lItP~ 

with respect to e and using eo = const, [114> ~] u = 0, 
which gives 4>u = const. and hence, 4>0 = tPuvo = Ouee 
= const. Thus in this case of 4>, #0,4>0 #0 we also see that 

( 11) is satisfied. Hence (11) is true for all cases. Now, using 
(11) and (lOc), we get 

(12) 

where C is a constant. Generalizing (11) and (12) we get 

f dr 
4> = C -Z + DO. 

ra 
Using (13) together with (lOa) and (lOb) we get 

(13) 

r(ra,), = C Z/a 3 + r[a(Dz/r - k~) -fla3
]. (14) 

a is implicitly given by (14). 4> is then given by (13). 

Case (iii): a = const 

Here (I) reduced to 

4> ~ + 4>; = fla z = const, 

4>xx + tPyy = 0. 

(I5a) 

(ISb) 

Differentiating (ISa) separately with respect to x and y, re
spectively, adding and then using (ISb), we get 4>xy = 0, 
which gives 
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tP = 5 (x) + 7,1(y). 

Eliminating tP from (16) and (I5a) we get 

5x = const = L, 

7,1y = const = M. 

Using (I7a) and (I7b) in (16) and then from (15) we get 

(16) 

(I7a) 

(I7b) 

tP=Lx+My+N, (I8a) 

where N is a constant, and 

a = (1/P)(L 2 +M2)I!2. (I8b) 

3. CONCLUSION 

Summarily Eqs. (1) have been completely integrated for 
a = a(x) and have been reduced to a single second-order dif
ferential equation for a = a(r). 

For a = a(x) the solutions are given by (8) and (9) if 
a#const and by (18) if a = const. For a = a(r) Eqs. (1) have 
been reduced to (14) where tP is given by (13). 

It is interesting to note that for a = a(x), tP is a function 
of both x and y. Therefore, even when amplitude depends on 
x only, the phase depends on both x andy. Likewise we see 
for (13) and (14) that even when the amplitude depends on r 
only the phase depends on rand O. 

We further note that for ko = I and P = - 1, Eqs. (1) 
reduce to Ginzburg-Pitaevski equations2 for superfluids 
where the wavefunction of the superfluid is given by 
a exp(itP ). Thus the present paper gives some solutions for the 
Ginzburg-Pitaevski equations for superfluids as well. 

APPENDIX A 

It is evident that when 

a(x) [_1_] = const = J 
a(x) x 

there must be 

(AI) 

a(x)[ X!] = const = H. (A2) 
a(x) x 

WhenJ #OandH #0, dividing (A2) by (AI) and using 
Xx = 1/a2, we get 

a = (1 - ba4 )1da4
, (A3) 

whereb and dare constants. From (AI)and using Xx = 1/a2 

ax J 
~= - a2 ' 

(A4) 

Eliminating a from (A3) and (A4) we get 

ax = J(I - ba4 )14o. (A5) 

Comparing (A3) and (5b), we get 

(1 - ba
4

) = axx + k6 +pa2. (A6) 
da4 a 

Expressing axx in (A6) in terms of ax as in (A5), 

1 - ba
4 

= _ ~ (1 - ba
4
)(1 + 3ba

4
) k2 + aa2. 

da4 16 a4 + 0 P' 

(A7) 

(A 7) is an equation in a which can be satisfied only with 
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discrete values of a. This means that a is a constant, which is 
not the case considered here. 

WhenJ #0, H = O,from (A2), and using Xx = 1/a2, we 
get 

(A8) 

whereg is a constant. From (AI) and Xx = l/a2 we get 

Eliminating a from (A8) and (A9) we get 

ax =J /40. 

Comparing (A8) and (5b) we get 

_1_ = axx + k ~ + pa2. 
a4g a 

Expressing axx in (All) in terms of ax as in (AlO), 

pa6 + k~a4 = (..!.. + ~). 
g 16 

(A9) 

(AlO) 

(All) 

(AI2) 

(AI2) is an equation in a which can be satisfied only with 
discrete values of a. This means that a is a constant which is 
not the case considered here. 

When J = 0, H #0, from (AI), we get 

a = 1/h, (AI3) 

where h is a constant. Eliminating a from (A2) and (A 13) and 
usingXx = 1/a2, 

1/a4 =HX+s, (A14) 

where s is a constant. Differentiating (A 14) with respect to x 
and using Xx = 1/a2, 

ax = - (H /4)a3
• (AI5) 

Comparing (AI3) and (5b) 

I_axx+k2+a2 
--- 0 pa. 
h a 

(A16) 

Expressing axx in (A16) in terms of ax as in (A15) 

..!..= 3H
2

a
4 
+pa2+k~. 

h 16 
(A17) 

(A 17) is an equation in a which can be satisfied only with 
discrete values of a. This means that a is a constant, which is 
not the case considered here. 

WhenJ = O,H = O,from(Al), wegeta = 1/h, whereh 
is a constant. From (A2), we get a = 1/a4g, where g is a 
constant. Eliminating a from above two relations we get, 
a = (h /g)I/4 = const, which is not the case considered here. 

APPENDIX B 

It is evident that when 

r8(r)[_1_] = const = Q, 
r8(r) p 

there must be 

(BI) 

r8(r)[ p;] = const = R, (B2) 
8(r) P 

When Q #0, R #0, dividing (B2) by (BI) and usingpr 
= 1/a2r we get 

P. K. Chanda and D. Ray 1925 



                                                                                                                                    

D _ (I - pa4
) - 2n 

- 4 e , 
qa 

(B3) 

wherep and q are constants and In r = n. From (BI) and 
using P r = 11 a2r we get 

Dn Q 
-= - 2 - 2, wherelnr= n. 
D a 

Eliminating D from (B3) and (B4) we get 

an = Q(I _pa4 )/4a. 

Comparing (B3) and (lOb) and using In r = n, 

(l-pa
4

) _2n_ ann -2n+k 2 +t:1 2 
4 e - ---e 0 /Ja. 

qa a 

Expressing ann in (B6) in terms of an as in (B5), 

(I - pa4
) _ 2n Q (I - pa4

)( I + 3pa4
) _ 2n 

~-'---'-ee = - - e 
qa4 16 a4 

+ k~ + (3a 2
• 

Differentiating with respect to n, and using (B5), 
Sa 

Q(I _ pa4 ) 

(B4) 

(BS) 

(B6) 

(B7) 

= - 4pa3 + 12Qpqa3 

(I - pa4
) 16 + Qq + 3Qpqa4 a 

4 2{3a . (BS) 
k~ +fJa2 

(BS) is an equation in a which is satisfied only for discrete 
values of a. This means that a is a constant, which is not the 
case considered here. 

When Q #0, R = 0, from (B2) and usingpr = 1Ira2
, 

I e - 2n 
D=--=--

ra4m a4m' 

where m is a constant and In r = n. From (BI) and 

Pr = l/ra2
, 

Dn Q 
-= -2-2, wherelnr=n. 
D a 

Eliminating is from (B9) and (BIO), 

an = Q 14a. 

Comparing (B9) and (lOb) and using In r = n, 

e - 2n a _ nn - 2n + k 2 + t:1 2 
-4- - ---e 0 /Ja. 
am a 

Expressing ann in (BI2) in terms of an as in (BII), 

e- 2n 

a4m 

Simplifying, 
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(B9) 

(BIO) 

(BII) 

(BI2) 

(B13) 

2n = In[ (lIm + Q2/16 )]. 
(k ~ + {3a2)a4 

Differentiating with respect to n and using (B 11), 

4fJa4 + (4k ~ + 3QB )a2 + 2Qk ~ = 0. (BI4) 

(BI4) is an equation in a which is satisfied only for discrete 
values of a. This means that a is a constant, which is not the 
case considered here. 

WhenQ = O,R #0, from (Bl)and usingpr = l/ra2
, we 

get 

1 e - 2n 
D=-=--

rl I 
(BIS) 

where I is a constant and In r = n. Eliminating D from (B2) 
and (BIS) and using 

Pr = lIra2, lIa4 = Rp + T, where T= constant. 
(BI6) 

Differentiating (BI6) with respect to nand usingpr = lIra2, 

an = - (R 14)a3
• (BI7) 

Comparing (B IS) and (lOb), and using In r = n, 

e- 2n 3R 2 
__ =--a4e- 2n + k 2 + t:1a2. 

I 16 0 /J' 

Simplifying, 

2n = In . [ 
16 - 31R 2a4 

] 

(k ~ + (3a2)( 16/) 

Differentiating with respect to n and using (B 17), 

61R 3a6(k ~ + fJa2) 

(BIS) 

+ R{3a4
( 16 - 31R 2a4

) = 4( 16 - 31R 2a4 )(k ~ + (3a2). 
(BI9) 

(BI9) is an equation in a which is satisfied only for discrete 
values of a. This means that a is a constant, which is not the 
case considered here. 

When Q = O,R = O,from(BI), wegetD = lIrl, where 
I is a constant. From (B2), we get D = lIra4m, where m is a 
constant. Eliminating D from above two relations, a = (I I 
m)1/4 = const, which is not the case considered here. 

'R. D. Small, J. Math. Phys. 22,1497 (1981). 
zv. L. Ginzburg and L. V. Pitaevski. Zh. Eksp. Teor. Fiz. 34, 1240 (1958) 
[Sov. Phys. JETP 7,858 (1958)]. 
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Thermodynamic behavior in the critical region of the spin van der Waals model is considered 
when the number of spins in the system is large but finite (1 <N < 00). The specific heat curve is 
shown to possess a steep, yet smooth, maximum which turns into a singularity as the number of 
spins becomes infinite. In the case of the finite system, this maximum occurs at 
E = E'" = 0 (N -1/3), where E = (T - Te)/Te, Te being the critical temperature of the infinite 
system. 

PACS numbers: 64.60.Cn, 05.70.Fh, 65.40. - f 

I. INTRODUCTION 

In a recent paper, Lee l has made an investigative study 
ofthe onset oflong-range order in the spin van der Waals 
model when the number of spins in the system is finite 
(N < 00) and also when it is infinite (N-oo). He has shown 
explicitly that, whereas an infinite system at low tempera
tures can support long-range order, a finite one cannot. Val
id though it is, this result may leave one with the (erroneous) 
impression that the behavior of a finite system, in this case 
the spin van der Waals model, is completely devoid offea
tures characteristic of a phase transition. This, of course, is 
true if one is looking, solely and strictly, for spontaneous 

magnetization, as indeed was the case with Lee's analysis, 
but is no longer true if one is observing properties such as the 
specific heat of the system. In that case, one would expect a 
"smoothed-out" behavior2 characterized by a steep maxi
mum in the specific-heat curve, whose precise height and 
location depend on the size of the system, such that, in the 
limit N- 00, it turns into a discontinuity at T = Te. Thus, 
for any finite value of N, so long as it is large enough from a 
statistical point of view, one would expect to encounter a 
situation which, though nonsingular in principle, is indistin
guishable in practice from the ones commonly associated 
with a phase transition. 

To demonstrate this point, the partition function of the 
system has to be evaluated with a much greater degree of 
care than is ordinarily done because some of the approxima
tions customarily made in such studies are valid only in the 
thermodynamic limit (N- oo ), and may cause serious errors 
if they are admitted into the study of finite systems as well. 
Keeping this in mind, I have carried out a rigorous analysis 
of the specific heat of the finite-sized spin van der Waals 
model, which brings out very clearly the cooperative fea
tures alluded to in the foregoing. 

II. BASIC FEATURES OF THE SPIN VAN DER WAALS 
MODEL 

The spin van der Waals model consists of an aggregate 
of N !-spins situated on the sites of a regular lattice. The field
free partition function of the system is given by J.3 

-I Work supported in part by the Natural Sciences and Engineering Re
search Council of Canada. 

11121N 5 
ZN = I I g(S)e-PEI5.S,I, (1 ) 

5=0 sz= -s 

where Sand Sz refer to the "total spin" of the system, 
E (S, Sz) is the eigenvalue of the Hamiltonian JY associated 
with the state (S, Sz ), 

E(S,Sz) = -N-I[JS(S+ I)-AS;] (J>O), (2) 

while g(S) is the corresponding degeneracy factor 

(3) 

It will be noted that N here has been assumed to be an even 
number; the case of odd N can be treated likewise though, 
asymptotically, the results in the two cases should be identi
cal. 

For simplicity, we shall confine our analysis to the iso
tropic version of the model, viz., the one with A = O. The 
summation over Sz then yields a straightforward factor of 
(2S + 1) and the partition function takes the form 

11121N 

ZN = I/(S), (4) 
s=o 

where 

I(S) = ( N ) (28 + 1)2 ePJN- 'S(5+ II. (5) 
!N-S !N+S+ 1 

The function/(S), which is a measure of the relative proba
bilities of S assuming different values, leads to the ratio 

r(S):= I(S) = !N-S+ 1 (2S+ 1)2e2f3JN-IS 

I(S-l) !N+S+l 2S-1 
(S = 1,2, ... ,!N). (6) 

At the lower end of the summation, we have 

r(l) = [9/(1 + 4N -1))e2f3JN-I'"'-'ge2(f3J- 21N I, (7) 

which is greater than unity for all values of the interaction 
parameter [3J, though it clearly indicates that[3J may have a 
critical value equal to 2. At the upper end of the summation, 
we have instead 

r(lN) = N + 1 ef3J=~ePJ, 
2 (N _ 1)2 N 

(8) 

which is considerably less than unity, except when the sys
tem is at so Iowa temperature that[3J is of order In N. For all 
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practical purposes, therefore, the summand in (4) is a non
monotonic function of S, passing through a maximum at 
S = S *, say; S * is then the "most probable" value of S. Or
dinarily one would expect S * to be identical with the "mean 
value" S; in the critical region, however, this may not be the 
case [see Eqs. (35)-(37)]. 

The precise value of S * may be determined by equating 
the ratio (6) to unity, which leads to the implicit relation 

In (!N + S * + I) _ 2 In ( 2S * + I ) _ 2(JJ ~ = O. 
!N-S*+I 2S*-1 N 

(9) 

If we are looking for an S * of order N, then the middle term, 
being of order N - I, drops out and we obtain the asymptotic 
relation 

m* = tanh(! (JJm*), (m = 2S / N), (10) 

which is formally identical with the well-known mean-field 
result ofWeiss.4 We thus find that the spin van der Waals 
model undergoes a phase transition at (JJ = ( (JJ)c = 2, i.e., 
m* = 0 for (JJ<2 and 0 < m*< 1 for (JJ> 2. 

This simplistic picture changes dramatically when we 
recognize that between S * = 0 on one hand and 
o < S * = 0 (N) on the other, there exist regions in which 
S * = 0 (~ ), with a lying between 0 and I. 5 For instance, 
right at (JJ = 2, our basic relation (9) takes the asymptotic 
form 

(
4S* + 16S*3 + ... ) _ (~ + ... ) _ 4S* = 0 

N 3N 3 S* N' 
(11) 

which shows that the middle term is no longer negligible, 
with the result that S * turns out to be nonzero and of order 
N 3/4

; 

(S *).8J ~ 2 =(3N 3 /8)1/4. 

For (JJ significantly less than 2, we have instead 

( 
4S * + ... ) _ (~ + ... ) _ 2(JJS * = 0 
N S* N' 

whence it follows that 

S*=(2~(JJI/2 =O(N IIZ
), 

(12) 

( 13) 

(14) 

indicating the absence of cooperative behavior at higher tem
peratures. The region in the vicinity of (JJ = 2, therefore, 
requires a rather incisive, albeit cautious, investigation. 

For this we introduce a parameter E, defined by 

(JJ = 2(1 - E), (15) 

such that E increases with temperature. Our basic relation 
now becomes 

(
4S* + 16S*3 + 64S*5 + ... ) _ (~ + ... ) 

N 3N 3 5N 5 S* 

_ 4(1-E)S*=O. (16) 
N 

Now, so long as S * is of order less than N 5 I 6, this relation 
reduces to 

16S*3 2 4ES* 
3N3 - S* + -----;;- = 0, (17) 
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with the result that 

S*2 = W9cN4 + 24N 3 )1/2 - 3EN 2
]. (18) 

Note that, for E = 0, (18) reduces to our earlier result (12). In 
fact, so long as lEI is of order N -1/2, S * is of order N 3/4

; 

clearly, this may be regarded as the very bosom of the critical 
region. 

If Eis positive and of order greater thanN -1/2, then (18) 
yields the result 

S*2=(N /2E), (19) 

in agreement with (14). If, on the other hand, E is negative 
and lEI of order greater than N -II2, we obtain 

(20) 

Finally, if lEI in this case tends to be of order N° but stays 
much less than unity, then S * becomes of order Nand Eq. 
(16) reduces to 

16S*3 64S*5 4ES* 
--+--+--=0 

3N 3 SN 5 N ' 

with the result that 

S*2 = N
2 

[(25 + 1801EI)1/2 - 5] 
24 

= 31ElN2 [1- ~ lEI]. 

(21) 

(22) 

From the foregoing considerations, one might naively infer 
that the maximum of the specific heat curve lies in the region 
where S * = 0 (N 3/4 ), i.e., where lEI = 0 (N -112). Detailed 
analysis shows that this is not the case. 

III. SPECIFIC HEAT IN THE CRITICAL REGION 

The internal energy of the system under study is given 
by [see Eq. (2)] 

(23) 

Throughout the region of interest, the ratio S /""SI, being at 
most of order N -1/2, is negligible; the foregoing expression 
may, therefore, be simplified to 

U= - N-IJ SI = - N- IJ(S2 +.12), (24) 

whereLl 2 denotes the variance ofthe variable S. In the region 
represented by (22), .1 is negligible in comparison with S, and 
S is practically identical with S ., with the result that the 
internal energy in this region is given by 

U= - N - IJS *2= - ~NJ lEI [ 1 - ~ lEI] (25) 

and the specific heat by 

C I au (J2j2 as·2 

Nk = Nk aT = - 2N 2 -----a;-
=~ [I - ~ lEI]· (26) 

We note that, as lEI decreases, the specific heat does ap
proach the standard value ~ of C / Nk at the critical point 
( (JJ = 2) of the infinite system. However, the slope of the 
specific heat curve remains positive throughout the region in 
which the foregoing approximation holds. We, on the other 
hand, wish to locate a smooth maximum, with vanishing 
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slope, somewhere in the neighborhood of the erstwhile criti
cal point E = O. To achieve this goal, we shall now carry out a 
rigorous analysis of the specific heat of the system in this 
neighborhood. 

For this, we first of all need to examine the "degree of 
steepness' of the maximum of the probability distribution 
functionf(S). This can be done by looking at the quantity 

h (S)= r(S + I) - I 
r(S) 

_ [ (!N - S )(!N + S + 1) 

(!N - S + I )(!N - S + 2) 

(2S - 1)2(2S + 3)2 213JN - ,] I 
X e-

(2S + 1)4 
(27) 

at S = S *, which serves as a useful and reliable measure of 
the variance of S; in fact, .::l 2 ex: 1 h (S *) 1- I. One readily finds 
that 

4N 2 2{JJ 
h (S *)-:=:::: - N 2 _ 4S *2 - S *2 + N' (28) 

where S * is determined by the basic relation (16). It follows 
that, if S * is of order N, the middle term of(28) drops out and 
the root-mean-square deviation.::l turns out to be of order 
N 1/2. Asymptotically, therefore, S = S *, thus justifying the 
passage from Eq. (24) to (25). This, however, will not be gen
erally true in the critical region. For instance, at PJ = 2, 
where S * is given by (12), h (S *) turns out to be 

16S*2 2 8 
h(S*)-:=:::: - ~ - S*2 = - S*2' (29) 

so that.::l = 0 (S *) and hence Sand S *, while being of the 
same order in N, may differ from one another by a significant 
factor. A detailed study of h (S *), in conjunction with the 
basic relation (16), shows that whenever S is of order N 3/4 or 
less, the foregoing situation prevails. Accordingly, for such 
values of E, the passage from (24) to (25) is not justified. 

To deal with this situation, we have to make a more 
thorough use of the probability distribution functionf(S), 
which may now be approximated as 

[ 
2£S2 4S4] 

f(S) = constxS 2 exp - -- - --3 . N 3N (30) 

The most probable value of S for the probability distribution 
(30) is indeed the same as the one given by Eq. (17). The mean 
and the mean-square values of S, however, are now given by 

- 2 (3N 3
)1I4 S= - -- D_ 2(z)lD_ 3/2(Z) 

fii 8 
(31) 

and 

3 (3N 3)112 SI = 2" -8- D_5/2(Z)/D_3/2(Z), (32) 

where Dp (z) are the parabolic cylinder functions6 and z is the 
"scaled parameter" of the problem, defined by the relation 

z = C;y/2£-:=::::C;y12 T ~ Tc ; (33) 
c 

here Tc denotes the critical temperature of the infinite sys
tem. Noting that, for v> 0, 
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D _ ,,(0) = 2(1I2)v- I r (!v)lr (v), (34) 

we obtain at the erstwhile critical point (z = 0) 

I (3N 3)1/4 21/4 
S(O) = - - = -S*(O) 

rw 4 rw 
(35) 

and 

r(S) (3N3)1I2 21/2r(S) 
5'7(0) = _4_ __ = 4 S *2(0). 

rw 4 rw 
(36) 

These results show very clearly that the variance of S is no 
longer negligible; in fact, 

~(O) = r(s)F(J) = ..!!..- > 1. 
S2(0) 4 4 J8 (37) 

For the specific heat, we now have 

C 2( 1 - £)2 a 5'7 
Nk = - N 2 ----a;-; (38) 

cf. (26). Introducing the Whittaker functions U (a,z), which 
are directly related to the parabolic cylinder functions 
through the relation7 

U (a,z) = D _ a _ 1/2 (z), (39) 

we obtain 

C 9 U'(I,z)U(2,z) - U(1,z)U'(2,z) 

Nk -:=::::"4 ! U(l,zW 

=1.[I-Z U(2,z) _1.{U(2,z)}2]. (40) 
4 U(I,z) 2 U(l,z) 

The temperature derivative of the specific heat is in tum 
given by 

.i..(-E.) =_9 (3N)1/2{ _ U(2,z) [3 U(2,z) z] 
aT Nk 4Tc 2 U(l,z) + U(l,z) + 

X [I -z U(2,z) _ 1. { U(2,z) }2]}. (41) 
U(l,z) 2 U(I,z) 

At z = 0, we obtain 

C(O) = 1. [1 _ 1. {r!il}2] = 0.6087 (42) 
Nk 4 4 rw ' 

which is considerably less than the "standard" value ~, as 
given by Eq. (26). The slope of the specific heat curve atz = 0 
turns out to be - 0.3621N 1/2 ITc • The fact that this is of 
order N 1/2 is not surprising because, in the vicinity of the 
point z = 0, the specific heat changes by a magnitude 0 (I) 
over a temperature range 0 (N -1/2). The fact that it is nega
tive implies that the maximum of the specific heat curve lies 
in the region z < O. The question then arises: is the corre
sponding value of Izl of order unity? 

To resolve this question, it seems worthwhile that we 
first examine the situation for large values of Izl. For this we 
make use of the asymptotic expansion of the parabolic cylin
der functions appropriate to the domain where z < 0 and 
Izl>l, viz.,s 
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D __ vIz) = - ~ e-v1TIe(1/4)Z>zv-l 

X{I + (v-I)(v-2) 
2Z2 

+ (v - IHv - 2Hv - 3)(v - 4) + ... }, 
2.4z4 

which leads to the much simpler result 

D -v-l (z) 

D_v(z) 

=--1+--z { v-I 
V Z2 

Accordingly, 

~"-' _ ~~ D_ 5n!z) 
Nk - 4 Jz D -3/2(z) 

(v - 1)(v - 2) 

= 2 {I- _I _ 2- + ... J, 
2 2Z2 4Z4 

+ .. J 

(43) 

(44) 

(4S) 

which does approach the "standard" value ~ but with a slope 
that remains throughout negative, though diminishing in 
magnitude as Iz 1- 3. Clearly, the specific heat maximum does 
not lie in the region where Iz I = 0 (1); it rather lies in a region 
where Izl is infinitely large, i.e., where I€I is of order greater 
than N -1/2 [see Eq. (33)]. 

To proceed further, we require an improved version of 
the probability distribution function/(S), which is readily 
found to be 

[ 
2€Sz 

ItS) = constxS 2 exp - ~ 

4S
4 

32S
6

] 
- 3N3 - ISN 5 • (30a) 

Replacing the last exponential factor by its expansion in 
powers of (S 61 N 5), we obtain 

S7 = e~3rl2 
~:=o (lin!)! -~~6INlnr(3n+~)D_3n_5/2(Z) 

X , 
~: = 0 (lin!)! - !~6IN]n r(3n + ~)D _ 3n _ 3/Z(Z) 

(32a) 

the parameter z being the same as defined earlier in Eq. (33). 
Utilizing the asymptotic expansion (43) for the function 
D _ v (z), for z < 0 and Izl > 1, we obtain 

S7= 

3N 2
( - €)~: =0 (lIn!)1( [I + (3n + ~H3n + W2zz + ... ] 

4 ~:=o (lIn!)1t [1 + (3n + ;)(3n - !)l2z2 + ... ] 
(46) 

where 

(47) 

The leading terms of the series appearing in (46) yield the 
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bulk result for S7, viz., 3NZ( - €)/4. Other terms yield a 
multiplying factor of 

e71 [1 + (91]z + IS1] + i)/2z2 
+ ... ] ~ 1 + 61] + 1 , (48) 

e71 [1 + (91]2 + 91] - !)!2zZ + ... ] 2z2 

whence it follows that 

S7~ 3N
2

(_€) [1+(~€+ _1_)]. (49) 
4 S 3cN 

A comparison of (49) with Eqs. (20) and (22) shows that the 

difference between the quantities S7 and S *2, which was 
quite glaring in the region Izl = 0 (1), is present in the region 
under study as well, though here it is relatively subtle. For a 
further elucidation of this point see the Appendix. 

A quick glance at the more accurate expression for ST 
suggests that the reversal in the specific heat curve might 
take place in the region in which the two correction terms 
appearing in (49) become of the same order of magnitude, 
i.e.,wherelcNj = o (l)andhencelzl = O(N I/6»1-incon
formity with the conclusion arrived at following Eq. (4S). 
For a precise location of the specific heat maximum, we sub
stitute (49) into (38) to obtain 

~ ~ 2 [1 + (~€ __ 1_)] . (SO) 
Nk 2 S 3€2N 

It is now straightforward to see that the specific heat of the 
system possesses a smooth maximum at €* = - (S/12N)1/3, 
the value of the maximum being 

C*INk~~[1 +JfE*]. (SI) 

This agrees with the standard value ~ in the limit N- 00 ; for a 
finite system, however, we have a correction term of order 
N -1/3. Needless to say, in the thermodynamic limit, the 
critical region, which we have examined here in rather min
ute detail, collapses into a single, critical point (€ = 0) and, 
with it, several of the results reported in this paper get sub
merged into the singular behavior of the system at that point. 

APPENDIX 

To elucidate the slight, but significant, difference 

between the quantities S7 and S *2 in the relevant region of 
interest, we express the probability distribution function/(S) 
in terms of the variabley = (S - S *)/S *, whereS * is deter
mined by maximizing the expression (30a), i.e., by solving 
Eq. (16). In the present approximation, this gives 

S*2~ 3N
2

( - €) [1 + (_2_ + ~€)]. (AI) 
4 3€2N S ' 

cf. Eqs. (20) and (22), which hold in different domains of €. 
The probability distribution function then takes the form 

I(S )=exp[ g(S )] 

= exp[g(S*) + ~g"(S*)S*2y2 
+ tg"'(S*)S*Y + ... ], (A2) 

where 

g"S*2~ _ 6€2N, g"'S*3~ - 18cN,.... (A3) 

For I€I = 0 (N -1/3), the root-mean-square deviation iny 
would be 0 (N - 1/6). As will be seen later, the mean value of y 
turns out to be considerably smaller-in fact 0 (N - 1/3). In 
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view of this, the lower and upper limits ony, which are - 1 
and(N - 2S*)/2S* [= O(N I/6)],maybereplacedby - 00 

and + 00, respectively. The mean-square value of S is then 
given by 

--sz = S*2 (1 + yf 

=S*2[1+(f~:4 + Ig"~S*2)+"') 
=S*2[1- 3~N + .. 1 (A4) 

Substituting (A 1) into (A4), we obtain the desired result (49). 
It appears worthwhile to point out here that although the 

relative difference between SZ and S *2 turns out to be 
o (N -1/3), which for many purposes is unimportant, it does 
affect the numerical value of €*, which we are trying to deter
mine accurately enough so as to establish the existence of a 
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smooth maximum in the specific heat curve of the given sys
tem. 
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ERRATA 

Erratum: Partial-range completeness and existence of solutions to two-way 
diffusion equations [J. Math. Phys. 22,954 (1981)] 

Richard Beals 
Mathematics Department, Yale University, New Haven, Connecticut 06520 

(Received 18 January 1983; accepted for publication 27 January 1983) 

PACS numbers: 02.30.Jr, 99.10. + g 

The stated results for two of the three cases considered 
are inaccurate due to lack of care in following Ref. 4. The 
indicated functions, though complete, are not independent. 
If flo = 0 and S h (0 )dO < 0 then I Uk; Ak > 0 I are indepen-
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dent and complete where h (0) > 0, while if S h (0)d0 > 0 the 
constant function 1 must be included. Changing signs, one 
obtains the statement where h (0) < O. Details will appear 
elsewhere. 
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